rm(list=ls());gc()
##          used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 513379 27.5    1147472 61.3   638648 34.2
## Vcells 972391  7.5    8388608 64.0  1741665 13.3
if(!require(here)){install.packages("here")}
## Loading required package: here
## here() starts at C:/Users/CISS Fondecyt/Mi unidad/Alvacast/SISTRAT 2019 (github)/SUD_CL
warning(paste0(getwd()))
## Warning: C:/Users/CISS Fondecyt/Mi unidad/Alvacast/SISTRAT 2019 (github)/SUD_CL
Sys.setlocale("LC_TIME")
## [1] "Spanish_Chile.1252"
unlink(paste0(here::here(),"/*_cache"), recursive = TRUE)

path<-gsub("/SUD_CL","",here::here())

check_obj<-function(x){if(!exists(x)){stop(paste0("The object ",x ," was not created"))}}

load(paste0(path,"/1.Rdata"))
#setwd("H:/sud_cl/")
if(!require(dplyr)){install.packages("dplyr")}
## Loading required package: dplyr
## Warning: The packages `ellipsis` (>= 0.3.2) and `vctrs` (>= 0.3.8) are required
## as of rlang 1.0.0.
## Warning: replacing previous import 'lifecycle::last_warnings' by
## 'rlang::last_warnings' when loading 'tibble'
## Warning: replacing previous import 'ellipsis::check_dots_unnamed' by
## 'rlang::check_dots_unnamed' when loading 'tibble'
## Warning: replacing previous import 'ellipsis::check_dots_used' by
## 'rlang::check_dots_used' when loading 'tibble'
## Warning: replacing previous import 'ellipsis::check_dots_empty' by
## 'rlang::check_dots_empty' when loading 'tibble'
## Warning: replacing previous import 'lifecycle::last_warnings' by
## 'rlang::last_warnings' when loading 'pillar'
## Warning: replacing previous import 'ellipsis::check_dots_unnamed' by
## 'rlang::check_dots_unnamed' when loading 'pillar'
## Warning: replacing previous import 'ellipsis::check_dots_used' by
## 'rlang::check_dots_used' when loading 'pillar'
## Warning: replacing previous import 'ellipsis::check_dots_empty' by
## 'rlang::check_dots_empty' when loading 'pillar'
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
if(!require(data.table)){install.packages("data.table")}
## Loading required package: data.table
## 
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
## 
##     between, first, last
require(data.table)
require(dplyr)
CONS_C1_df%>%
  dplyr::mutate(fech_ing_ano = lubridate::year(fech_ing), 
                fech_ing_mes = lubridate::month(fech_ing), 
                fech_ing_dia = lubridate::day(fech_ing)) %>%
  dplyr::mutate(concat=paste0(HASH_KEY,"_",fech_ing_ano,"_",fech_ing_mes,"_",fech_ing_dia)) %>%
  dplyr::mutate(duplicated_HASH_date = duplicated(concat)) %>%
  as.data.table() %>%
  assign("CONS_C1_df_dup",.,envir = .GlobalEnv)
#45526 trues
#Libraries used in the routine. Dont change the order
# local({r <- getOption("repos")
#        r["CRAN"] <- "http://cran.r-project.org" 
#        options(repos=r)
# })
copiar_nombres <- function(x,row.names=FALSE,col.names=TRUE,dec=",",...) {
  if(class(ungroup(x))[1]=="tbl_df"){
        if(options()$OutDec=="."){
            options(OutDec = dec)
            write.table(format(data.frame(x)),"clipboard",sep="\t",row.names=FALSE,col.names=col.names,...)
            options(OutDec = ".")
          return(x)
        } else {
            options(OutDec = ",")
            write.table(format(data.frame(x)),"clipboard",sep="\t",row.names=FALSE,col.names=col.names,...)
            options(OutDec = ",")
          return(x)    
        }
  } else {
        if(options()$OutDec=="."){
            options(OutDec = dec)
            write.table(format(x),"clipboard",sep="\t",row.names=FALSE,col.names=col.names,...)
            options(OutDec = ".")
          return(x)
        } else {
            options(OutDec = ",")
            write.table(format(x),"clipboard",sep="\t",row.names=FALSE,col.names=col.names,...)
            options(OutDec = ",")
          return(x)       
  }
 }
}  

require(knitr)
## Loading required package: knitr
require(tidyr)
## Loading required package: tidyr
require(janitor)
## Loading required package: janitor
## 
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
require(stringi)
## Loading required package: stringi
require(stringr)
## Loading required package: stringr
require(ggplot2)
## Loading required package: ggplot2
require(Hmisc)
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## The following objects are masked from 'package:base':
## 
##     format.pval, units
require(kableExtra)
## Loading required package: kableExtra
## 
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
## 
##     group_rows
require(lubridate)
## Loading required package: lubridate
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:data.table':
## 
##     hour, isoweek, mday, minute, month, quarter, second, wday, week,
##     yday, year
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
require(rbokeh)
## Loading required package: rbokeh
## Registered S3 method overwritten by 'pryr':
##   method      from
##   print.bytes Rcpp
require(altair)
## Loading required package: altair
## Warning: package 'altair' was built under R version 4.0.5
## Error: package or namespace load failed for 'altair' in loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck = vI[[j]]):
##  namespace 'vegawidget' 0.3.1 is being loaded, but >= 0.4.1 is required
require(zoo)
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
require(codebook)
## Loading required package: codebook
require(broom)
## Loading required package: broom
## Warning: package 'broom' was built under R version 4.0.5
require(sqldf)
## Loading required package: sqldf
## Loading required package: gsubfn
## Loading required package: proto
## Loading required package: RSQLite
require(devtools)
## Loading required package: devtools
## Loading required package: usethis
## Warning: Can't find generic `testthat_print` in package testthat to register S3
## method.
## Warning: Can't find generic `testthat_print` in package testthat to register S3
## method.

## Warning: Can't find generic `testthat_print` in package testthat to register S3
## method.
require(Statamarkdown)
## Loading required package: Statamarkdown
## Stata found at C:/Program Files/Stata16/StataMP-64.exe
## The 'stata' engine is ready to use.
require(haven)
## Loading required package: haven
require(glue)
## Loading required package: glue
## 
## Attaching package: 'glue'
## The following object is masked from 'package:dplyr':
## 
##     collapse
require(ggiraph)
## Loading required package: ggiraph
require(ggiraphExtra)
## Loading required package: ggiraphExtra
require(data.table)
require(dplyr)
require(tidylog)
## Loading required package: tidylog
## 
## Attaching package: 'tidylog'
## The following object is masked from 'package:Hmisc':
## 
##     summarize
## The following objects are masked from 'package:tidyr':
## 
##     drop_na, fill, gather, pivot_longer, pivot_wider, replace_na,
##     spread, uncount
## The following objects are masked from 'package:dplyr':
## 
##     add_count, add_tally, anti_join, count, distinct, distinct_all,
##     distinct_at, distinct_if, filter, filter_all, filter_at, filter_if,
##     full_join, group_by, group_by_all, group_by_at, group_by_if,
##     inner_join, left_join, mutate, mutate_all, mutate_at, mutate_if,
##     rename, rename_all, rename_at, rename_if, right_join, sample_frac,
##     sample_n, select, select_all, select_at, select_if, semi_join,
##     slice, summarise, summarise_all, summarise_at, summarise_if,
##     summarize, summarize_all, summarize_at, summarize_if, tally,
##     top_frac, top_n, transmute, transmute_all, transmute_at,
##     transmute_if, ungroup
## The following object is masked from 'package:stats':
## 
##     filter
require(radiant)
## Loading required package: radiant
## Loading required package: radiant.data
## Loading required package: magrittr
## 
## Attaching package: 'magrittr'
## The following object is masked from 'package:tidyr':
## 
##     extract
## 
## Attaching package: 'radiant.data'
## The following object is masked from 'package:haven':
## 
##     as_factor
## The following object is masked from 'package:codebook':
## 
##     as_factor
## The following objects are masked from 'package:lubridate':
## 
##     month, wday
## The following objects are masked from 'package:Hmisc':
## 
##     describe, subplot
## The following object is masked from 'package:ggplot2':
## 
##     diamonds
## The following objects are masked from 'package:data.table':
## 
##     month, wday
## The following object is masked from 'package:base':
## 
##     date
## Loading required package: radiant.design
## Loading required package: mvtnorm
## Loading required package: radiant.basics
## Registered S3 method overwritten by 'radiant.basics':
##   method      from 
##   print.rcorr Hmisc
## Loading required package: radiant.model
## Loading required package: radiant.multivariate
require(neuralnet)
## Loading required package: neuralnet
## Registered S3 methods overwritten by 'neuralnet':
##   method     from         
##   plot.nn    radiant.model
##   predict.nn radiant.model
## 
## Attaching package: 'neuralnet'
## The following object is masked from 'package:dplyr':
## 
##     compute
require(radiant.update)
## Loading required package: radiant.update
# if(!require(knitr)){install.packages("knitr")}
# if(!require(tidyr)){install.packages("tidyr")}
# if(!require(janitor)){install.packages("janitor")}
# if(!require(stringi)){install.packages("stringi")}
# if(!require(stringr)){install.packages("stringr")}
# if(!require(ggplot2)){install.packages("ggplot2")}
# if(!require(Hmisc)){install.packages("Hmisc")}
# if(!require(kableExtra)){install.packages("kableExtra")}
# if(!require(lubridate)){install.packages("lubridate")}
# if(!require(rbokeh)){install.packages("rbokeh")}
# if(!require(altair)){install.packages("altair")}
# if(!require(zoo)){install.packages("zoo")}
# if(!require(codebook)){install.packages("codebook")}
# if(!require(broom)){install.packages("broom")}
# if(!require(sqldf)){install.packages("sqldf")} 
# if(!require(devtools)){install.packages("devtools")}
# if(!require(Statamarkdown)){install_github("hemken/Statamarkdown", quiet=T,  upgrade="never")}
# if(!require(haven)){install.packages("haven")}
# if(!require(glue)){install.packages("glue")}
# if(!require(ggiraph)){install.packages("ggiraph")}
# if(!require(ggiraphExtra)){install.packages("plotly")}
# if(!require(data.table)){install.packages("data.table")}
# if(!require(dplyr)){install.packages("dplyr")}
# if(!require(tidylog)){install.packages("tidylog")}
# if(!require(radiant)){install.packages("radiant", repos = "https://radiant-rstats.github.io/minicran/")}
# if(!require(neuralnet)){install.packages("neuralnet")}
# if(!require(radiant.update)){install.packages("radiant.update", repos = "https://radiant-rstats.github.io/minicran/")}

#install.packages( repos = "https://radiant-rstats.github.io/minicran/")
#install.packages("radiant.update", repos = "https://radiant-rstats.github.io/minicran/")
# tryCatch(source("https://raw.githubusercontent.com/radiant-rstats/minicran/gh-pages/update.R"), error = function(e) print("updated package, radiant"))
#radiant::update_radiant()


To assess the main goals of the study, we focused on distinguishing each user throughout the yearly datasets obtained from SENDA (1); then we separate each treatment of each user (2). Finally, we normalize, standardize, and clean each treatment (3). These stages may be conceptually separated and sequential, but they are interdependent (e.g., we needed to standardize some variables to detect duplicated entries).


On this page, we use the terms “rows” and “cases” interchangeably to refer to the entries of the dataset.


1. Drop duplicated entries

 
Many treatments last more than one year. Hence, entries may come from different yearly datasets but refer to the same treatment. We detected duplicated rows in almost every variable, excepting for the row number of the entry in the whole consolidated dataset and in the retrieval year of the dataset.


#create vector with variable names
names_c1 <- names(CONS_C1_df_dup[,c(3,5:106)])
#Group by duplicated rows 
as.data.table(CONS_C1_df_dup)[, dup_todo := .N, by = names_c1] %>%
  data.table::as.data.table() %>%
  assign("CONS_C1_df_dup_ENE_2020_prev",.,envir = .GlobalEnv)
#summarise duplicates and times
as.data.table(CONS_C1_df_dup)[, dup_todo := .N, by = names_c1] %>%
  dplyr::arrange(HASH_KEY, fech_ing, desc(ano_bd)) %>%
  dplyr::group_by(dup_todo) %>%
  dplyr::summarise(n()) %>%
  data.frame() %>%
  dplyr::rename("Times present in Dataset"=dup_todo, "Number of Rows"=`n..`) %>%
  knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
               caption="Table 1. Duplicated cases in almost every variable",
                 align ="cccc")  %>%
   kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 10)
`summarise()` ungrouping output (override with `.groups` argument)
Table 1. Duplicated cases in almost every variable
Times present in Dataset Number of Rows
1 91,289
2 63,206
3 7,305
4 1,116
5 175
6 48
7 7
data.table::data.table(CONS_C1_df_dup_ENE_2020_prev) %>%
  dplyr::arrange(desc(ano_bd)) %>%
  dplyr::mutate(OBS=case_when(dup_todo>1 ~ "1.1. Duplicated Cases in Almost Every Variable", 
                              TRUE ~ "")) %>%
  #dplyr::distinct_(.dots = names_c1, .keep_all = TRUE) %>%
  dplyr::distinct_at(.vars=names_c1, .keep_all = TRUE) %>%
  dplyr::arrange(HASH_KEY, fech_ing, desc(ano_bd), desc(fech_egres)) %>%
  data.table::as.data.table() %>%
  assign("CONS_C1_df_dup_ENE_2020_prev",.,envir = .GlobalEnv)
#Unlike base sorting with sort(), NA are: always sorted to the end for local data, even when wrapped with desc().


Since these duplicated rows contained the same values, we do not lose additional information if we delete these rows. Therefore, we selected only 163,146 rows of the original 125,650 cases.


We still needed to identify which of the repeated treatments has more recent information regarding a specific treatment. Hence, we eliminated duplicated rows but kept events with more days of treatment, or from a more recent yearly dataset. But, how can we do it in some cases with negative days of treatment? Table 2 shows HASHs with some entries with negative days of treatment. It was necessary to clarify some dates to avoid overlap between treatments. As can be seen in Table 2, it is possible to replace a few with an event with similar dates, but others were declared as missing and would be imputed once the dataset is normalized.


require(dplyr)
require(data.table)
HASHS_of_negtive_days_treat <- CONS_C1_df_dup_ENE_2020_prev %>% 
  dplyr::mutate(fech_ing_num=as.numeric(as.Date(fech_ing)), fech_egres_num= as.numeric(as.Date(fech_egres)),discharge_before_treatment=fech_egres_num-fech_ing_num) %>%
  dplyr::filter(discharge_before_treatment<0) %>%
  dplyr::select(row, ano_bd, HASH_KEY, id_mod, ano_nac, ano_bd,fech_ing, fech_egres,tipo_de_plan, tipo_de_programa, ID.centro, Edad, dias_trat, SENDA) %>% dplyr::distinct(HASH_KEY)
#
CONS_C1_df_dup_ENE_2020_prev %>% 
    dplyr::filter(HASH_KEY %in% as.character(as.vector(unlist(as.data.table(unlist(HASHS_of_negtive_days_treat)))))) %>%
    dplyr::arrange(HASH_KEY, fech_ing, desc(ano_bd)) %>%
    dplyr::select(row, ano_bd, HASH_KEY, id_mod, ano_nac, ano_bd,fech_ing, fech_egres,tipo_de_plan, tipo_de_programa, ID.centro, Edad, dias_trat, SENDA) %>% 
  knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
                   caption="Table 2 Negative days of treatment", align =rep('c', 101)) %>%
    kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 8) %>%
  kableExtra::add_footnote( c("Assuming the date of retrieval, 2019-11-13"), notation = "none") %>%
  kableExtra::scroll_box(width = "100%", height = "350px")
Table 2 Negative days of treatment
row ano_bd HASH_KEY id_mod ano_nac fech_ing fech_egres tipo_de_plan tipo_de_programa ID.centro Edad dias_trat SENDA
15,986 2,011 0ad9090b99f6add47d0ed80878410d7b NIFE1**121991 1,991 2011-05-10 2010-05-30 PG-PR Programa Población General 104 27 -345 Si
62,328 2,014 0ad9090b99f6add47d0ed80878410d7b NIFE1**121992 1,992 2014-09-02 2014-09-06 PG-PR Programa Población General 104 26 4 Si
64,545 2,014 0ad9090b99f6add47d0ed80878410d7b NIFE1**121992 1,992 2014-11-26 2014-11-27 CALLE Programa Calles NA 26 1 Si
1,550 2,010 16745e2658996a68e5c2f2e0153f92b8 YABA1**071981 1,981 2009-11-19 2010-02-23 PG-PR Programa Población General 104 38 96 Si
6,039 2,010 16745e2658996a68e5c2f2e0153f92b8 YABA1**071981 1,981 2010-06-09 2010-02-23 PG-PR Programa Población General 104 38 -106 No
22,130 2,012 16745e2658996a68e5c2f2e0153f92b8 YABA1**071981 1,981 2011-09-12 2012-03-30 PG-PAI Programa Población General 320 38 200 Si
152,754 2,019 16745e2658996a68e5c2f2e0153f92b8 YABA1**071981 1,981 2018-12-22 2019-06-14 PG-PR Programa Población General 104 38 174 Si
19,397 2,011 1e30ddcc36208fe4e251b92d7d3b3a5a PALA2**041975 1,975 2011-09-29 2011-12-02 M-PR Programa Específico Mujeres 142 44 64 Si
18,774 2,011 1e30ddcc36208fe4e251b92d7d3b3a5a PALA2**041975 1,975 2011-09-29 2011-09-05 M-PR Programa Específico Mujeres 142 44 -24 Si
25,129 2,012 1e30ddcc36208fe4e251b92d7d3b3a5a PALA2**041975 1,975 2012-02-07 2012-04-10 PG-PAI Programa Población General 301 44 63 Si
137,996 2,018 1e30ddcc36208fe4e251b92d7d3b3a5a PALA2**041975 1,975 2018-05-02 2018-06-30 PG-PAI Programa Población General 301 44 59 Si
5,283 2,010 2ad8f3601eea844e20e7d2b546b73a18 PAMU2**061968 1,968 2010-05-25 2010-05-24 M-PR Programa Específico Mujeres 104 51 -1 No
4,421 2,010 2c919b3531d3696fe3e247ab4dc56bfc DAJE1**091980 1,980 2010-03-24 2010-03-11 PG-PAB Programa Población General 295 39 -13 Si
4,975 2,010 414f7223d68da1191a9cff4cad0e54a2 MACI1**101965 1,965 2010-04-22 2010-04-03 PG-PAB Programa Población General 124 54 -19 Si
8,440 2,010 7b7c7a8a877c369884fa9745e40b6f3b JEPO2**021978 1,978 2010-10-27 2010-11-10 PG-PAI Programa Población General 187 41 14 No
8,320 2,010 7b7c7a8a877c369884fa9745e40b6f3b JEPO2**021978 1,978 2010-10-27 2010-10-22 PG-PAI Programa Población General 187 41 -5 Si
6,868 2,010 91d2b53989232617a76554f9df52348c JUTI1**071981 1,981 2010-07-01 2010-06-30 PG-PAI Programa Población General 109 38 -1 Si
7,566 2,010 91d2b53989232617a76554f9df52348c JUTI1**071982 1,982 2010-07-06 2011-07-16 PG-PAI Programa Población General 109 37 375 Si
5,581 2,010 e7fba974dc5e247f53d87f558a6fc420 ALCA1**041980 1,980 2010-05-25 2010-05-20 PG-PAI Programa Población General 200 39 -5 Si
74,778 2,015 e7fba974dc5e247f53d87f558a6fc420 ALCA1**041980 1,980 2015-04-01 2015-08-31 PG-PAB Programa Población General 173 39 152 Si
12,589 2,011 f500ece16ca0a991818cb600fa4a9685 ROCO1**081961 1,961 2010-12-31 2010-12-16 PG-PR Programa Población General 104 58 -15 No
11,357 2,011 f580b664d04575ecea2dd4ba9e6f0de5 MAGO1**041982 1,982 2010-10-02 2010-10-01 PG-PR Programa Población General 267 37 -1 Si
129,856 2,018 f580b664d04575ecea2dd4ba9e6f0de5 MAGO1**041982 1,982 2017-09-04 2018-05-31 PG-PAI Programa Población General 694 37 269 Si
Assuming the date of retrieval, 2019-11-13


The second stage required to eliminate rows that contained duplicated values in some variables related to treatments and drug-use. The following were selected:

  • HASH Key (HASH_KEY)
  • Date of Admission (fech_ing)
  • Type of Center (tipo_centro)
  • Center ID (ID.centro)
  • Type of Program (Tipo.de.Programa)
  • Type of Plan (Tipo.de.Plan)
  • SENDA program (SENDA)
  • Main Substance of Consumption (Sustancia.Principal)
  • Other Substances (first, second, and third) (Otras.Sustancias.)
  • Frequency of Consumption of the Main Substance (Frecuencia.de.Consumo..Sustancia.Principal)
  • Starting Substance (Sustancia.de.Inicio)
  • Age of Onset of Drug Use (Edad.Inicio.Consumo)


Additionally, we ordered the data by the inverse of the year of the dataset (more recent), the inverse of the date of admission, the inverse of the date of discharge, and the inverse of the date of treatment (but treating negative treatment days as 0).


require(data.table)
names_c1_stage2 <- c("HASH_KEY","fech_ing", "tipo_centro", "ID.centro", "Tipo.de.Programa", "Tipo.de.Plan", "SENDA", "Sustancia.Principal", "Otras.Sustancias.nº1","Otras.Sustancias.nº2","Otras.Sustancias.nº3", "Frecuencia.de.Consumo..Sustancia.Principal.","Sustancia.de.Inicio", "Edad.Inicio.Consumo")
#genero una lista de los casos que tienen algún tipo de duplicados.
dup_partes<-data.table::as.data.table(CONS_C1_df_dup_ENE_2020_prev)[, dup_partes := .N, by = names_c1_stage2]%>%dplyr::filter(dup_partes>1) %>% distinct(row)

#40 missing treatment days
#CONS_C1_df_dup_ENE_2020_prev %>%
#  dplyr::filter(is.na(fech_egres), !is.na(dias_trat)) %>% nrow()

#9394 missing dates of discharge
#CONS_C1_df_dup_ENE_2020_prev %>%
#  dplyr::filter(is.na(fech_egres), !is.na(dias_trat)) %>% nrow()

require(dplyr)
data.table::data.table(CONS_C1_df_dup_ENE_2020_prev) %>%
  #A VECES DA UN ERROR INEXPLICABLE DE QUE NO ENCUENTRA OBS, EN ESE CASO, BORRAR CACHÉ, CORRER LA PARTE DE PREV2 DE NUEVO Y VER QUÉ PASA
  dplyr::mutate(OBS=case_when(dias_trat<0 ~ glue::glue("{OBS};1.2. Negative Days of Treatment, Changed Date of Discharge"),
                              TRUE ~ OBS))%>% # APLICADO EN ABRIL 2020, PARA HACER UN CONTROL A LOS CASOS EXTRAÑOS
  #dplyr::mutate(fech_egres=case_when(dias_trat<0 ~ NA,
  #                                   TRUE ~ as.character(fech_egres)))%>% 
  # APLICADO EN ABRIL 2020, AL VER QUE 9 CASOS FUERON OBVIADOS. CORREGIDO NUEVAMENTE, BORRABA CASOS. Posteriormente tuve que volver a corregirlo.
  dplyr::mutate(fech_egres=if_else(dias_trat>=0,as.character(fech_egres),"",missing=as.character(fech_egres)))%>%
  dplyr::mutate(fech_egres=lubridate::parse_date_time(fech_egres, c("%Y-%m-%d"),exact=T))%>%
  dplyr::mutate(dias_trat=if_else(!is.na(fech_egres), as.numeric(difftime(fech_egres,fech_ing, units="days")),as.numeric(dias_trat)))%>%
  dplyr::mutate(dias_trat=ifelse(is.na(fech_egres)&dias_trat==0,NA,dias_trat))%>%
  dplyr::mutate(dias_trat=ifelse(as.numeric(dias_trat)<0,NA,as.numeric(dias_trat)))%>%
  dplyr::mutate(dias_trat_inv=ifelse(dias_trat<0,0,dias_trat*-1))%>% #transforma los erroneos en 0
  #dplyr::group_by(dias_trat_inv) %>%summarise(n()) %>% View() para probarlo
  #INCORPORADO EN ABRIL 2020, PARA PESQUISAR CASOS DEDUPLICADOS
  dplyr::arrange(desc(ano_bd),HASH_KEY, desc(fech_ing), dias_trat_inv) %>% ##ABRIL 2020, SAQUÉ FECHA DE EGRESO COMO ORDENADOR
# dplyr::filter(row %in% as.character(as.vector(unlist(as.data.table(unlist(dup_partes))))))
  dplyr::mutate(OBS=case_when(row %in% as.character(as.vector(unlist(as.data.table(unlist(dup_partes))))) ~ paste0(as.character(OBS),";","1.3. Duplicated Cases In Treatment and Substance Use Characteristics"), 
                              TRUE ~ as.character(OBS))) %>%
  #dplyr::distinct_(.dots = names_c1_stage2, .keep_all = TRUE) %>%
  dplyr::distinct_at(.vars=names_c1_stage2, .keep_all = TRUE) %>%
# dplyr::arrange(HASH_KEY, fech_ing, desc(ano_bd)) %>%
  data.table::as.data.table() %>% #para contar las filas
# dplyr::select(row) %>%  summarise(mean(row), sd(row)) #, lo mismo que en STATA. Se supone que una row es sensible a cambios distintos.
  assign("CONS_C1_df_dup_ENE_2020_prev2",.,envir = .GlobalEnv)

#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_
#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_
#VER CASOS PERDIDOS POR LA NORMALIZACION DE FECHAS
#CONS_C1_df_dup_ENE_2020_prev2%>%
#    dplyr::filter(!is.na(fech_egres_sin_fmt),is.na(fech_egres))%>%
#    dplyr::select(row, HASH_KEY, fech_ing, fech_egres, fech_egres_sin_fmt,dias_trat)
#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_
#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_

#Lo mismo que en STATA: Ahora hay 118,121. Una vez que introduje 
#  dplyr::arrange(HASH_KEY, fech_ing, desc(ano_bd), desc(fech_egres)) %>% criterio anterior


A total of 118,089 cases were selected. Still, most of these variables were not standardized, so maybe there would be more duplicated cases once this process is completed. Among them, 62 had an alternative HASH key if the first HASH does not match any of the HASHs of other datasets (For more information about this process, visit the encryption phase).

#Cases by year.
CONS_C1_df_dup_ENE_2020_prev2 %>% 
      dplyr::group_by(ano_bd) %>% 
      dplyr::tally() %>%
      as.data.frame() %>%
      dplyr::mutate(ano_bd=as.numeric(ano_bd)) %>%
      assign("cant_ano",., envir = .GlobalEnv)
CONS_C1_df_dup_ENE_2020_prev2 %>% 
  dplyr::group_by(ano_bd) %>% 
  distinct(HASH_KEY) %>% 
  dplyr::summarize(n=n()) %>% 
  dplyr::mutate(ano_bd= as.numeric(ano_bd)) %>%
  dplyr::left_join(cant_ano,by="ano_bd") %>% 
  mutate(dif=`n.y`-`n.x`, "%"=paste0(round(100 * dif/`n.y`, 1), "%")) %>%
  dplyr::rename("Year"=ano_bd, "Unique HASHs"=n.x, "Total Cases"=n.y, "Diff."=dif) %>%
  knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
               caption="Table 3. Differences between HASHs and unique HASHs by year",
                 align ="cccc")  %>%
   kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 10)
distinct (grouped): removed 7,815 rows (7%), 110,274 rows remaining
`summarise()` ungrouping output (override with `.groups` argument)mutate: new variable 'dif' with 10 unique values and 0% NA
        new variable '%' with 7 unique values and 0% NA
Table 3. Differences between HASHs and unique HASHs by year
Year Unique HASHs Total Cases Diff. %
2,010 6,558 6,991 433 6.2%
2,011 7,376 7,909 533 6.7%
2,012 7,673 8,239 566 6.9%
2,013 9,715 10,456 741 7.1%
2,014 11,260 12,025 765 6.4%
2,015 12,394 13,344 950 7.1%
2,016 12,936 13,782 846 6.1%
2,017 13,137 14,005 868 6.2%
2,018 13,031 13,871 840 6.1%
2,019 16,194 17,467 1,273 7.3%
perc_total<-CONS_C1_df_dup_ENE_2020_prev2 %>% 
  dplyr::group_by(ano_bd) %>% 
  distinct(HASH_KEY) %>% 
  dplyr::summarize(n=n()) %>% 
  dplyr::mutate(ano_bd= as.numeric(ano_bd)) %>%
  dplyr::left_join(cant_ano,by="ano_bd") %>% 
  mutate(dif=`n.y`-`n.x`, "%"= dif/`n.y`) %>%
  summarise(mean(`%`))
distinct (grouped): removed 7,815 rows (7%), 110,274 rows remaining
`summarise()` ungrouping output (override with `.groups` argument)mutate: new variable 'dif' with 10 unique values and 0% NA
        new variable '%' with 10 unique values and 0% NA
summarise: now one row and one column, ungrouped


In Table 3, we can see that, on average, around 7% of HASHs appear more than one time per yearly dataset. This means that users could have more than one treatment within a year, or treatments may be duplicated within each yearly dataset.

 

2. Identification of HASH-Keys and ID’s from SENDA

 

At this point, we do not know if the masked ID number generated by the application created by the informatic is effectively creating a valid number that lets us distinguish each user from one another.


There were 85,722 unique HASHs and 89,925 unique IDs. One option was to look at the consistency between two identifiers: SENDA’s ID (encryption of the ID, provided by SENDA) and the generated HASH Key by the informatics professional in the context of this research. Of the 118,089 cases, around 90,130 had a unique combination of SENDAs ID and HASH. Nonetheless, some cases showed more than one different HASH per ID or vice-versa, meaning that one of them could not be adequately representing the official identification number (RUN).


We found 4,408 HASHs with duplicated ID’s en each hash, which represents 3.7% of the total cases. A greater number could mean that HASH could be less likely to represent more than one user, compared to SENDA’s ID.


Instead, there were 205 users with duplicated HASH’s in each ID, which represents 0.2% of the total cases, as shown in Table 4.


#Take which has a combination of IDs and HASH Keys distinct to the rest
#With this I may be subestimating the number of cases with a different concatenation.
#Considering all the distinct combinations, i take what they have a duplicate ID
#Select the duplicate IDs, it orders and...
#Filter only cases that has distinct id.
CONS_C1_df_dup_ENE_2020_prev2 %>% mutate(concat=paste0(id,"_",HASH_KEY)) %>% dplyr::distinct(concat, .keep_all = TRUE) %>% #once here, n° of cases has been replaced by distinct or unique combinations of IDs and HASH keys.
  dplyr::filter(duplicated(id)) %>% dplyr::arrange(id) %>%  #filter cases in which there is more than one ID, despite there is differents combinations of HASH and IDs, and then arrange IDs. This is possible only if a different HASH-Key contains more than one ID or viceversa.
  dplyr::distinct(id) %>% #take distincts IDs (exclude duplicated repeated IDs)
  assign("ids_more_one_hash",., envir = .GlobalEnv) # Differently put, take the distints IDs per HASH-Key, of the cases in which there are different combinations.
mutate: changed 118,089 values (100%) of 'concat' (0 new NA)
# of IDs and hash, and in which subgroup exists duplicated IDs.
 
#IMPORTANT: IF THE ID IS DUPLICATED, MIGHT NOT BE REFLECTED IN THIS RESUME IN TERMS OF QUANTITY.

# Then, apply these cases to the whole population
CONS_C1_df_dup_ENE_2020_prev2 %>%
dplyr::filter(id %in% as.character(as.vector(unlist(as.data.table(unlist(ids_more_one_hash)))))) %>% # Select IDs of cited cases
dplyr::arrange(id) %>% #ordeno por ids 
  #762 cases. 409 cases without duplicates.
      #dplyr::select(-id,-TABLE,-14,-16,-17,-26,-27,-28,-29,-35,-36,-37,-88,-93,-94,-96,-101,-110,-11,-112) %>%
      dplyr::select(row, ano_bd, id_mod, HASH_KEY, hash_rut_completo ,fech_ing, fech_egres,tipo_de_plan, tipo_de_programa, ID.centro) %>%
 knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
               caption="Table 4. Total cases that each ID have more than one HASH-KEY",
                 align =rep('c', 101))  %>%
   kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 8) %>%
  kableExtra::scroll_box(width = "100%", height = "350px")
Table 4. Total cases that each ID have more than one HASH-KEY
row ano_bd id_mod HASH_KEY hash_rut_completo fech_ing fech_egres tipo_de_plan tipo_de_programa ID.centro
149,539 2,019 ALCA1**021988 03e477fb3fbca88886a0b4a4e3a23a1e NA 2018-08-30 2019-04-30 PG-PAB Programa Población General 110
137,772 2,018 ALCA1**021988 25ac7cdc09cabce1688545ac1453c3c1 NA 2018-05-09 2018-11-05 PG-PAI Programa Población General 425
113,873 2,017 ALCA1**021988 25ac7cdc09cabce1688545ac1453c3c1 NA 2017-02-21 2017-04-27 PG-PAI Programa Población General 133
27,528 2,012 ALCA1**021988 25ac7cdc09cabce1688545ac1453c3c1 2012-06-01 2012-09-03 PG-PAI Programa Población General 330
157,915 2,019 ALCO1**021992 cc1fc01c0f96584bddaf9e43733eb26e NA 2019-06-06 NA PG-PAI Programa Población General 500
117,625 2,017 ALCO1**021992 ade0c6d90cc8ea63da56c100d25189bd NA 2017-03-27 2017-07-04 PG-PAI Programa Población General 254
129,197 2,018 ALDE1**081993 e6490438024bc92ae74ae2c3f2b50ac1 NA 2017-09-01 2018-04-12 PG-PAB Programa Población General 588
118,913 2,017 ALDE1**081993 349ebd9b0a0b1597bddac88c1c2831a4 NA 2017-06-13 2017-08-31 PG-PAB Programa Población General 588
111,001 2,017 ALDE1**081993 e6490438024bc92ae74ae2c3f2b50ac1 NA 2016-12-09 2017-05-26 PG-PAB Programa Población General 588
71,374 2,015 ALMA1**061990 684466febb12b816c8ff57647062a980 2015-01-29 2015-04-29 PG-PAI Programa Población General 145
64,467 2,014 ALMA1**061990 da52129af3254ce7030d93a4e0d44cb0 2014-11-04 2015-01-29 PG-PAB Programa Población General 145
37,260 2,013 ALMA1**061990 da52129af3254ce7030d93a4e0d44cb0 2013-02-21 2013-05-31 PG-PAI Programa Población General 145
151,545 2,019 ALMO1**081975 e68d0d83a6d29bd0063ad89b19ac14ee NA 2018-12-04 2019-05-01 PG-PR Programa Población General 117
89,735 2,016 ALMO1**081975 df563b42ea36fc66aa5a296e7c34a0a4 2015-06-18 2016-08-16 PG-PAI Programa Población General 428
154,950 2,019 ALRA1**061986 3c66a2f8c6d2e01e3488e98761647b22 NA 2019-03-04 NA PG-PAI Programa Población General 187
35,709 2,013 ALRA1**061986 35bae885f000ee869d3dca46ef5623c3 2013-01-21 2013-04-30 PG-PAI Programa Población General 202
30,811 2,012 ALRA1**061986 35bae885f000ee869d3dca46ef5623c3 2012-10-10 2012-11-30 PG-PAB Programa Población General 209
49,306 2,014 ALRO1**081980 fb3b4aaf815c165dda06907f1916d16c 2013-06-10 2014-03-12 PG-PAB Programa Población General 204
14,369 2,011 ALRO1**081980 cc23a810e34eee1cf6dda487dbdfb118 2011-03-24 2011-05-01 PG-PR Programa Población General 163
47,998 2,014 ALVI1**051985 853911ca4f15827dcca9d41b89307401 2012-10-01 2014-09-01 PG-PAB Programa Población General 156
21,550 2,012 ALVI1**051985 8e4e95fd2499260db7cf6d8aab29538d 2011-06-13 2012-06-11 PG-PAB Programa Población General 113
18,661 2,011 ANCA1**041984 14057afa2ee91cd26fed93a2724d0f51 2011-09-07 2012-01-31 PG-PAB Programa Población General 157
15,877 2,011 ANCA1**041984 98fa1abb49cc5e9adbf2ea87b2448e2e 2011-04-19 2011-09-30 PG-PAI Programa Población General 301
5,006 2,010 ANCA1**041984 14057afa2ee91cd26fed93a2724d0f51 2009-09-30 2010-08-05 PG-PAB Programa Población General 157
37,866 2,013 ANCA2**091987 4b5bde97100768f1658aac3d25d18e23 2013-03-25 2013-11-05 PG-PAB Programa Población General 265
27,914 2,012 ANCA2**091987 0e91ac990dd81bd35148b0d94f7229c1 2012-06-27 2012-07-27 PG-PAI Programa Población General 148
3,029 2,010 ARGO1**101977 7828a258c758463d34db128a638c4daf 2010-01-19 2010-02-26 PG-PAB Programa Población General 138
4,483 2,010 ARGO1**101977 97e26d3ed19f4114f8f820c2f6e70d23 2010-03-01 2010-09-02 PG-PAI Programa Población General 138
52,923 2,014 ARSO1**061981 c27c9c81fe84ab962a5fb2e391910d59 2013-12-02 2014-11-26 PG-PAI Programa Población General 157
42,437 2,013 ARSO1**061981 c27c9c81fe84ab962a5fb2e391910d59 2013-07-30 2013-12-01 PG-PAI Programa Población General 157
17,783 2,011 ARSO1**061981 4d120e94401cd63a6a5d81eeee6eafb5 2011-07-29 NA PG-PR Programa Población General 236
152,264 2,019 BAHE2**051993 709869d83a4db30a518df175cf9b916a NA 2019-01-23 2019-06-04 M-PR Programa Específico Mujeres 717
148,242 2,019 BAHE2**051993 709869d83a4db30a518df175cf9b916a NA 2018-07-11 2019-01-22 M-PAI Programa Específico Mujeres 363
132,727 2,018 BAHE2**051993 709869d83a4db30a518df175cf9b916a NA 2017-10-11 2018-06-30 M-PR Programa Específico Mujeres 728
112,412 2,017 BAHE2**051993 709869d83a4db30a518df175cf9b916a NA 2017-01-09 2017-04-03 PG-PR Programa Población General 179
122,834 2,017 BAHE2**051993 cdd5f1393134a2e63f314c6b93071d9e NA 2017-10-11 2018-01-26 M-PR Programa Específico Mujeres 449
49,835 2,014 BAHE2**051993 709869d83a4db30a518df175cf9b916a 2013-07-26 2014-06-16 PG-PAI Programa Población General 174
13,792 2,011 BLAN1**101990 790b95930f972f4cd26732d0efa29eab 2011-02-01 2011-03-11 PG-PAI Programa Población General 171
4,099 2,010 BLAN1**101990 d58d0a99d5938b1bb20354cbbe4d2fb7 2009-11-17 2010-12-01 PG-PAI Programa Población General 171
151,966 2,019 BRVE1**091997 86aad9a1dc0bb6d6dd0c6f367585b11d NA 2019-01-16 2019-01-30 PG-PR Programa Población General 266
150,288 2,019 BRVE1**091997 9979b0688c4355b878d5f7aa7ba02c82 NA 2018-11-07 2019-07-31 PG-PAB Programa Población General 173
120,172 2,017 CABA1**111982 5f8b82f9e556a459fea7c7c9a1e2c6ba NA 2017-07-20 2017-08-10 PG-PR Programa Población General 104
103,331 2,016 CABA1**111982 5e863eabe503ab0a538991b476939404 2016-10-06 2016-11-21 PG-PAI Programa Población General 320
89,576 2,016 CABA1**111982 5f8b82f9e556a459fea7c7c9a1e2c6ba 2015-09-03 2016-10-05 PG-PAI Programa Población General 396
107,428 2,017 CALE1**041981 2001739a2eaafbb80a96c88743e97746 NA 2016-05-02 2017-11-01 PG-PAI Programa Población General 138
97,085 2,016 CALE1**041981 f3e54e4f1efe94f8ca7722952a120c0b 2016-05-02 2016-05-03 PG-PAI Programa Población General 138
88,588 2,016 CALO1**091980 e7d37ad06df9c03f57bbb8951ecdf5b4 2015-07-15 2016-04-05 PG-PAI Programa Población General 425
8,555 2,010 CALO1**091980 60138201952fc0143e10fa9854eefb31 2010-10-18 2011-04-08 PG-PAI Programa Población General 264
50,049 2,014 CAMA2**121978 e814c4289b74a677d8981f5e76de54c5 2013-07-05 2014-02-03 PG-PAI Programa Población General 347
37,727 2,013 CAMA2**121978 e814c4289b74a677d8981f5e76de54c5 2013-03-18 2013-06-30 M-PR Programa Específico Mujeres 345
34,135 2,013 CAMA2**121978 f72c72568c1f0192aad400383de3b5d2 2012-10-24 2012-12-31 M-PR Programa Específico Mujeres 345
127,707 2,018 CARA1**081991 7fe9f4b5b33f455706a5adb709bcb6dd NA 2017-05-24 2018-02-27 PG-PAB Programa Población General 221
75,960 2,015 CARA1**081991 98eb528e7390af045bf0c8dba6c235c9 2015-04-10 2015-08-05 PG-PAB Programa Población General 256
159,676 2,019 CASI1**011993 85431ccd9e5ecbeba44eb7f45f0330ad NA 2019-07-30 2019-08-08 PG-PR Programa Población General 258
149,958 2,019 CASI1**011993 85431ccd9e5ecbeba44eb7f45f0330ad NA 2018-10-22 2019-03-18 PG-PR Programa Población General 358
161,479 2,019 CASI1**011993 d31098d1e5e8a2f314177a9819a7b393 NA 2019-08-08 NA PG-PAB Programa Población General 664
139,280 2,018 CASI1**011993 85431ccd9e5ecbeba44eb7f45f0330ad NA 2018-06-01 2018-10-17 PG-PAI Programa Población General 427
97,195 2,016 CASI1**011993 85431ccd9e5ecbeba44eb7f45f0330ad 2016-05-16 2016-06-09 PG-PR Programa Población General 258
52,951 2,014 CASI1**011993 85431ccd9e5ecbeba44eb7f45f0330ad 2013-12-16 2014-05-14 PG-PR Programa Población General 358
45,417 2,013 CASI1**011993 85431ccd9e5ecbeba44eb7f45f0330ad 2013-10-28 2013-12-02 PG-PAI Programa Población General 427
136,204 2,018 CASU1**031985 5b154119e9b87220b521806cbc168e6b NA 2018-03-28 2018-07-01 PG-PAI Programa Población General 153
102,825 2,016 CASU1**031985 5b154119e9b87220b521806cbc168e6b 2016-10-13 2016-12-29 PG-PAI Programa Población General 316
25,330 2,012 CASU1**031985 48273efe74abb8fb1f1fd743b10644ed 2012-03-02 2012-07-02 PG-PAI Programa Población General 153
28,299 2,012 CASU1**031985 5b154119e9b87220b521806cbc168e6b 2012-02-28 2013-02-21 PG-PAI Programa Población General 153
158,796 2,019 CAVA2**121997 2c87dde527677b5e51675993af541559 NA 2019-04-25 NA M-PAI Programa Específico Mujeres 290
131,483 2,018 CAVA2**121997 0cec7a200488124671cc4a3ee2d14d3d NA 2017-11-27 2018-05-30 M-PR Programa Específico Mujeres 302
131,027 2,018 CHES1**101986 52a16cbe1dee6fbd3452549fd3b00ad5 NA 2017-11-21 2018-03-29 PG-PR Programa Población General 297
67,357 2,015 CHES1**101986 52a16cbe1dee6fbd3452549fd3b00ad5 2014-06-04 2015-06-12 PG-PAB Programa Población General 161
54,484 2,014 CHES1**101986 bc1f4e1c21a2bb07e175ccf51e842bf1 2014-02-19 2014-05-08 PG-PAB Programa Población General 161
21,054 2,012 CLFE1**101958 7f4c0e99033e04ef1c99279faf3bcd79 2011-03-10 2012-07-13 PG-PAB Programa Población General 225
28,215 2,012 CLFE1**101958 99fbdb676940259cedf31663170a1140 2011-03-07 2013-02-25 PG-PAB Programa Población General 225
38,118 2,013 CLPA1**071970 458750d1dce6a844f63fc6bc37dd734a 2013-03-28 2013-07-24 PG-PAB Programa Población General 146
30,577 2,012 CLPA1**071970 558809e2ab590f9c40d1004b85e680c9 2012-10-16 2013-01-21 PG-PAB Programa Población General 146
137,914 2,018 CLPI2**121969 d157e041a1e2e1fc10385e60ecc0d87d NA 2018-05-30 2018-08-24 PG-PAI Programa Población General 153
109,491 2,017 CLPI2**121969 ecb66b940fe7230e0af1af9d7c7cc8cf NA 2016-09-29 2017-10-01 M-PR Programa Específico Mujeres 159
99,120 2,016 CLPI2**121969 ecb66b940fe7230e0af1af9d7c7cc8cf 2016-06-23 2016-09-28 PG-PAI Programa Población General 153
71,452 2,015 CLPI2**121969 ecb66b940fe7230e0af1af9d7c7cc8cf 2015-01-07 2015-04-23 PG-PAB Programa Población General 153
30,398 2,012 COQU2**011990 a7d9ac101685ed59e14ed905953cd76b 2012-10-11 2012-11-12 M-PR Programa Específico Mujeres 345
29,431 2,012 COQU2**011990 f73a850d7ca2a3e34991d437922bce12 2012-08-17 2012-10-17 PG-PAB Programa Población General 209
94,140 2,016 CRAL1**011980 80e0c1187da0abc82409f95f241e2350 2016-02-17 2016-09-01 PG-PAI Programa Población General 409
81,590 2,015 CRAL1**011980 bb59e16f29a42d9478a01ac1f058566e 2015-09-08 2016-02-16 PG-PAI Programa Población General 291
159,208 2,019 CRFU1**101982 91696ada1ee80c57393c582116cb810e NA 2019-07-01 NA PG-PAI Programa Población General 155
35,657 2,013 CRFU1**101982 48e7ddf94e4188011aae5ce2c0f37739 2013-01-14 2014-01-01 PG-PAI Programa Población General 200
75,800 2,015 CRLE1**111987 7261b97683549bd67b278c81a8c72e21 2015-04-27 2015-08-03 PG-PAI Programa Población General 194
71,154 2,015 CRLE1**111987 7261b97683549bd67b278c81a8c72e21 2015-01-05 2015-04-01 PG-PAI Programa Población General 194
63,155 2,014 CRLE1**111987 bb14cffb5efc654e5c33c6f1bf564bdd 2014-10-20 2014-12-12 PG-PAI Programa Población General 194
89,423 2,016 CRRI1**121984 ee90b0821b7b7f2549a9c398655d36bf 2015-07-20 2017-01-02 PG-PAI Programa Población General 272
23,258 2,012 CRRI1**121984 0bee5e6dda9a9304a51c7f90ee831155 512419b6f3c1efdf2b5796fa740cf6f0 2011-11-08 2012-05-31 PG-PAB Programa Población General 242
109,631 2,017 CRSA1**111984 bf3bd47e954ff6c020c6d0ba2f77e3c2 NA 2016-09-12 2017-11-21 PG-PAI Programa Población General 225
10,983 2,011 CRSA1**111984 4ccba90b4def4f55ab5867e843ed1e0b 2010-08-30 2011-07-01 PG-PAB Programa Población General 225
10,184 2,011 CRSI1**011988 897b3e022f2e87988c9d4865dc1dd3c0 2010-02-10 2011-04-30 PG-PR Programa Población General 117
2,447 2,010 CRSI1**011988 26bfec0fb9dadd4a35641df3119c6c44 2009-10-13 2010-02-08 PG-PAI Programa Población General 109
20,221 2,011 CRTO1**061987 713440405f11b078a875de3980ad83de 2011-11-24 2012-02-01 PG-PAI Programa Población General 119
14,783 2,011 CRTO1**061987 9ccd67138857e273c6c6d391426b9fd3 2011-03-24 2011-10-01 PG-PAI Programa Población General 119
153,290 2,019 CRVA1**091981 01c0bb4b342a90db0e2953edbb1fa034 NA 2019-02-13 2019-05-30 PG-PAB Programa Población General 588
126,900 2,018 CRVA1**091981 01c0bb4b342a90db0e2953edbb1fa034 NA 2017-03-13 2018-11-19 PG-PAB Programa Población General 588
118,380 2,017 CRVA1**091981 c5e3acde9ece03866510277c6804ab37 NA 2017-05-15 2018-02-01 PG-PAI Programa Población General 225
52,649 2,014 CRVA1**091981 c5e3acde9ece03866510277c6804ab37 2013-12-09 2014-03-20 PG-PAB Programa Población General 225
126,381 2,018 CRVE1**061981 cf8d4efa573a2b4240a95a28c7e8f78a NA 2016-11-01 2018-06-27 PG-PAB Programa Población General 288
55,817 2,014 CRVE1**061981 ffd8afa60137cde2bdf00093f1cc809d 2013-08-22 2014-04-25 PG-PAB Programa Población General 151
43,722 2,013 CRVE1**061981 ffd8afa60137cde2bdf00093f1cc809d 2013-08-22 2013-12-18 PG-PAB Programa Población General 151
70,883 2,015 DAAL1**081988 4ff78d5d4e653a289528aed8e50dfa17 2014-12-22 2015-09-23 PG-PAI Programa Población General 417
48,415 2,014 DAAL1**081988 4ff78d5d4e653a289528aed8e50dfa17 2013-02-04 2014-04-29 PG-PAI Programa Población General 417
60,771 2,014 DAAL1**081988 86e473061cb83d720f0c47d0773a0e7c 2014-08-05 2015-01-01 PG-PR Programa Población General 117
161,091 2,019 DAAR1**011980 a6eb8d16a2cf4a1248bd8517d230d17b NA 2019-08-09 NA PG-PAI Programa Población General 246
90,109 2,016 DAAR1**011980 bf02a828b0db55c47af889845796cbd6 2015-10-14 2016-04-04 PG-PAI Programa Población General 338
68,819 2,015 DAAR1**011980 bf02a828b0db55c47af889845796cbd6 2014-09-01 2015-06-17 PG-PAI Programa Población General 178
112,290 2,017 DAAR1**111980 93122ac95c2709272c01a4aa73c76c69 NA 2017-01-18 2017-07-11 PG-PAB Programa Población General 367
27,140 2,012 DAAR1**111980 0a57528397d14cdb39902ed43cb3fee2 2012-05-04 2012-07-30 PG-PAB Programa Población General 238
138,114 2,018 DACE2**081979 d23e9a7e17afa0907fb418c67cb2bfc0 NA 2018-04-06 2018-10-31 PG-PAI Programa Población General 366
87,521 2,016 DACE2**081979 d064b5c83b804f09489e4dfd020fe2e1 2015-05-04 2016-12-01 PG-PAI Programa Población General 366
116,303 2,017 DAIB1**121992 a30b08e11e32dc56af71943092265a81 NA 2017-03-14 2017-06-29 PG-PAB Programa Población General 218
73,553 2,015 DAIB1**121992 2fdf6bf2791696652615b7cd9157ea81 2015-02-02 2015-05-04 PG-PAI Programa Población General 218
75,325 2,015 DAIB1**121992 a30b08e11e32dc56af71943092265a81 2015-04-20 2015-05-07 PG-PR Programa Población General 214
67,258 2,015 DAOR1**041981 01a7c48fcbfca888c3c522b7a47f39b3 2014-05-30 2015-02-02 PG-PAI Programa Población General 412
56,458 2,014 DAOR1**041981 01a7c48fcbfca888c3c522b7a47f39b3 2014-04-10 2014-05-12 PG-PR Programa Población General 354
55,032 2,014 DAOR1**041981 07ce467448db22d7b9d799f065d2f2cd 2014-02-19 2014-04-07 PG-PAI Programa Población General 412
79,488 2,015 DASA1**041973 811c5956ea4f0842b8d734e07ca8c585 2015-07-07 2015-09-30 PG-PAB Programa Población General 619
74,721 2,015 DASA1**041973 c06d72d711b66cc81161c1883c597002 2015-04-01 2015-06-19 PG-PAI Programa Población General 619
34,270 2,013 EDCA1**051986 52331a0049fac414b12911eda0af70d1 2012-09-26 2013-04-16 PG-PAB Programa Población General 287
17,546 2,011 EDCA1**051986 7610a234326510fae46a14e48d9ae0dd 2011-07-29 2011-09-30 PG-PAI Programa Población General 283
60,222 2,014 EDME1**021984 4855fdeb1e04a9e2e57f9dbf90df0ab5 2014-01-02 2014-11-12 PG-PAB Programa Población General 295
45,497 2,013 EDME1**021984 1a921a2159e48c8006ec8f5db631a3bb 2013-10-21 2013-11-22 PG-PAI Programa Población General 445
159,515 2,019 EDNU1**111981 abbaf78e8cc375abbb1ff35def4e7a26 NA 2019-07-23 NA PG-PR Programa Población General 104
15,348 2,011 EDNU1**111981 abbaf78e8cc375abbb1ff35def4e7a26 2011-04-12 2011-06-10 PG-PR Programa Población General 104
6,605 2,010 EDNU1**111981 a6dc1eaca7db221cbf67c99215ff5b9b 2010-07-19 2010-11-29 PG-PR Programa Población General 104
105,967 2,017 EDTE1**101962 08bf06a240115c54e3aa9644d6f71210 NA 2015-10-25 2017-01-05 PG-PAB Programa Población General 402
69,794 2,015 EDTE1**101962 597993321f66ef2761b920260aa26e91 2014-11-19 2015-09-07 PG-PAB Programa Población General 402
148,705 2,019 ELBA2**031985 f47b9efc124bdef08b9c755680538408 NA 2018-08-14 2019-06-14 PG-PAI Programa Población General 272
133,785 2,018 ELBA2**031985 f47b9efc124bdef08b9c755680538408 NA 2018-02-14 2018-08-10 M-PR Programa Específico Mujeres 277
130,789 2,018 ELBA2**031985 f47b9efc124bdef08b9c755680538408 NA 2017-10-31 2018-02-13 PG-PAI Programa Población General 272
90,164 2,016 ELBA2**031985 0a5c569599667e08cb0043308f70058a 2015-10-22 2016-11-17 PG-PAB Programa Población General 622
71,630 2,015 ELBA2**031985 f47b9efc124bdef08b9c755680538408 2014-12-29 2015-03-05 M-PR Programa Específico Mujeres 258
64,208 2,014 ELBA2**031985 f47b9efc124bdef08b9c755680538408 2014-11-10 2015-01-26 PG-PAB Programa Población General 260
108,512 2,017 ELJA2**081974 9093e13be3fa0750a8df5e8ca8c6309e NA 2016-08-09 2017-07-19 M-PAI Programa Específico Mujeres 291
25,824 2,012 ELJA2**081974 0d614b206ae4a2527cf05e6c8cb10965 2012-03-20 2012-09-10 PG-PAB Programa Población General 291
18,428 2,011 ELJA2**081974 0d614b206ae4a2527cf05e6c8cb10965 2011-08-22 2012-03-01 PG-PAI Programa Población General 291
138,461 2,018 ENRI1**021985 30da8090d1a21cfa15983ba093504bb9 NA 2018-06-11 2018-11-22 PG-PAB Programa Población General 679
109,408 2,017 ENRI1**021985 5666dcb7e87ff94f0c233544cceb702e NA 2016-09-13 2017-05-03 PG-PR Programa Población General 662
97,128 2,016 ENRI1**021985 5666dcb7e87ff94f0c233544cceb702e 2016-05-02 2016-09-11 PG-PAI Programa Población General 194
59,296 2,014 ERCE1**091970 c9fea4a59452ff595013ca3d4d2e8e44 2014-06-16 2014-09-30 PG-PAB Programa Población General 206
24,807 2,012 ERCE1**091970 3f99d975d4890ff5fa7cfad26a89eac3 2012-02-28 2012-05-25 Otro Programa Población General 141
90,040 2,016 EVJA2**031979 fc8f44e7093f8dd143e287d87a164863 2015-10-25 2016-07-21 PG-PAB Programa Población General 402
59,533 2,014 EVJA2**031979 27c698e4e803f1f3d673331339b1068b 2014-07-07 2015-02-18 PG-PAB Programa Población General 402
16,834 2,011 EVJA2**031979 fc8f44e7093f8dd143e287d87a164863 2011-06-01 2011-12-30 PG-PAB Programa Población General 170
6,504 2,010 EVJA2**031979 fc8f44e7093f8dd143e287d87a164863 2010-07-28 2010-10-29 PG-PAB Programa Población General 123
49,659 2,014 FAMU2**011975 137e8525aa3f79235fa8ad90913fdcbe 2013-07-03 2014-06-01 PG-PAI Programa Población General 139
59,488 2,014 FAMU2**011975 5c0a6326fc4536f50fc5ec1c53563d93 2014-06-03 2014-07-29 PG-PAI Programa Población General 139
149,995 2,019 FECA1**091985 e597363070e9142296b87b10befb9897 NA 2018-10-01 2019-08-01 PG-PAI Programa Población General 443
69,073 2,015 FECA1**091985 d17df8239a0c9b74b4c6c0751f53500f 2014-09-29 2015-01-28 PG-PAI Programa Población General 105
156,483 2,019 FEMO1**071983 a4c5fa0b4be884b8f3c5b99e15a15224 NA 2019-04-08 2019-08-23 PG-PAI Programa Población General 239
72,160 2,015 FEMO1**071983 3c4c58f2365b169fbed6761a9881dff8 2015-01-05 2015-06-29 PG-PAB Programa Población General 239
52,611 2,014 FEMO1**071983 3c4c58f2365b169fbed6761a9881dff8 2013-12-10 2014-03-04 PG-PAI Programa Población General 266
147,082 2,019 FRCA1**031989 ae9103ca5fa7cc3ac64074711d825d2a NA 2018-04-02 2019-02-21 PG-PAI Programa Población General 119
129,185 2,018 FRCA1**031989 fd436806b9f7ed5cdf23dda329360906 NA 2017-08-23 2018-04-27 PG-PAI Programa Población General 200
151,910 2,019 FRSA2**081989 1bd70502375b686424f80b338b2ab3ac NA 2019-01-15 2019-10-30 PG-PAI Programa Población General 259
107,477 2,017 FRSA2**081989 0e95c1ddfb98bf1d4d4a4315839f8493 NA 2016-05-03 2017-02-28 PG-PAB Programa Población General 427
91,378 2,016 FRSA2**081989 1bd70502375b686424f80b338b2ab3ac 2015-11-11 2016-02-01 PG-PAB Programa Población General 253
22,417 2,012 GECA1**071972 077ace66f3c06f98bad5768c794868cc 2011-09-07 2012-02-02 PG-PR Programa Población General 258
26,849 2,012 GECA1**071972 fa3678a586f6b33917e7a08fecd5dcec 2012-04-09 2013-01-01 PG-PAI Programa Población General 288
48,344 2,014 GLPI2**081964 54d05d802656b0ffd3a4cb836c7d68ad 2012-10-09 2014-04-17 M-PR Programa Población General 358
57,723 2,014 GLPI2**081964 ccec1a7f92fbac80dea59ad0c74b1be6 2014-03-21 2014-08-01 PG-PAI Programa Población General 148
30,644 2,012 GLPI2**081964 54d05d802656b0ffd3a4cb836c7d68ad 2012-10-09 2013-02-04 M-PR Programa Específico Mujeres 147
21,583 2,012 GLPI2**081964 ccec1a7f92fbac80dea59ad0c74b1be6 2011-06-22 2012-06-21 PG-PAI Programa Población General 148
153,713 2,019 GOMA1**051992 4ba662d94b16171a296b25d6db70b05e NA 2019-02-01 2019-03-01 PG-PAI Programa Población General 202
123,034 2,017 GOMA1**051992 4ba662d94b16171a296b25d6db70b05e NA 2017-10-19 2017-11-13 PG-PAI Programa Población General 202
59,466 2,014 GOMA1**051992 1fe82167c2986b55a88b86576921929a 2014-07-01 2015-01-27 PG-PAB Programa Población General 489
123,556 2,017 HECA1**011972 1c1725384faa76d34a4abd6ef73c728f NA 2017-10-30 2017-11-13 PG-PAI Programa Población General 202
72,485 2,015 HECA1**011972 a2ba02fabeda026c2e3afb480f669539 2015-02-04 2015-04-30 PG-PAI Programa Población General 320
51,148 2,014 HEGO1**011977 b420a95df6cf200819d41429beb1e1a1 2013-10-16 2014-11-28 PG-PAI Programa Población General 133
45,164 2,013 HEGO1**011977 5ff96261e1817092436a56dd50323a24 2013-10-16 2013-10-16 PG-PAI Programa Población General 133
116,520 2,017 HEGO1**051978 adb924e11ed52eac1f7491f9f72fced2 NA 2017-05-01 2017-09-01 PG-PAI Programa Población General 264
88,994 2,016 HEGO1**051978 1dabf61d7e598ac21847d59ccc92c7f7 2015-08-26 2016-01-07 PG-PAB Programa Población General 195
114,727 2,017 HEIB1**071964 fa1e5214266eb555c05bb64e1605e956 NA 2017-03-28 2017-09-12 PG-PAI Programa Población General 619
89,466 2,016 HEIB1**071964 fa1e5214266eb555c05bb64e1605e956 2015-09-28 2016-06-30 PG-PAI Programa Población General 619
21,741 2,012 HEIB1**071964 37450c37e69c08f1bbbcfcff110864cd 2011-07-22 2012-05-30 PG-PAB Programa Población General 192
145,722 2,019 HESA1**091963 c979c5dbb8449c6cda379abe23f21c43 NA 2015-11-18 2019-07-08 PG-PAI Programa Población General 149
129,396 2,018 HESA1**091963 d8b3f93362df98c761aed33c8974e200 NA 2017-09-06 2018-08-11 PG-PAB Programa Población General 418
23,122 2,012 HESO1**091981 2604ae4f16cb1b1c29ccb7bcad79e684 2011-11-04 2012-02-07 PG-PAI Programa Población General 202
24,525 2,012 HESO1**091981 c7e76a2eaba41dd64ca7ef7f0aa74554 2011-11-04 2012-01-31 PG-PAI Programa Población General 202
17,818 2,011 HESO1**091981 c7e76a2eaba41dd64ca7ef7f0aa74554 2011-08-17 2011-09-21 PG-PR Programa Población General 215
95,635 2,016 HEYA1**121986 f9d432b4b3cbdb24451c9b880fe27fb6 2016-03-30 2016-07-01 PG-PAB Programa Población General 616
26,483 2,012 HEYA1**121986 1785d29d4639006b5202226a0c87e06d 2012-04-13 2012-07-31 PG-PAI Programa Población General 141
74,795 2,015 INSA2**051982 1e27aa71e1be4fa70fb5693a41711520 2015-03-09 2015-06-01 M-PAI Programa Específico Mujeres 342
70,396 2,015 INSA2**051982 e2ee10c1b46325756215769dc100d421 2014-12-04 2015-01-27 M-PAI Programa Específico Mujeres 342
62,093 2,014 INSA2**051982 1e27aa71e1be4fa70fb5693a41711520 2014-09-08 2014-11-27 PG-PAI Programa Población General 182
90,532 2,016 IVGO2**051991 1aa8545cc91d2060c66fcfe7f1df0f70 2015-10-15 2016-08-18 PG-PAI Programa Población General 155
92,444 2,016 IVGO2**051991 ca3dcfc02ed5a67095635164ce82a783 2016-01-19 2016-01-23 M-PR Programa Específico Mujeres 159
73,462 2,015 IVGO2**051991 1aa8545cc91d2060c66fcfe7f1df0f70 2015-03-12 2015-05-27 Otro Otro 146
59,427 2,014 JACA1**051975 cdb1d1ac6e0fa9bece458d49fbb3aec5 2014-06-30 2014-10-02 PG-PAI Programa Población General 557
4,273 2,010 JACA1**051975 ec211ec3747855b4001862f179ac47a7 2009-05-13 2010-09-05 PG-PR Programa Población General 247
141,074 2,018 JAGO1**051976 023439710dab5ef09981e13b07246470 NA 2018-07-12 2019-01-01 PG-PAB Programa Población General 290
100,878 2,016 JAGO1**051976 794e395c84871b1c4a1428bf5b3fa092 2016-08-18 2016-11-14 PG-PAB Programa Población General 290
151,968 2,019 JAJA1**051971 7b31396b456c31f2c7b4bf3290ee0201 NA 2018-12-12 NA PG-PAI Programa Población General 251
23,376 2,012 JAJA1**051971 685e8dd1874d8a5150cec01e8d5fc5cf 2011-12-09 2012-09-07 PG-PR Programa Población General 273
19,487 2,011 JAJA1**051971 7b31396b456c31f2c7b4bf3290ee0201 2011-10-04 2011-12-09 PG-PR Programa Población General 266
122,496 2,017 JARO1**081988 af4447f8450791fd08c6bd2197242956 NA 2017-09-05 2017-10-26 PG-PAI Programa Población General 191
53,456 2,014 JARO1**081988 0ee80822ed621131693f2718f7ea30ee 2014-01-20 2014-09-19 PG-PAI Programa Población General 191
131,456 2,018 JOAL1**091981 1eefd63ed4712067b44b308941e8e10b NA 2017-11-20 2018-05-04 PG-PAI Programa Población General 182
72,239 2,015 JOAL1**091981 bae26bc2c87f1ca969aaca4615441aec 2015-01-01 2015-04-13 PG-PR Programa Población General 643
67,084 2,015 JOAL1**091981 bae26bc2c87f1ca969aaca4615441aec 2014-05-15 2014-12-31 PG-PR Programa Población General 216
50,765 2,014 JOAL1**091981 bae26bc2c87f1ca969aaca4615441aec 2013-09-13 2014-02-28 PG-PAI Programa Población General 443
24,510 2,012 JOAL1**091981 bae26bc2c87f1ca969aaca4615441aec 2011-06-02 2012-03-05 PG-PAI Programa Población General 164
21,664 2,012 JOAL1**091981 bae26bc2c87f1ca969aaca4615441aec 2011-06-02 2012-01-01 PG-PAI Programa Población General 325
91,121 2,016 JOAL1**121984 f6fb4fdd4e448d7ee33f42f2204fb6cb 2015-07-03 2016-09-01 PG-PAI Programa Población General 353
10,499 2,011 JOAL1**121984 114686b8ca03065aba1524665575a85a 2010-05-11 2011-02-25 PG-PAI Programa Población General 133
131,769 2,018 JOAR1**101981 904aa98b2445a67969c4095ac7b489db NA 2017-12-11 2018-11-02 PG-PAB Programa Población General 290
101,152 2,016 JOAR1**101981 51d6c6d1d2948d1c7264532b1dfcc85c 2016-08-23 2016-09-12 PG-PR Programa Población General 297
91,908 2,016 JOAR1**101981 51d6c6d1d2948d1c7264532b1dfcc85c 2015-12-10 2016-04-22 PG-PAB Programa Población General 588
90,362 2,016 JOAR1**101981 904aa98b2445a67969c4095ac7b489db 2015-09-11 2016-11-01 PG-PAI Programa Población General 430
65,356 2,015 JOBA1**031980 df5122bd4f634e249b479f91c0c4d3c4 2012-05-08 2015-07-01 PG-PAI Programa Población General 299
25,406 2,012 JOBA1**031980 1712e95471064610044ed3a94c562a4e 2012-03-02 2012-04-12 PG-PR Programa Población General 303
21,407 2,012 JOBA1**031980 df5122bd4f634e249b479f91c0c4d3c4 2011-05-13 2012-03-02 PG-PAI Programa Población General 299
147,814 2,019 JOCA1**031981 3271775f2afe6cc253edbe1cc0e15556 NA 2018-06-01 2019-07-17 PG-PAI Programa Población General 229
154,904 2,019 JOCA1**031981 86bfb035aa9afb9fb0dbcfbabc4448a1 NA 2019-03-05 NA PG-PAI Programa Población General 238
142,908 2,018 JOCA1**031981 86bfb035aa9afb9fb0dbcfbabc4448a1 NA 2018-10-04 2018-12-01 PG-PAB Programa Población General 238
159,845 2,019 JOCA1**121975 e8627fd9ad83afc33a245abbeb81538e NA 2019-05-06 NA PG-PAB Programa Población General 233
55,140 2,014 JOCA1**121975 3761ccd5f7c173671e13c88851fc3177 2014-02-27 2014-08-04 PG-PAB Programa Población General 146
150,502 2,019 JOCA1**111977 bcdd4190615ed413bde8e8fc7cb3d52d NA 2018-11-19 2019-02-01 PG-PAI Programa Población General 131
37,895 2,013 JOCA1**111977 0331102e812b1d4fd83dc0b798fcec9e 2013-03-11 2013-05-28 PG-PAB Programa Población General 294
148,613 2,019 JOCA1**071984 3f5d3ee9923eb216d2d99fe4853b14cb NA 2018-07-13 2019-08-19 PG-PAI Programa Población General 281
123,943 2,017 JOCA1**071984 3f5d3ee9923eb216d2d99fe4853b14cb NA 2017-09-29 2017-12-04 PG-PAI Programa Población General 281
114,352 2,017 JOCA1**071984 3f5d3ee9923eb216d2d99fe4853b14cb NA 2017-03-15 2017-05-02 PG-PR Programa Población General 258
87,346 2,016 JOCA1**071984 3587a045ae3d9871796748d778c35285 2015-04-27 2017-02-01 PG-PAB Programa Población General 161
56,316 2,014 JOCA1**071984 3587a045ae3d9871796748d778c35285 2014-04-02 2014-09-04 PG-PAB Programa Población General 161
6,259 2,010 JOCA1**071984 3587a045ae3d9871796748d778c35285 2010-06-11 2011-02-07 PG-PAB Programa Población General 295
155,402 2,019 JOCO1**061985 08bba4c9f792ae4f85844d0c975ebb8c NA 2019-03-01 2019-08-01 PG-PAB Programa Población General 249
24,306 2,012 JOCO1**061985 3d6d19dd5b100a8e29c7579a8cca6f94 2012-01-27 2012-03-01 PG-PR Programa Población General 183
21,977 2,012 JOCO1**061985 3d6d19dd5b100a8e29c7579a8cca6f94 2011-08-18 2012-01-26 PG-PAI Programa Población General 200
34,623 2,013 JOCO1**071985 4f25c0479819295e1c1e8ae1fe2e5ce8 2012-10-23 2013-07-01 PG-PAI Programa Población General 115
25,391 2,012 JOCO1**071985 0ea5eaf9305ba7bace012a4ab00bbc60 2012-03-12 2012-06-19 PG-PAI Programa Población General 290
1,819 2,010 JOCO1**071985 0ea5eaf9305ba7bace012a4ab00bbc60 2010-01-04 2010-05-24 PG-PR Programa Población General 266
157,858 2,019 JOES1**121988 de16311fd41ac2b7c3d5c756a31dfc1f NA 2019-06-03 2019-08-13 PG-PR Programa Población General 341
96,776 2,016 JOES1**121988 ae23b864325fd495220f016f3fc6dfb1 2016-04-21 2016-09-26 PG-PAB Programa Población General 157
66,257 2,015 JOFE2**121981 e7a032596cca2b837acde57c7a9f1a42 2014-01-03 2015-01-26 PG-PAI Programa Población General 445
42,050 2,013 JOFE2**121981 14e08d6f48cc5502ef126ed1230b6932 2013-07-01 2013-09-30 PG-PAI Programa Población General 187
133,621 2,018 JOGO1**021983 f3efb9e8f7e1249bd9510d98b9853c35 NA 2017-10-31 2018-11-29 PG-PAB Programa Población General 489
71,701 2,015 JOGO1**021983 5d86882823002dc616ea8dfd1688ac8c 2015-01-27 2015-03-09 PG-PR Programa Población General 147
154,090 2,019 JOHE1**091987 b0cae0c28967b5a327664c09541ab767 NA 2019-02-28 2019-03-08 PG-PR Programa Población General 682
138,424 2,018 JOHE1**091987 b0cae0c28967b5a327664c09541ab767 NA 2018-06-07 2018-11-30 PG-PAI Programa Población General 205
116,404 2,017 JOHE1**091987 b0cae0c28967b5a327664c09541ab767 NA 2017-04-03 2017-09-01 PG-PAB Programa Población General 206
23,832 2,012 JOHE1**091987 6181114c11d3a3a9809cab3dfc1d37db 2012-01-09 2012-05-30 PG-PAB Programa Población General 259
10,717 2,011 JOHE1**091987 6181114c11d3a3a9809cab3dfc1d37db 2010-05-25 2011-01-04 PG-PAI Programa Población General 259
157,904 2,019 JOMA1**011983 9de12e614d4ccc1272c4c463026718fa NA 2018-06-06 NA Otro Otro 149
93,847 2,016 JOMA1**011983 dee098d57fe340a2f2e97666898937b8 2016-02-02 2016-03-03 PG-PAI Programa Población General 133
66,840 2,015 JOMA1**011983 dee098d57fe340a2f2e97666898937b8 2014-03-26 2015-01-29 PG-PAI Programa Población General 133
96,856 2,016 JOMO1**121969 a485d5b6c980d635c13810d063c941a7 2016-05-04 2017-01-26 PG-PAB Programa Población General 261
10,779 2,011 JOMO1**121969 7022437d5a1bb1a57797d1734ed623c5 2010-07-26 2011-05-02 PG-PR Programa Población General 193
162,281 2,019 JOMU1**121972 16b7481c798195b20ae8863b240682a8 NA 2019-10-01 NA PG-PR Programa Población General 341
150,791 2,019 JOMU1**121972 16b7481c798195b20ae8863b240682a8 NA 2018-11-14 2019-10-04 PG-PAI Programa Población General 221
135,416 2,018 JOMU1**121972 16b7481c798195b20ae8863b240682a8 NA 2018-03-28 2018-09-03 PG-PAI Programa Población General 221
5,621 2,010 JOMU1**121972 de4725df680e62e51a7f870e239c562b 2010-05-10 2010-09-15 PG-PAB Programa Población General 112
150,310 2,019 JOPA1**081968 5d501047958f5389bbe8d5e0287c4758 NA 2018-11-12 2019-04-01 PG-PAB Programa Población General 249
71,413 2,015 JOPA1**081968 12ddb41e78d649482b559b5d2b36f284 2015-01-29 2015-03-04 PG-PAI Programa Población General 590
53,738 2,014 JOPA1**081968 12ddb41e78d649482b559b5d2b36f284 2014-01-30 2015-01-29 PG-PAI Programa Población General 218
154,404 2,019 JOPA1**111988 433127a150dc9ba21ad5d52defb1d219 NA 2019-03-11 NA PG-PAI Programa Población General 259
71,094 2,015 JOPA1**111988 5c9ea36a8b05e91dcb007117991acd73 2015-01-15 2015-06-16 PG-PAB Programa Población General 367
46,303 2,013 JOPA1**111988 5c9ea36a8b05e91dcb007117991acd73 2013-11-05 2014-01-16 PG-PAB Programa Población General 367
60,203 2,014 JOPA1**091969 4f3873a0eab919f6c0e806513f1a6f85 2014-07-01 2014-08-28 PG-PR Programa Población General 354
59,067 2,014 JOPA1**091969 b37dbe01ed888d49ed98af881bdb4f69 2014-06-28 2014-06-29 PG-PR Programa Población General 354
96,965 2,016 JOPE1**121987 d6d95254e3bf331369ced85d21021801 2016-05-16 2016-10-27 PG-PAI Programa Población General 172
70,822 2,015 JOPE1**121987 87a7f7dbef9ef815fae6bf31f9b03873 2014-12-17 2015-03-30 PG-PAB Programa Población General 253
148,471 2,019 JOPI1**111990 0467a46e6054c06558c042416ee9af05 NA 2018-06-04 2019-08-01 PG-PAB Programa Población General 292
20,391 2,011 JOPI1**111990 0467a46e6054c06558c042416ee9af05 2011-12-05 2012-04-02 PG-PAB Programa Población General 294
16,233 2,011 JOPI1**111990 6fa4bbf10b5e56dd446d30cf91a325f7 2011-05-17 2011-07-29 PG-PAI Programa Población General 141
142,723 2,018 JORI1**091980 6f70eaef562e5ab63c605601777a909b NA 2018-09-03 2018-11-30 PG-PAI Programa Población General 430
8,585 2,010 JORI1**091980 1be5d02a36f43f65cb2120a4c84d8584 2010-09-09 2010-11-23 PG-PAB Programa Población General 175
41,530 2,013 JORO1**031986 e00a2a492eaf389e41232d0bc0737717 2013-05-30 2013-11-29 PG-PAI Programa Población General 295
6,261 2,010 JORO1**031986 7abf1cfd436092bc7e7aa5be7b978dcd 2010-06-02 2011-02-07 PG-PAB Programa Población General 295
108,208 2,017 JOSA1**031988 930a6e27654cfb0a5927b280ba0b1795 NA 2016-07-20 2017-02-06 PG-PAI Programa Población General 327
72,826 2,015 JOSA1**031988 930a6e27654cfb0a5927b280ba0b1795 2015-02-13 2015-07-01 PG-PR Programa Población General 117
67,696 2,015 JOSA1**031988 930a6e27654cfb0a5927b280ba0b1795 2014-07-02 2015-02-13 PG-PAI Programa Población General 327
32,805 2,013 JOSA1**031988 a435cf35e66462767723e1afc3be0585 2012-04-25 2013-01-04 PG-PAI Programa Población General 182
146,185 2,019 JOSA1**121979 187778b0c0fa76dd4084166f0870bc3c NA 2017-10-05 2019-01-07 PG-PR Programa Población General 147
116,037 2,017 JOSA1**121979 3b0c02f12da06964374c73781e3d5e87 NA 2017-04-12 2017-08-31 PG-PAI Programa Población General 141
53,215 2,014 JOSE1**121969 50dedff4a9cef60b26cd7ae0fa6cdc61 2014-01-16 2014-06-30 PG-PAB Programa Población General 204
10,231 2,011 JOSE1**121969 3d231e88b6088648cd370ad26d37d4a1 2010-03-17 2011-06-01 PG-PAB Programa Población General 157
147,704 2,019 JOSO1**021963 b654578dfad0940dd3e04fe919293ac6 NA 2018-06-12 2019-04-01 PG-PAB Programa Población General 465
132,540 2,018 JOSO1**021963 ba991bc2cee3c621887c98329f905177 NA 2018-01-22 2018-05-01 PG-PAI Programa Población General 272
78,427 2,015 JOVA1**011989 940b0a44b00b586f83f685adb757d7b2 2015-06-22 2016-08-25 PG-PAB Programa Población General 614
38,426 2,013 JOVA1**011989 69771813a8149626736aa98cf52b69ff 2013-03-28 2013-07-05 PG-PAB Programa Población General 112
153,118 2,019 JOVA1**011980 a64fc3743e866d23d9b6db65cdba80a4 NA 2019-01-15 2019-04-01 PG-PAB Programa Población General 754
122,060 2,017 JOVA1**011980 a64fc3743e866d23d9b6db65cdba80a4 NA 2017-09-04 2018-01-31 PG-PAB Programa Población General 681
109,460 2,017 JOVA1**011980 a64fc3743e866d23d9b6db65cdba80a4 NA 2016-09-01 2017-02-28 PG-PAI Programa Población General 185
87,606 2,016 JOVA1**011980 a64fc3743e866d23d9b6db65cdba80a4 2015-06-01 2016-03-11 PG-PAI Programa Población General 185
57,085 2,014 JOVA1**011980 724c6db5be9d245eb66b369a718079c6 2014-04-22 2014-05-27 PG-PAB Programa Población General 146
113,460 2,017 JOVE1**081991 c9f952074b60cc36f713b80c87cd9bce NA 2017-01-30 2017-04-25 PG-PAB Programa Población General 298
24,723 2,012 JOVE1**081991 ed83d7ef49f5052913ae7aeeb143e0dc 2012-02-23 2013-01-29 PG-PAB Programa Población General 368
159,175 2,019 JOVE2**061992 6a72664c6071e9728753279c9e9719e5 NA 2019-07-04 NA M-PR Programa Específico Mujeres 717
151,127 2,019 JOVE2**061992 6a72664c6071e9728753279c9e9719e5 NA 2018-12-04 2019-07-03 M-PAI Programa Específico Mujeres 363
37,129 2,013 JOVE2**061992 d17238700fe9cad8e458b81f53c35962 2013-02-27 2013-03-17 M-PR Programa Específico Mujeres 219
67,637 2,015 JUBR1**081982 45afc4f86bf684c1a18b2e8a2990b44b 2014-07-09 2015-01-28 PG-PAB Programa Población General 265
4,296 2,010 JUBR1**081982 1a51f8de288a6e6f58e876159806925d 2010-03-31 2010-05-31 PG-PAI Programa Población General 291
130,178 2,018 JUCA1**051959 4429a2a9d0dd8aa53b45c669a2beea03 NA 2017-10-03 2018-11-19 PG-PAI Programa Población General 365
106,472 2,017 JUCA1**051959 d77e9fcd9324ee4dfb090a4897892da8 NA 2016-02-17 2017-01-25 PG-PR Programa Población General 650
90,179 2,016 JUCA1**051959 d77e9fcd9324ee4dfb090a4897892da8 2015-09-29 2016-02-16 PG-PAI Programa Población General 139
39,889 2,013 JUCA1**051959 d77e9fcd9324ee4dfb090a4897892da8 2013-05-29 2013-11-26 PG-PAI Programa Población General 139
160,927 2,019 JUCA1**111979 d7316e24d6b8bb80b1484cb94e699580 NA 2019-07-26 NA PG-PAI Programa Población General 294
76,752 2,015 JUCA1**111979 aca2eab5a84d888e6a4463cbabd4da4d 2015-05-04 2015-10-21 PG-PAI Programa Población General 290
108,368 2,017 JUGA1**021973 0652d6d5e51a9fd7b7be088fa7f58403 NA 2016-07-01 2017-02-01 PG-PAI Programa Población General 264
10,603 2,011 JUGA1**021973 73f0a76d08b6fcdf351c2019e9fe5008 2010-06-23 2011-03-31 PG-PR Programa Población General 132
131,257 2,018 JUGO1**021987 a6fd2afabcfe8714d7bad8346aa4a73f NA 2017-11-22 2018-03-15 PG-PR Programa Población General 117
6,047 2,010 JUGO1**021987 aa8ee460c663685152369464b87b1989 2010-06-21 2010-09-30 PG-PR Programa Población General 183
90,861 2,016 JUHE1**101979 0375c965090ba0559dd75b5c79b623b6 2015-11-11 2016-03-16 PG-PAI Programa Población General 338
11,620 2,011 JUHE1**101979 ece73be7a07b273a7b6793428a5474de 2010-02-13 2011-02-17 PG-PAB Programa Población General 256
132,188 2,018 JULE1**021990 344b6edf8afac035dbbbce1228917afc NA 2017-12-01 2018-03-05 PG-PAI Programa Población General 441
50,070 2,014 JULE1**021990 d093c3295e4f1b62a34b6ea504e0b723 2013-07-15 2014-02-03 PG-PAI Programa Población General 162
36,226 2,013 JULE1**021990 d093c3295e4f1b62a34b6ea504e0b723 2013-01-22 2013-07-19 PG-PAB Programa Población General 169
134,702 2,018 JULO1**081982 2a6a473447e03790e78d8539211cf592 NA 2018-03-02 2018-06-15 PG-PAB Programa Población General 469
74,453 2,015 JULO1**081982 711ad7bf789121ad1e2dd4b38190ec09 2015-03-31 2015-07-03 PG-PAI Programa Población General 287
110,841 2,017 JUMA1**121981 9c752761f113b59b44235f5e3ddcd2b6 NA 2016-11-01 2017-04-13 PG-PAI Programa Población General 263
59,239 2,014 JUMA1**121981 9cc4e96d42544d5797cc405e04b82d3b 2014-05-20 2014-07-04 PG-PR Programa Población General 201
33,770 2,013 JUMI1**081983 d0a2084aa4a28e37edb438f36209d35e 2012-08-08 2013-02-05 PG-PR Programa Población General 258
28,939 2,012 JUMI1**081983 a1b542f00d3196ad4f5a43f5f2124822 2012-08-01 2012-08-14 PG-PAB Programa Población General 251
4,272 2,010 JUMI1**081983 d0a2084aa4a28e37edb438f36209d35e 2010-03-19 2010-07-01 PG-PAB Programa Población General 251
552 2,010 JUMI1**081983 d0a2084aa4a28e37edb438f36209d35e 2009-10-26 2010-02-08 PG-PR Programa Población General 285
146,906 2,019 JUMO1**051963 fd369c59559f3f298115408108324786 NA 2018-02-28 2019-02-07 PG-PAI Programa Población General 218
96,353 2,016 JUMO1**051963 fd369c59559f3f298115408108324786 2016-04-27 2016-06-01 PG-PR Programa Población General 341
73,793 2,015 JUMO1**051963 fd369c59559f3f298115408108324786 2015-02-02 2015-07-13 PG-PAI Programa Población General 218
33,981 2,013 JUMO1**051963 6f765441322cc778331acf122c799244 2012-09-26 2013-01-09 PG-PR Programa Población General 258
142,649 2,018 JUMO1**101970 4434d969f99c4d7ae148119c70148bbb NA 2018-09-03 2019-01-01 PG-PAI Programa Población General 598
43,118 2,013 JUMO1**101970 1a7442b7649baad7ea9391ea28259ad4 2013-08-14 2013-08-23 PG-PAB Programa Población General 148
76,586 2,015 JUPA1**061971 cd27b07ccad8f08c3c970fa7410cb6cf 2015-05-26 2015-11-27 PG-PAI Programa Población General 417
50,312 2,014 JUPA1**061971 fa0f41cba9cf71a3cc19c46e09cecf6c 2013-08-06 2014-04-30 PG-PAI Programa Población General 132
111,310 2,017 JURI1**101978 96238c91cfebb401844ca31821e69088 NA 2016-12-07 2017-04-07 PG-PR Programa Población General 104
56,549 2,014 JURI1**101978 5570346e4ec949714fd613bf46930619 2014-04-15 2014-05-09 PG-PAI Programa Población General 182
53,386 2,014 JURI1**101978 5570346e4ec949714fd613bf46930619 2014-01-07 2014-02-14 PG-PAI Programa Población General 182
98,415 2,016 JURO1**091979 0ea334395e9d61bf414d6c80264f802c 2016-06-20 2016-09-07 PG-PR Programa Población General 235
76,362 2,015 JURO1**091979 0ea334395e9d61bf414d6c80264f802c 2015-05-18 2015-06-10 PG-PAI Programa Población General 497
26,252 2,012 JURO1**091979 245ce3d17c6c5b12e07b7576c637b864 2012-04-04 2012-08-10 PG-PAI Programa Población General 155
110,808 2,017 JURO1**071994 658f3b1799402231a012dfa770ce1532 NA 2016-11-07 2017-05-05 PG-PAB Programa Población General 209
56,188 2,014 JURO1**071994 6677ba0028552a4682773dacd55804a4 2014-03-26 2014-04-05 PG-PR Programa Población General 216
148,367 2,019 JUSO1**121970 4b0191db3c2e0b430eb2f13e10e6b183 NA 2018-07-20 NA PG-PAB Programa Población General 256
22,179 2,012 JUSO1**121970 13d41d28b22428d60ab25f88be7bd460 2011-09-02 2012-06-25 PG-PAB Programa Población General 188
30,014 2,012 KABA2**031979 1b6672e0a484afcdc59988dce4e5a5d9 2012-09-10 2013-01-31 M-PAI Programa Específico Mujeres 262
16,006 2,011 KABA2**031979 27a499655f77df1c0bec3037664c3a5c 2011-05-12 2011-11-01 PG-PAB Programa Población General 177
42,079 2,013 KADI2**061970 06da756ac2a95faee6d269c2045d78e9 2013-06-06 2014-01-21 PG-PAB Programa Población General 161
23,561 2,012 KADI2**061970 06da756ac2a95faee6d269c2045d78e9 2011-12-22 2012-10-30 PG-PAB Programa Población General 161
7,251 2,010 KADI2**061970 9aaa9aa5194cb84a0741ea49b74d8787 2010-08-18 2011-05-17 M-PAI Programa Específico Mujeres 161
28,911 2,012 KALE2**071982 f62cedd63293d1d8af0b365a36e7b77d 2012-07-02 2012-11-15 PG-PAB Programa Población General 230
576 2,010 KALE2**071982 197c2d0dfff5ee73358cdffe541524cb 2010-01-20 2010-02-25 PG-PAB Programa Población General 230
108,825 2,017 LESA1**091970 0146b79ba4f2e775fd25e0b77ce0a1f4 NA 2016-08-24 2017-08-21 PG-PR Programa Población General 193
33,457 2,013 LESA1**091970 1ba1699d83733b50c12cbb541779541e 2012-07-23 2013-02-18 PG-PR Programa Población General 258
22,792 2,012 LESA1**091970 1ba1699d83733b50c12cbb541779541e 2011-06-06 2012-07-06 PG-PAB Programa Población General 258
2,983 2,010 LESA1**091970 1ba1699d83733b50c12cbb541779541e 2010-01-05 2010-12-01 PG-PAB Programa Población General 258
115,040 2,017 LOPI2**071985 42ab29db4c02e95eeba47d4140eba47a NA 2017-03-15 2017-11-01 PG-PR Programa Población General 117
101,756 2,016 LOPI2**071985 e51b29ac1edb3668a4da8e7ee49c11ae 2016-09-14 2017-02-01 M-PAI Programa Específico Mujeres 502
161,635 2,019 LUCA1**041983 3bb3904c559df5f4c9e64abea39eb5b1 NA 2019-09-23 NA PG-PAI Programa Población General 443
64,650 2,014 LUCA1**041983 ef9d28b0dbb220ac27b375a36952e027 2014-11-25 2014-12-19 PG-PAI Programa Población General 246
109,769 2,017 LUCA1**031982 7a7e9d8fbd67ef334a3e07b407a94523 NA 2016-10-03 2017-03-17 PG-PAB Programa Población General 224
52,156 2,014 LUCA1**031982 09c9ad4d628e2124c2766e10e3335228 2013-11-14 2014-06-30 PG-PAI Programa Población General 205
147,116 2,019 LUHE1**011973 0cfe1d9682573288af6adaa2d5500acd NA 2018-02-13 NA PG-PAB Programa Población General 473
110,999 2,017 LUHE1**011973 46aea7ae7cdabb82bc3e9cfcbf8aa691 NA 2016-12-09 2017-09-07 PG-PAB Programa Población General 455
51,952 2,014 LUHU1**061980 b8d1d201a2f45fe238d07bf4ce0ba55f 2013-11-27 2014-04-15 PG-PAI Programa Población General 200
9,976 2,011 LUHU1**061980 2cb40e8b9b93c4b366f358fb17cacbcd 2010-01-05 2011-08-18 PG-PAI Programa Población General 296
132,189 2,018 LUMA1**051975 8a4bc40304dc631f91febdc861e39121 NA 2017-12-12 2018-07-04 PG-PAB Programa Población General 347
106,248 2,017 LUMA1**051975 2ebb9883c6ab79150bb144e37ee74c07 NA 2016-01-07 2017-10-02 PG-PAB Programa Población General 258
10,421 2,011 LUMO1**081979 164d00b3c485d7004352d9d0de745877 2010-05-20 2011-03-01 PG-PR Programa Población General 303
5,113 2,010 LUMO1**081979 33e1fe3dcfa0d9a2b47e250b9dde2d21 2010-05-05 2010-05-18 PG-PAI Programa Población General 291
129,744 2,018 LUPA1**041989 b4ca0765e77c9ffede02d3ba7a93c74d NA 2017-09-27 2018-10-03 PG-PR Programa Población General 303
140,272 2,018 LUPA1**041989 d9e97bb1a2d43c7d31bbaba9ee63674c NA 2018-06-12 2018-10-02 PG-PAI Programa Población General 218
133,832 2,018 LUPA1**041989 d9e97bb1a2d43c7d31bbaba9ee63674c NA 2018-02-16 2018-06-05 PG-PR Programa Población General 341
118,682 2,017 LUPA1**041989 b4ca0765e77c9ffede02d3ba7a93c74d NA 2017-06-07 2017-09-12 PG-PAI Programa Población General 291
79,044 2,015 LUPA1**041989 b4ca0765e77c9ffede02d3ba7a93c74d 2015-07-10 2016-04-08 PG-PAI Programa Población General 291
110,081 2,017 LURI1**111971 8e66fa6a4933cf7f460a47cb2cda9177 NA 2016-10-17 2017-01-13 PG-PR Programa Población General 117
9,967 2,011 LURI1**111971 434807c069aff8595c7daff03482dcbe 2009-11-01 2011-03-31 PG-PR Programa Población General 117
153,868 2,019 LUSA1**121986 5273bc9e39935d7a754a4269cab031a1 NA 2019-01-16 2019-04-17 PG-PAI Programa Población General 133
156,943 2,019 LUSA1**121986 c31731eb975640eacb799a7c5aa8d805 NA 2019-05-17 2019-10-29 PG-PAI Programa Población General 721
15,685 2,011 LUSA1**121986 5273bc9e39935d7a754a4269cab031a1 2011-05-02 2011-10-19 PG-PAI Programa Población General 134
135,609 2,018 LUVA1**031978 d2af930fee678a6996035fbbf30d525e NA 2017-11-30 2018-10-01 PG-PAI Programa Población General 151
116,193 2,017 LUVA1**031978 d2af930fee678a6996035fbbf30d525e NA 2017-04-03 2017-11-15 PG-PAI Programa Población General 151
73,846 2,015 LUVA1**031978 d2af930fee678a6996035fbbf30d525e 2015-03-11 2015-04-28 PG-PAI Programa Población General 151
4,610 2,010 LUVA1**031978 f79d3436dfb9682e58cbd383a2afa88b 2010-04-16 2010-07-05 PG-PAB Programa Población General 181
79,946 2,015 LUVE1**041984 6feaa1665dfcc77df3e15cc19e20a3f6 2015-08-05 2015-11-30 PG-PAI Programa Población General 238
21,524 2,012 LUVE1**041984 6feaa1665dfcc77df3e15cc19e20a3f6 2011-05-11 2012-02-20 PG-PAI Programa Población General 238
28,527 2,012 LUVE1**041984 c31de7cd5b840bba8753c56a7ebb2482 2012-07-11 2012-10-22 PG-PAI Programa Población General 238
68,314 2,015 MAAR1**101973 b50839c15a699bdd5e49adb9deab9f71 2014-08-01 2015-04-23 PG-PAB Programa Población General 209
42,219 2,013 MAAR1**101973 64b7a36c2f2e032c3e7388bf43cd54a1 2013-05-22 2013-10-29 PG-PAB Programa Población General 225
156,877 2,019 MACA1**021995 a2355a41cc63fdb57f298d8ded53a058 NA 2019-05-08 NA PG-PAI Programa Población General 118
123,615 2,017 MACA1**021995 a7c11c7e25336bf797a527c5af3d0565 NA 2017-10-16 2017-12-19 PG-PAI Programa Población General 207
129,985 2,018 MACA1**101991 85a3eb94a06fb3a230d3074cd7717112 NA 2017-10-02 2018-04-23 PG-PAI Programa Población General 320
130,705 2,018 MACA1**101991 9d7cb8a27e1f6ad49e8e241f10ba1c4b NA 2017-11-03 2018-02-27 PG-PAI Programa Población General 259
120,630 2,017 MACA1**101991 85a3eb94a06fb3a230d3074cd7717112 NA 2017-08-02 2017-09-29 PG-PAI Programa Población General 320
113,135 2,017 MACA1**101991 85a3eb94a06fb3a230d3074cd7717112 NA 2017-02-13 2017-08-01 PG-PAI Programa Población General 320
133,597 2,018 MACA2**091969 482d4fb0c1d484f24143a7ab285714a5 NA 2018-02-01 2018-07-16 PG-PAI Programa Población General 561
11,154 2,011 MACA2**091969 54e63f75bb1ac598b977e683aa53a44d 2010-08-27 2011-03-25 PG-PAB Programa Población General 145
68,753 2,015 MACA2**061985 e9bf752d022fb68b98ba9c2e3ee3cf08 2014-08-06 2015-07-31 PG-PAI Programa Población General 232
32,139 2,013 MACA2**061985 cee4ce2ead9f307a623fbab9a33353f5 2010-12-07 2013-08-05 PG-PAB Programa Población General 166
145,824 2,019 MACO1**021983 fd5480be411a92b07e401dcb3372c8a7 NA 2017-02-21 2019-08-29 PG-PAI Programa Población General 141
101,022 2,016 MACO1**021983 fd5480be411a92b07e401dcb3372c8a7 2016-08-17 2017-01-27 PG-PAI Programa Población General 141
66,631 2,015 MACO1**021983 fd5480be411a92b07e401dcb3372c8a7 2014-03-12 2015-12-17 PG-PAI Programa Población General 141
50,470 2,014 MACO1**021983 fd5480be411a92b07e401dcb3372c8a7 2013-08-01 2014-02-24 Otro Programa Población General 141
33,620 2,013 MACO1**021983 3744a5829e5d4180c80843087ddfa17b 3b855d31baa969fe83cd34a994f7a31d 2012-08-07 2013-02-28 Otro Programa Población General 141
38,838 2,013 MACO1**021983 fd5480be411a92b07e401dcb3372c8a7 2013-04-03 2013-07-31 PG-PAB Programa Población General 141
26,476 2,012 MACO1**021983 fd5480be411a92b07e401dcb3372c8a7 2012-04-03 2012-07-30 PG-PAB Programa Población General 141
22,390 2,012 MACO1**021983 fd5480be411a92b07e401dcb3372c8a7 2011-09-08 2012-03-30 PG-PAB Programa Población General 141
12,209 2,011 MACO1**021983 fd5480be411a92b07e401dcb3372c8a7 2010-11-18 2011-08-31 PG-PAB Programa Población General 141
111,461 2,017 MACO1**071974 905948273e50de5fe1f7f607e4311991 NA 2016-12-01 2017-03-01 PG-PAI Programa Población General 220
62,462 2,014 MACO1**071974 905948273e50de5fe1f7f607e4311991 2014-09-25 2015-03-02 PG-PAI Programa Población General 220
62,447 2,014 MACO1**071974 905948273e50de5fe1f7f607e4311991 2014-09-25 2014-09-30 PG-PAI Programa Población General 220
9,721 2,010 MACO1**071974 15e33a27703b98754282662fc56961ef 2010-12-13 2011-01-03 PG-PAI Programa Población General 320
87,146 2,016 MAGA1**041979 b2a01d19b9919a1946aeb2715b29d668 2015-04-15 2016-05-01 PG-PR Programa Población General 117
77,091 2,015 MAGA1**041979 dd46297203a3f6331a505ef09dddc446 2015-05-20 2015-10-02 PG-PR Programa Población General 289
34,840 2,013 MAGA1**041979 b2a01d19b9919a1946aeb2715b29d668 2012-10-08 2013-03-29 PG-PAI Programa Población General 109
30,734 2,012 MAGA1**041979 b2a01d19b9919a1946aeb2715b29d668 2012-10-08 2012-10-29 PG-PAB Programa Población General 109
2,636 2,010 MAGA1**041979 b2a01d19b9919a1946aeb2715b29d668 2009-10-05 2010-03-22 PG-PAI Programa Población General 109
123,219 2,017 MAGA1**071988 f9a34f488ebd5e0f541f4ea35761cfd3 NA 2017-10-10 2017-11-07 PG-PAI Programa Población General 158
69,510 2,015 MAGA1**071988 206d426d1fcb4d1e9f888ab20f5bb5c0 2014-10-30 2015-01-19 PG-PR Programa Población General 142
43,152 2,013 MAGA1**071988 206d426d1fcb4d1e9f888ab20f5bb5c0 2013-06-17 2013-09-26 PG-PAB Programa Población General 148
134,264 2,018 MAGA1**071979 11fdfa2519cb5400d2a53da6a37b8575 NA 2018-02-05 2018-12-01 PG-PAB Programa Población General 221
83,563 2,015 MAGA1**071979 35ae85cc54847eb034eac0c2ddbee594 2015-11-03 2015-12-18 PG-PR Programa Población General 648
82,515 2,015 MAGA1**071979 35ae85cc54847eb034eac0c2ddbee594 2015-10-16 2015-11-03 PG-PAB Programa Población General 469
51,938 2,014 MAGO1**091970 73660051bbeadb3b08fde15ce1cb6642 2013-11-06 2014-08-20 PG-PR Programa Población General 142
45,703 2,013 MAGO1**091970 73660051bbeadb3b08fde15ce1cb6642 2013-10-04 2013-11-05 Otro Programa Población General 141
4,104 2,010 MAGO1**091970 ace765e77d0bccf6d8515b4674a1beaa 2010-01-25 2010-10-11 PG-PAB Programa Población General 156
87,187 2,016 MAGU1**011993 f2c861861d139d6688e569cc84f90c09 2015-04-27 2016-04-14 PG-PAI Programa Población General 225
60,571 2,014 MAGU1**011993 b07fe6f1f651d4d1cc502cdbe9603817 2014-07-24 2014-11-28 PG-PAB Programa Población General 427
58,386 2,014 MAGU1**011993 f2c861861d139d6688e569cc84f90c09 2014-05-28 2014-10-31 PG-PAB Programa Población General 225
51,970 2,014 MAGU1**011993 f2c861861d139d6688e569cc84f90c09 2013-11-22 2014-04-28 PG-PAI Programa Población General 225
5,460 2,010 MAJA1**121978 44d5ecff82f800963369c64ee59c621a 2010-05-10 2010-06-15 PG-PR Programa Población General 117
1,095 2,010 MAJA1**121978 6a01d3d5b8df5204098f3e2e381c8015 2009-12-21 2010-05-10 PG-PAB Programa Población General 118
98,254 2,016 MAMA1**101982 c32168533551a64df94b4b288cf5a493 2016-04-06 2016-12-05 PG-PAI Programa Población General 502
15,425 2,011 MAMA1**101982 5fa4a7b59a450d466d1e1918a5d0168c 2011-03-25 2011-08-22 PG-PAB Programa Población General 294
118,456 2,017 MAME1**061971 f8717840dea3ba5c3ce5f8ab2b57918f NA 2017-06-06 2018-01-31 PG-PAB Programa Población General 130
75,086 2,015 MAME1**061971 5289afe2e9c36a58d43a9518160d5fc0 2015-04-15 2015-05-20 PG-PR Programa Población General 644
60,472 2,014 MAMO1**111971 4b0e22565eede9b80b82f3a3f92c980c 2014-06-24 2014-09-01 PG-PAI Programa Población General 430
6,996 2,010 MAMO1**111971 0163b15923259894c581346449f6303d 2008-10-20 2010-10-18 PG-PAB Programa Población General 161
153,753 2,019 MAMO2**091971 24fded986692cf18b7e433a72ce120f3 NA 2019-02-21 2019-09-30 M-PR Programa Específico Mujeres 234
85,831 2,016 MAMO2**091971 59749520a9a3132befca97a945c5b47c 2014-09-01 2016-05-31 PG-PAI Programa Población General 495
56,744 2,014 MAMO2**091971 59749520a9a3132befca97a945c5b47c 2014-04-25 2014-08-20 M-PAI Programa Población General 558
125,788 2,018 MAMU1**121979 551eb9821faed5f67f96d1f77737b341 NA 2014-03-18 2018-06-26 PG-PAB Programa Población General 150
55,041 2,014 MAMU1**121979 a6c9c067effb259583aaba07538ae4e0 2014-02-25 2014-05-09 PG-PAI Programa Población General 263
139,025 2,018 MAMU2**051980 19db34634a1c8961f34d08b1dd5a8e4a NA 2018-06-27 2018-11-01 PG-PAI Programa Población General 594
52,146 2,014 MAMU2**051980 50a4f4c601bf604bb1170d8739c392b8 2013-11-07 2014-03-19 PG-PAI Programa Población General 205
159,203 2,019 MAOR1**071988 5ce7a9a482c7ccca439c166fe7027930 NA 2019-07-20 2019-09-28 PG-PAB Programa Población General 249
30,655 2,012 MAOR1**071988 8ddd0d0eafce6179b1f345baba6d085b 2012-10-26 2012-11-05 PG-PAI Programa Población General 291
110,858 2,017 MARI2**111971 5c7aca9484a8b4513457d1ea8c079aaf NA 2016-11-24 2017-06-01 M-PAI Programa Específico Mujeres 122
25,704 2,012 MARI2**111971 75a73d2c304ac3eda9f753e4e55e5faa 2011-12-26 2013-03-28 M-PAI Programa Específico Mujeres 122
62,822 2,014 MARO2**101971 bdc8c26423f6be3464ab0ccd22f8d191 2014-10-07 2014-10-23 PG-PAI Programa Población General 290
10,434 2,011 MARO2**101971 473ff4429e49080bf25603d0a451580d 2010-05-04 2011-01-06 M-PR Programa Específico Mujeres 104
21,096 2,012 MASA1**091972 a94e2dcc3d8793e6f4814ba9bbbf04d1 2011-03-29 2012-08-30 PG-PAB Programa Población General 242
2,016 2,010 MASA1**091972 d800d8a7d54b0d8405c14ca105bcd436 2010-01-08 2010-02-01 PG-PAI Programa Población General 186
110,121 2,017 MASA1**091985 f05e308d8b76f2d447138ba4734faf87 NA 2016-09-06 2018-02-01 PG-PAI Programa Población General 156
43,389 2,013 MASA1**091985 abd77bf05ed26443f7be574efe7243d1 2013-07-22 2014-01-28 PG-PAI Programa Población General 105
34,422 2,013 MASA1**091985 f7bbd6610a8194f1327d804afa991b75 2012-10-08 2013-07-22 PG-PAB Programa Población General 118
147,149 2,019 MAVA1**021976 5d601f6001a24112fb6b9c24413583cd NA 2018-03-19 2019-03-01 PG-PAB Programa Población General 337
113,623 2,017 MAVA1**021976 5d601f6001a24112fb6b9c24413583cd NA 2017-02-13 2017-07-01 PG-PAB Programa Población General 337
24,866 2,012 MAVA1**021976 cdd1e60d70f1df876badd4d32b7e800c 2012-02-22 2012-06-01 PG-PAB Programa Población General 141
13,337 2,011 MAVA1**021976 cdd1e60d70f1df876badd4d32b7e800c 2010-11-02 2011-11-02 PG-PAI Programa Población General 155
106,281 2,017 MAVA1**021982 e4785621ddd9bcd1ac5de03428040362 NA 2016-01-25 2017-03-07 PG-PAB Programa Población General 155
69,125 2,015 MAVA1**021982 c445cc51c81f526d568e04fad2e371ee 2014-10-01 2015-08-21 PG-PAI Programa Población General 155
109,893 2,017 MAVA1**041973 fdcc01d0e4415fe835c21510ca11321c NA 2016-09-29 2017-09-15 PG-PR Programa Población General 285
14,056 2,011 MAVA1**041973 634cdf3a764559b9de36fab7cb3aeb37 2011-02-14 2011-06-21 PG-PAB Programa Población General 157
148,758 2,019 MAVE1**051977 b95ffcc116e5bc136069881e44633f71 NA 2018-08-07 2019-03-25 PG-PAB Programa Población General 204
5,423 2,010 MAVE1**051977 5eba2fd1f7d78abb110d7e9a24bab5ab 2010-05-13 2010-08-20 PG-PAI Programa Población General 186
117,245 2,017 MAVE2**021984 c60b55d60d0fb7abffb2aeec1b771adf NA 2017-05-10 2017-05-22 PG-PAI Programa Población General 115
112,935 2,017 MAVE2**021984 c60b55d60d0fb7abffb2aeec1b771adf NA 2017-01-03 2017-03-23 PG-PAI Programa Población General 115
103,633 2,016 MAVE2**021984 c60b55d60d0fb7abffb2aeec1b771adf 2016-10-24 2016-12-01 M-PR Programa Población General 652
97,813 2,016 MAVE2**021984 c60b55d60d0fb7abffb2aeec1b771adf 2016-05-24 2016-07-01 M-PR Programa Población General 652
60,483 2,014 MAVE2**021984 c60b55d60d0fb7abffb2aeec1b771adf 2014-07-02 2014-11-10 PG-PAI Programa Población General 115
53,645 2,014 MAVE2**021984 d7dc16dd5dd69db03a517ced8de53116 2014-01-02 2014-03-31 PG-PR Programa Población General 117
27,164 2,012 MAVE2**021984 c60b55d60d0fb7abffb2aeec1b771adf 2012-05-07 2012-11-05 PG-PAI Programa Población General 115
146,797 2,019 MICA1**081983 29edc7f842a012b89a6da29ff49ce0ec NA 2018-03-02 2019-04-03 PG-PAI Programa Población General 495
140,997 2,018 MICA1**081983 dc818e3a974f1a64ab47c22ededfa109 NA 2018-08-01 2018-08-04 PG-PR Programa Población General 267
54,876 2,014 MIHE1**111973 89146a3940ba206fe2a701fb6b1880d7 2014-02-28 2014-07-01 PG-PAI Programa Población General 264
54,474 2,014 MIHE1**111973 903b165ea5700c55513ff00ee9811bba 2014-02-04 2014-10-29 PG-PAB Programa Población General 152
3,560 2,010 MIHE1**111973 89146a3940ba206fe2a701fb6b1880d7 2010-02-24 2010-06-10 PG-PAI Programa Población General 272
145,992 2,019 MIMA1**111958 d60d72d5220359ffb181cf97273b5f41 NA 2017-07-12 NA PG-PAB Programa Población General 464
106,169 2,017 MIMA1**111958 4d906e4d3ab863e13caf7b64bfc5c57a NA 2015-12-15 2017-06-01 PG-PAI Programa Población General 291
43,802 2,013 NEMI1**021972 51bd6b5cc445fccc259e978a60fe2f91 2013-07-15 2013-08-30 PG-PAI Programa Población General 131
45,081 2,013 NEMI1**021972 7691d87c73b01e3ff28f52f2ce7d3b68 2013-07-15 2013-12-02 PG-PAI Programa Población General 131
129,923 2,018 NIAG1**091996 ea72d4a9ef3baf47fa6921bbd8df61f1 NA 2017-09-30 2018-02-22 PG-PR Programa Población General 662
117,279 2,017 NIAG1**091996 d39cec512d14415aff7635bdba2abf86 NA 2017-05-15 2017-09-29 PG-PAI Programa Población General 194
135,244 2,018 NIGO2**121992 11e33bc1f00083b9e336fcd973714fbf NA 2018-03-01 2018-07-30 PG-PAB Programa Población General 195
111,394 2,017 NIGO2**121992 d959ab7e7d16c04baafc52cc35e2d453 NA 2016-12-20 2017-01-23 PG-PAI Programa Población General 182
149,117 2,019 NIRO2**081990 89527cf875649ead7bf656c1c7c4a125 NA 2018-03-26 NA PG-PAI Programa Población General 145
28,697 2,012 NIRO2**081990 eb8a1e68430125ba136a7bc21eba76e7 2012-07-26 2013-01-18 PG-PAB Programa Población General 370
68,602 2,015 NISO1**041987 1ad6609a1db2453b497ba639653f575e 2014-09-11 2015-02-03 PG-PR Programa Población General 167
46,114 2,013 NISO1**041987 b077d3a921a356943d71f5e2fbf8ae68 2013-11-08 2013-12-09 PG-PAI Programa Población General 326
137,518 2,018 ORCA1**071981 9717a5a21c7722ab9cb44a9765256fe9 NA 2018-05-17 2018-08-26 PG-PR Programa Población General 163
135,822 2,018 ORCA1**071981 9717a5a21c7722ab9cb44a9765256fe9 NA 2018-03-20 2018-03-31 PG-PR Programa Población General 104
97,802 2,016 ORCA1**071981 9717a5a21c7722ab9cb44a9765256fe9 2016-05-02 2016-10-28 PG-PR Programa Población General 104
44,484 2,013 ORCA1**071981 c6092382a1a6c52466303623e70e8dce 2013-08-26 2013-11-04 PG-PAI Programa Población General 164
13,469 2,011 PADI1**101980 cbbd6335ca7a2ba2d80763f6ae96e292 2011-01-03 2011-06-20 PG-PAB Programa Población General 145
8,507 2,010 PADI1**101980 947effbfc8c1f3555ade021df0d9630e 2010-10-19 2010-12-16 PG-PAB Programa Población General 145
71,073 2,015 PAMA1**121987 b569214646b886516338166554766922 2015-01-16 2015-04-30 PG-PAI Programa Población General 140
48,775 2,014 PAMA1**121987 b569214646b886516338166554766922 2013-04-24 2014-02-03 PG-PAI Programa Población General 140
22,593 2,012 PAMA1**121987 1969507d66c44dbcc0607aaf2f4bb440 2011-09-05 2012-04-02 PG-PAB Programa Población General 270
37,433 2,013 PARO2**031989 ffb44b01b50637f7716bfa6abde15bc6 2013-02-19 2013-11-04 M-PAI Programa Específico Mujeres 220
11,379 2,011 PARO2**031989 60cbf06be3ae9cd6bd026cd1966d7e49 2010-09-14 2011-04-22 M-PAI Programa Específico Mujeres 220
896 2,010 PARO2**031989 ffb44b01b50637f7716bfa6abde15bc6 2009-09-29 2010-05-05 M-PAI Programa Específico Mujeres 220
115,537 2,017 PASA1**061975 047fb2b5ff23cb22ddfc163ee8bd7da9 NA 2017-04-07 2017-06-29 PG-PAI Programa Población General 232
116,217 2,017 PASA1**061975 2a4d3e18e48a3d8706a14e295fe73e99 NA 2017-04-10 2017-10-01 PG-PAB Programa Población General 294
46,958 2,013 RAMA1**091981 2c7ae4e55b6e35c273804ff8dd55afe7 2013-12-02 2014-02-12 PG-PAB Programa Población General 238
19,289 2,011 RAMA1**091981 d80591e041add7b75857e75841406632 2011-10-07 2011-11-23 PG-PAI Programa Población General 169
159,892 2,019 RIVI1**011984 be21a45824bfae4483012ca9ea7490a7 NA 2019-06-17 NA PG-PAI Programa Población General 145
105,643 2,017 RIVI1**011984 c57e883af6ef4b08d75f109a86628e3b NA 2015-04-06 2017-01-17 PG-PAI Programa Población General 149
52,764 2,014 RIVI1**011984 be21a45824bfae4483012ca9ea7490a7 2013-12-03 2014-02-28 PG-PAB Programa Población General 295
21,890 2,012 RIVI1**011984 be21a45824bfae4483012ca9ea7490a7 2011-07-14 2012-04-10 PG-PAI Programa Población General 296
155,699 2,019 ROAR1**091981 a4d8ac82f0415efcae1cbfb5aed47fdc NA 2019-04-11 NA PG-PAI Programa Población General 621
116,066 2,017 ROAR1**091981 4bbb41dd71b487fb07fcb17f8db4ad85 NA 2017-04-17 2018-01-01 PG-PAI Programa Población General 178
111,015 2,017 ROCA1**061980 11c195c7cc682be9b10e71a922258653 NA 2016-11-23 2017-04-27 PG-PAB Programa Población General 255
31,682 2,012 ROCA1**061980 13b7f0af65998b4c86e38b03553e8500 2012-12-03 2013-03-27 PG-PAI Programa Población General 296
112,778 2,017 ROCA1**101986 4f4d76c214a405afec7032b8e2e75a6d NA 2017-01-03 2017-03-16 PG-PAB Programa Población General 185
33,015 2,013 ROCA1**101986 bb73e883161cf45ef10294c039b30747 2012-06-11 2013-02-28 PG-PAI Programa Población General 134
37,087 2,013 ROCO1**061977 32185739de73704cbfd6255ad16de00d 2013-02-21 2013-03-18 PG-PR Programa Población General 167
19,017 2,011 ROCO1**061977 1e51b8d0be6a957e573135e38aba9410 2011-09-26 2011-12-20 PG-PAB Programa Población General 175
115,927 2,017 ROCO1**091979 7e7acf1620ae5ae1fa0b1be57bab416d NA 2017-04-17 2017-12-06 PG-PAB Programa Población General 155
24,994 2,012 ROCO1**091979 4c10324cde278c35cd24842ec4751133 2012-02-29 2012-07-03 PG-PAB Programa Población General 185
6,006 2,010 ROCO1**091979 4c10324cde278c35cd24842ec4751133 2010-06-14 2010-11-30 PG-PAB Programa Población General 185
149,699 2,019 ROGA1**071975 f86253bf1fff2e1981394aa7d8e4346e NA 2018-10-08 2019-04-23 PG-PAB Programa Población General 242
67,958 2,015 ROGA1**071975 f86fda074578384f9d2b156093b186ab 2014-06-02 2015-04-27 PG-PAI Programa Población General 259
80,307 2,015 ROGO1**121981 e7585f7b3a2f9df14a78ed21a25bec25 2015-08-12 2015-10-30 PG-PR Programa Población General 104
38,283 2,013 ROGO1**121981 4801cb061adc3fd830ea42bd8cab9f16 2012-10-17 2014-01-30 PG-PAB Programa Población General 433
1,802 2,010 ROGO1**121981 4801cb061adc3fd830ea42bd8cab9f16 2009-05-15 2010-01-31 PG-PR Programa Población General 235
129,241 2,018 ROLA1**091981 0027e02d3e5f7a17f6c21b28e463c442 NA 2017-08-08 2018-01-01 PG-PAI Programa Población General 359
112,394 2,017 ROLA1**091981 f25b8516caa5136338e13fbeae80b01f NA 2017-01-16 2017-05-30 PG-PAI Programa Población General 259
157,364 2,019 ROMA1**071981 d7fc637c5f374881f19344d14cc7751d NA 2019-05-23 2019-08-08 PG-PAB Programa Población General 188
17,680 2,011 ROMA1**071981 70d369be42a3073e360e46a300046ae3 2011-06-02 2011-09-30 PG-PAB Programa Población General 270
126,161 2,018 ROMA2**101969 9905695362acfa39d5d56fffaad6e48f NA 2016-08-01 2018-09-04 PG-PAI Programa Población General 330
37,274 2,013 ROMA2**101969 9e5fd4e48efd5891469be5a2167b0dba 2013-02-28 2014-08-01 Otro Programa Población General 330
136,206 2,018 ROPA1**031983 44a10dd6f47a1e8349c0229697659f27 NA 2018-04-03 2018-10-01 PG-PAB Programa Población General 612
824 2,010 ROPA1**031983 c34547687ec365769bcf420ecdda9825 2009-03-19 2010-07-30 PG-PAI Programa Población General 301
136,417 2,018 ROPE1**061982 dd52933d9dc73f86c0d0ff2aad40d50b NA 2018-03-27 2018-09-26 PG-PAB Programa Población General 188
87,428 2,016 ROPE1**061982 692d4a37604742738e929351a36a2002 2015-04-15 2016-07-01 PG-PAB Programa Población General 330
151,147 2,019 SEGO1**031990 c58d5954d6c26c49bd5555e4aa2a6d25 NA 2018-12-04 2019-03-06 PG-PR Programa Población General 193
14,669 2,011 SEGO1**031990 2f9f66cdcb05437ce0f8dde802d96104 2011-03-11 2011-05-18 PG-PAB Programa Población General 295
69,405 2,015 SEVA1**121963 289bca60837f05528cc6bda78d59fe77 2014-10-06 2015-04-10 PG-PAI Programa Población General 182
69,660 2,015 SEVA1**121963 45553854232003adff657ee5079a80c5 2014-11-06 2015-01-29 PG-PR Programa Población General 132
146,959 2,019 SIOS2**111984 2c8507e7a6f2e9bf1c28d47097d6c497 NA 2018-03-26 NA PG-PAB Programa Población General 238
95,450 2,016 SIOS2**111984 5d5e820f19f848542e2886492aad7e9e 2016-02-22 2016-10-01 PG-PAI Programa Población General 430
130,027 2,018 SOOL2**071984 d3306a6154055f6b38f45f7f570e03ba NA 2017-09-04 2018-04-03 PG-PAB Programa Población General 270
135,874 2,018 SOOL2**071984 f4a16ac505ea53624d5f7e1facf7be9b NA 2018-04-03 2018-10-05 PG-PAB Programa Población General 668
135,463 2,018 SOTO2**111992 3126380e5d529e92431497b7e09eaf97 NA 2018-03-21 2018-06-20 PG-PR Programa Población General 117
110,964 2,017 SOTO2**111992 3126380e5d529e92431497b7e09eaf97 NA 2016-11-21 2017-07-31 PG-PAI Programa Población General 106
96,005 2,016 SOTO2**111992 3126380e5d529e92431497b7e09eaf97 2016-01-07 2016-07-12 PG-PAI Programa Población General 106
99,335 2,016 SOTO2**111992 592556b93eaaadd30dfde6dcd93f6f71 2016-07-07 2016-11-16 M-PR Programa Población General 652
70,496 2,015 SOTO2**111992 3126380e5d529e92431497b7e09eaf97 2014-12-01 2015-02-13 PG-PAI Programa Población General 106
34,859 2,013 TELI2**101980 fb680c7e11ab86946213b42c6eaec3a1 2012-11-29 2013-12-02 PG-PAB Programa Población General 347
29,018 2,012 TELI2**101980 78750dd324d453215534132ee6c9d9f2 2012-08-07 2012-11-28 M-PR Programa Específico Mujeres 345
26,428 2,012 TELI2**101980 fb680c7e11ab86946213b42c6eaec3a1 2012-04-04 2012-08-03 PG-PAB Programa Población General 347
67,328 2,015 VAMO2**011994 fabd25d1f60a851ebae53647677b5c97 2014-06-02 2015-02-23 PG-PAI Programa Población General 155
46,287 2,013 VAMO2**011994 403a779b89d662c862a6478e1b4bdfab 2013-11-15 2014-02-03 PG-PAI Programa Población General 155
11,731 2,011 VIBR1**031981 7d508585bc4d516da6167be5d217bc91 2010-10-19 2011-03-01 PG-PR Programa Población General 162
20,200 2,011 VIBR1**031981 883dedb13efb7e115fb672943caa666d 2011-08-03 2015-12-01 PG-PR Programa Población General 269
93,357 2,016 VIPA1**041980 37c0271df633294bfeb3c6c729ff7c01 2016-02-02 2016-06-29 PG-PAB Programa Población General 173
88,918 2,016 VIPA1**041980 95bd5533d5522d2d86c6874bb28f5d51 2015-08-18 2016-01-08 PG-PAI Programa Población General 200

 

We expected to see repeated IDs due to the binding of yearly datasets and treatments that may appear in both years (possibly, because the treatment extended to the following years). A sum of 6,182 SENDA IDs appears more than one time in each yearly dataset. Conversely, there were 7,076 cases with more than one SENDA’s ID (could be different or repeated) by HASH in each yearly dataset.


For example, we can appreciate that an ID like “MAMO108111971” contains different HASH_KEYs: 4b0e22565eede9b80b82f3a3f92c980c and 0163b15923259894c581346449f6303d.

 

CONS_C1_df_dup_ENE_2020_prev2 %>% 
  dplyr::filter(id=="MASA124091985"|id=="NIAG108091996"|id=="JUGA108021973"|id=="MAMO108111971") %>%
  dplyr::arrange(id) %>%
      #dplyr::select(-id,-TABLE,-14,-16,-17,-26,-27,-28,-29,-35,-36,-37,-88,-93,-94,-96,-101) %>%
      dplyr::select(row, ano_bd, id_mod,HASH_KEY, hash_rut_completo, fech_ing, fech_egres,tipo_de_plan, tipo_de_programa, ID.centro) %>%
 knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
               caption="Table 5. Examples of problematic IDs",
                 align =rep('c', 101))  %>%
   kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 8) %>%
  kableExtra::scroll_box(width = "100%", height = "350px")
Table 5. Examples of problematic IDs
row ano_bd id_mod HASH_KEY hash_rut_completo fech_ing fech_egres tipo_de_plan tipo_de_programa ID.centro
108,368 2,017 JUGA1**021973 0652d6d5e51a9fd7b7be088fa7f58403 NA 2016-07-01 2017-02-01 PG-PAI Programa Población General 264
10,603 2,011 JUGA1**021973 73f0a76d08b6fcdf351c2019e9fe5008 2010-06-23 2011-03-31 PG-PR Programa Población General 132
60,472 2,014 MAMO1**111971 4b0e22565eede9b80b82f3a3f92c980c 2014-06-24 2014-09-01 PG-PAI Programa Población General 430
6,996 2,010 MAMO1**111971 0163b15923259894c581346449f6303d 2008-10-20 2010-10-18 PG-PAB Programa Población General 161
110,121 2,017 MASA1**091985 f05e308d8b76f2d447138ba4734faf87 NA 2016-09-06 2018-02-01 PG-PAI Programa Población General 156
43,389 2,013 MASA1**091985 abd77bf05ed26443f7be574efe7243d1 2013-07-22 2014-01-28 PG-PAI Programa Población General 105
34,422 2,013 MASA1**091985 f7bbd6610a8194f1327d804afa991b75 2012-10-08 2013-07-22 PG-PAB Programa Población General 118
129,923 2,018 NIAG1**091996 ea72d4a9ef3baf47fa6921bbd8df61f1 NA 2017-09-30 2018-02-22 PG-PR Programa Población General 662
117,279 2,017 NIAG1**091996 d39cec512d14415aff7635bdba2abf86 NA 2017-05-15 2017-09-29 PG-PAI Programa Población General 194


UPDATE on January 30, 2020: According to indications from the professionals of SENDA, duplicated rows shown in Table 4 corresponded to different official’s IDs (RUNs), meaning that different HASHs effectively represents different users, making it more reliable than SENDA’s ID.

3. Focus on Duplicated Cases and Dates of Admission

 

We needed to distinguish between duplicated cases and admissions from 2010 to 2019, so we could focus on ranges of treatment dates within each user. At this point, we had 899 cases of users (HASHs) in treatments with an exact same date of admission throughout the dataset.


Additionally, as we deleted cases that we considered duplicated because they shared the same HASH and date of admission, some values could be missing and could be replaced by another entry within the dataset, as can be seen in Table 6.

CONS_C1_df %>%
  dplyr::mutate(hash_treat= paste0(HASH_KEY,"_",fech_ing)) %>%
  #dplyr::filter(!row %in% as.character(as.vector(unlist(data.table::as.data.table(unlist(CONS_C1_df_dup_ENE_2020_prev2$row)))))) %>% # Select HASHs of cited cases
  assign("replace",.,envir=.GlobalEnv)
CONS_C1_df %>%
  dplyr::mutate(hash_treat= paste0(HASH_KEY,"_",fech_ing)) %>%
  dplyr::filter(!row %in% as.character(as.vector(unlist(data.table::as.data.table(unlist(CONS_C1_df_dup_ENE_2020_prev2$row)))))) %>% # Select HASHs of cited cases
  assign("replace_miss",.,envir=.GlobalEnv)

CONS_C1_df_dup_ENE_2020_prev2 %>%
  dplyr::mutate(hash_treat= paste0(HASH_KEY,"_",fech_ing)) %>%
  dplyr::filter(is.na(fech_egres)) %>%
  dplyr::left_join(dplyr::select(replace,hash_treat, fech_egres), "hash_treat") %>%
  dplyr::filter(!is.na(fech_egres.y)) -> replace_date_disch

CONS_C1_df_dup_ENE_2020_prev2 %>%
  dplyr::mutate(hash_treat= paste0(HASH_KEY,"_",fech_ing)) %>%
  dplyr::filter(is.na(dias_trat)|dias_trat<=0) %>%
  dplyr::left_join(dplyr::select(replace,hash_treat, dias_trat,fech_egres), "hash_treat") %>%
  dplyr::filter(dias_trat.y>0) -> replace_days_treat

CONS_C1_df_dup_ENE_2020_prev2 %>%
  dplyr::mutate(hash_treat= paste0(HASH_KEY,"_",fech_ing)) %>%
  dplyr::filter(is.na(motivodeegreso)) %>%
  dplyr::left_join(dplyr::select(replace,hash_treat, motivodeegreso), "hash_treat") %>%
  dplyr::filter(!is.na(motivodeegreso.y)) -> replace_caus_disch

CONS_C1_df_dup_ENE_2020_prev2 %>%
  dplyr::mutate(hash_treat= paste0(HASH_KEY,"_",fech_ing)) %>%
  dplyr::filter(is.na(fech_egres)) %>%
  dplyr::left_join(dplyr::select(replace_miss,hash_treat, fech_egres), "hash_treat") %>%
  dplyr::filter(!is.na(fech_egres.y)) -> replace_miss_date_disch

CONS_C1_df_dup_ENE_2020_prev2 %>%
  dplyr::mutate(hash_treat= paste0(HASH_KEY,"_",fech_ing)) %>%
  dplyr::filter(is.na(dias_trat)|dias_trat<=0) %>%
  dplyr::left_join(dplyr::select(replace_miss,hash_treat, dias_trat,fech_egres), "hash_treat") %>%
  dplyr::filter(dias_trat.y>0) -> replace_miss_days_treat

CONS_C1_df_dup_ENE_2020_prev2 %>%
  dplyr::mutate(hash_treat= paste0(HASH_KEY,"_",fech_ing)) %>%
  dplyr::filter(is.na(motivodeegreso)) %>%
  dplyr::left_join(dplyr::select(replace_miss,hash_treat, motivodeegreso), "hash_treat") %>%
  dplyr::filter(!is.na(motivodeegreso.y)) -> replace_miss_caus_disch


as.data.frame(cbind("Possible Replaces"=c("Date of Discharge", "Days of Treatment", "Cause of Discharge"), 
      "No. of Cases to Replace"=c(nrow(replace_days_treat),nrow(replace_days_treat),nrow(replace_caus_disch)),
      "No. of Cases to Replace \n From Discarded Data"=c(nrow(replace_miss_date_disch),nrow(replace_miss_days_treat),nrow(replace_miss_caus_disch)))) %>%
  knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
               caption="Table 6. Possible Replaces from The Original Dataset", align =rep('c', 101)) %>%
  kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 8)
Table 6. Possible Replaces from The Original Dataset
Possible Replaces No. of Cases to Replace No. of Cases to Replace From Discarded Data
Date of Discharge 12 2
Days of Treatment 12 1
Cause of Discharge 3 1
#we saw that these values could not be replaced by the deleted cases
#Also,I made it with FEB 2020 Dataset, and none of the cases could be replaced posteriorly.

 

Table 6 shows that values within the dataset could replace some missing values. Discarded values could only replace one case. All of these cases were studied posteriorly.

 

4. Age in Datasets


The age is a unit-invariant variable that may contribute to standardize users, and subsequently, distinguish treatments. At this point, we only had fuzzy criteria to separate between different admissions. That is why we need to adopt a casuistic approach to find duplicated treatments through probabilistic deduplication. We can find these strategies in the main diagram of data preparation. Nonetheless, many cases had invalid ages (n= 445). The first question is if we could replace the missing ages from the dates of birth.


Based on the meeting on Dec. 5, 2019, one of the main challenges was to check whether the age of birth is part of the last 4 numbers of each ID.


#plot(CONS_C1_df_dup_ENE_2020_prev2$ano_nac, CONS_C1_df_dup_ENE_2020_prev2$Edad, ylab="Age", xlab="Year of Birth")

#library(ggiraph)
#require(ggiraphExtra)
require(plotly)

#CONS_C1_df_dup_ENE_2020_prev2 %>%
#  dplyr::mutate(graph_info=paste("Row:", row, '<br>Year DB:', ano_bd)) %>%
# ggplot(data = ) +
#    geom_point_interactive(aes(x = ano_nac, y = Edad, color = ano_bd,
#    tooltip = graph_info, data_id = row)) + 
#  theme_minimal() -> gg_point 

#girafe(ggobj = gg_point)
plotly::plot_ly(CONS_C1_df_dup_ENE_2020_prev2,type="scatter", x = ~ano_nac, y = ~Edad, 
        text =  ~paste("Row: ", row, '<br>Year DB:', ano_bd),
        mode = "markers") %>% 
  layout(xaxis=list(title="Year of Birth"), 
      yaxis=list(title="Age"),
      title="Figure 1. Scatterplot of Year of Birth and Age")


As we can see in Figure 1, there is a clear relationship with a few residuals. If we regress the year of birth on age, we find that the intercept was 2,018.84, and the slope was -1.00. This intercept is equal to the date 2018-11-03. Once we add the slope, we get an approximate date of retrieval of 2019-11-03. We identified the outliers, ending up with 3 cases in which the expected age and year of birth presented a difference greater than 1 year. Even so, some cases did not comply with this relationship.


    CONS_C1_df_dup_ENE_2020_prev2 %>%
    dplyr::mutate(dif_edad=ano_nac-(2019-Edad)) %>%
      dplyr::filter(dif_edad!=0) %>%
      dplyr::arrange(desc(dif_edad)) %>%
      dplyr::select(-id,-TABLE,-14,-16,-17,-26,-27,-28,-29,-35,-36,-37,-88,-93,-94,-96,-101) %>%
      dplyr::select(row, ano_bd, ano_nac, Edad, dif_edad,
                    HASH_KEY, hash_rut_completo, id_mod,fech_ing, fech_egres,tipo_de_plan, tipo_de_programa, 
                    ID.centro, everything()) %>%
      head() %>%
 knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
               caption="Table 7. Cases that have a different year of birth and age",
                 align =rep('c', 101))  %>%
   kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 8) %>%
  kableExtra::scroll_box(width = "100%", height = "350px")
Table 7. Cases that have a different year of birth and age
row ano_bd ano_nac Edad dif_edad HASH_KEY hash_rut_completo id_mod fech_ing fech_egres tipo_de_plan tipo_de_programa ID.centro Nombre.Centro tipo_centro Región.del.Centro Servicio.de.Salud Tipo.de.Programa Tipo.de.Plan SENDA dias_trat Dias.en.SENDA Nombre.Usuario Comuna.Residencia Origen.de.Ingreso País.Nacimiento Nacionalidad Etnia Estado.Conyugal Fecha.Ultimo.Tratamiento Sustancia.de.Inicio Edad.Inicio.Consumo X.Se.trata.de.una.mujer.embarazada. Escolaridad..último.año.cursado. Con.Quién.Vive Tipo.de.vivienda Tenencia.de.la.vivienda Sustancia.Principal Otras.Sustancias.nº1 Otras.Sustancias.nº2 Otras.Sustancias.nº3 Frecuencia.de.Consumo..Sustancia.Principal. Edad.Inicio..Sustancia.Principal. Vía.Administración..Sustancia.Principal. Diagnóstico.Trs..Consumo.Sustancia Diagnóstico.Trs..Psiquiátrico.DSM.IV Diagnóstico.Trs..Psiquiátrico.SUB.DSM.IV X2.Diagnóstico.Trs..Psiquiátrico.DSM.IV X2.Diagnóstico.Trs..Psiquiátrico.SUB.DSM.IV X3.Diagnóstico.Trs..Psiquiátrico.DSM.IV X3.Diagnóstico.Trs..Psiquiátrico.SUB.DSM.IV Diagnóstico.Trs..Psiquiátrico.CIE.10 Diagnóstico.Trs..Psiquiátrico.SUB.CIE.10 X2.Diagnóstico.Trs..Psiquiátrico.CIE.10 X2.Diagnóstico.Trs..Psiquiátrico.SUB.CIE.10 X3.Diagnóstico.Trs..Psiquiátrico.CIE.10 X3.Diagnóstico.Trs..Psiquiátrico.SUB.CIE.10 Diagnóstico.Trs..Físico Otros.Problemas.de.Atención.de.Salud.Mental Compromiso.Biopsicosocial DIAGNOSTICO.GLOBAL.DE.NECESIDADES.DE.INTEGRACION.SOCIAL DIAGNOSTICO.DE.NECESIDADES.DE.INTEGRACIóN.SOCIAL.EN.CAPITAL.HUMANO DIAGNOSTICO.DE.NECESIDADES.DE.INTEGRACIóN.SOCIAL.EN.CAPITAL.FISICO DIAGNOSTICO.DE.NECESIDADES.DE.INTEGRACIóN.SOCIAL.EN.CAPITAL.SOCIAL Fecha.Ingreso.a.Convenio.SENDA Usuario.de.Tribunales..Tratamiento.Drogas Consentimiento.Informado motivodeegreso Tipo.Centro.Derivación evaluacindelprocesoteraputico eva_consumo eva_fam eva_relinterp eva_ocupacion eva_sm eva_fisica eva_transgnorma Diagnóstico.Trastorno.Psiquiátrico.CIE.10.al.Egreso DIAGNOSTICO.GLOBAL.DE.NECESIDADES.DE.INTEGRACION.SOCIAL.1 DIAGNOSTICO.DE.NECESIDADES.DE.INTEGRACIóN.SOCIAL.EN.CAPITAL.HUMANO.1 DIAGNOSTICO.DE.NECESIDADES.DE.INTEGRACIóN.SOCIAL.EN.CAPITAL.FISICO.1 DIAGNOSTICO.DE.NECESIDADES.DE.INTEGRACIóN.SOCIAL.EN.CAPITAL.SOCIAL.1 Motivo.de.egreso.Alta.Administrativa Consorcio Ha.estado.embarazada.egreso. sexo embarazo fech_ing_ano fech_ing_mes fech_ing_dia concat duplicated_HASH_date dup_todo OBS dias_trat_inv
6,050 2,010 1,991 61 33 2e52e0b13eb61711806fc416be9ee382 CACO1**061991 2010-06-09 2010-11-02 PG-PAI Programa Población General 138 COSAM Schneider (CSMC Schneider-CESAMCO) publico DE LOS RIOS Valdivia Programa Población General PG-PAI Si 146 125 OCULTO VALDIVIA Consulta Espontánea Chile Chile No pertenece Separado NA NA NA No UNIVERSITARIA INCOMPLETA Solo Pieza dentro de la vivienda Allegado Alcohol Marihuana Anfetaminas Cocaína 2-3 días - semana 20 Oral (bebida o comida) Dependencia En estudio NA NA NA NA NA Sin trastorno NA NA NA NA NA Cardiopatías: miocardiopatía dilatada por OH, arritmias, HTA Violencia Intrafamiliar Moderado NA NA NA NA 30/06/2010 No Si Derivación NA Logro Intermedio Logro Intermedio Logro Intermedio Logro Intermedio Logro Intermedio Logro Intermedio Logro Intermedio Logro Intermedio NA NA NA NA NA NA SERVICIO DE SALUD VALDIVIA NA Hombre No 2,010 6 9 2e52e0b13eb61711806fc416be9ee382_2010_6_9 FALSE 1 -146
4,010 2,010 1,991 56 28 b82d0c95ad017520b75a01641a9e6d9f VISA1**031991 2010-03-10 2010-07-12 PG-PR Programa Población General 307 Comunidad Terapeutica CENTRA Ltda. (Centra) privado METROPOLITANA Metropolitano Oriente Programa Población General PG-PR Si 124 124 OCULTO LA REINA Estab. de APS Chile Chile No pertenece Soltero NA NA NA No MEDIA INCOMPLETA Otros Pieza dentro de la vivienda Allegado Alcohol Marihuana NA NA Todos los días 23 Oral (bebida o comida) Dependencia En estudio NA NA NA NA NA Trs. del comportamiento y de las emociones de comienzo habitual en la infancia y adolescencia NA NA NA NA NA En estudio Otros Severo NA NA NA NA 10/03/2010 No Si Abandono NA Logro Intermedio Logro Intermedio Logro Intermedio Logro Mínimo Logro Intermedio Logro Intermedio Logro Alto Logro Intermedio NA NA NA NA NA NA Centros de Tratamiento y Rehabilitacion en Adicciones Ltda. (CENTRA) NA Hombre No 2,010 3 10 b82d0c95ad017520b75a01641a9e6d9f_2010_3_10 FALSE 1 -124
17,089 2,011 1,992 32 5 f959dcbde9f32d316ed12fe72ff870d5 JIRI1**051992 2011-05-31 2011-11-30 PG-PR Programa Población General 240 Comunidad Terapeutica Fundacion Sagrado Corazon privado METROPOLITANA Metropolitano Sur Programa Población General PG-PR Si 183 183 OCULTO PUENTE ALTO Consulta Espontánea Chile Chile No pertenece Soltero último 12 meses Coca? 14 NA UNIVERSITARIA INCOMPLETA Únicamente con padres o familia de origen Casa Allegado Cocaína Alcohol NA NA Todos los días 14 Intranasal ( aspiración de polvo por la nariz) Dependencia NA NA NA NA NA NA Trastornos de la personalidad y del comportamiento del adulto NA NA NA NA NA Sin trastorno Sin otros problemas de salud mental Moderado NA NA NA NA 31/05/2011 No Si Alta Admnistrativa NA Logro M?mo Logro Mínimo Logro Mínimo Logro Intermedio Logro Alto Logro Intermedio Logro Intermedio Logro Intermedio NA NA NA NA NA NA Fundacion Sagrado Corazon NA Hombre NA 2,011 5 31 f959dcbde9f32d316ed12fe72ff870d5_2011_5_31 FALSE 1 -183
162,840 2,019 1,991 27 -1 0012beab59a3a84eec95c9371f393a06 NA MACI1**111991 2019-09-02 NA PG-PAB Programa Población General 298 CESFAM Juan Pablo II. Pdre Hurtado publico METROPOLITANA Metropolitano Occidente Programa Población General PG-PAB Si 72 43 OCULTO PADRE HURTADO Consulta Espontánea NA Chile No pertenece Soltero último 6 meses Alcohol 15 NA BASICA COMPLETA Otros Casa Allegado Pasta Base Alcohol NA NA 4-6 días - semana 18 Fumada o Pulmonar (aspiración de gases o vapores) Dependencia NA NA NA NA NA NA Sin trastorno NA NA NA NA NA Sin trastorno Sin otros problemas de salud mental Moderado Altas Altas Altas Altas 01/10/2019 No Si NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA SERVICIO DE SALUD METROPOLITANO OCCIDENTE NA Hombre NA 2,019 9 2 0012beab59a3a84eec95c9371f393a06_2019_9_2 FALSE 1 -72
156,952 2,019 1,991 27 -1 0012beab59a3a84eec95c9371f393a06 NA MACI1**111991 2019-05-23 2019-08-29 PG-PR Programa Población General 289 Comunidad Terapeutica El Sendero de Paternitas privado METROPOLITANA Metropolitano Occidente Programa Población General PG-PR Si 98 98 OCULTO PADRE HURTADO Otro Centro Tratamiento Drogas NA Chile No pertenece Soltero último 6 meses Marihuana 14 NA BASICA COMPLETA Otros Casa Propia Pasta Base Cocaína Marihuana NA Todos los días 21 Fumada o Pulmonar (aspiración de gases o vapores) Dependencia En estudio NA NA NA NA NA Sin trastorno NA NA NA NA NA En estudio Violencia Intrafamiliar Severo Altas Altas Altas Altas 23/05/2019 No Si Abandono NA Logro M?mo Logro Mínimo Logro Mínimo Logro Mínimo Logro Mínimo Logro Mínimo Logro Mínimo Logro Mínimo NA Bajas Bajas Bajas Bajas NA Fundacion Paternitas no Hombre NA 2,019 5 23 0012beab59a3a84eec95c9371f393a06_2019_5_23 FALSE 1 -98
152,497 2,019 1,982 36 -1 00528a091ac4ef26ae603b4effc4e9cb NA MAGO1**111982 2019-01-04 2019-10-04 PG-PAI Programa Población General 326 COSAM Central publico DE ANTOFAGASTA Antofagasta Programa Población General PG-PAI Si 273 273 OCULTO ANTOFAGASTA Otros NA Chile No pertenece Soltero 5 o más años Alcohol 12 NA MEDIA COMPLETA Únicamente con la pareja y padres o familia de origen Casa Allegado Pasta Base Alcohol Marihuana Cocaína 2-3 días - semana 18 Fumada o Pulmonar (aspiración de gases o vapores) Dependencia NA NA NA NA NA NA Trastornos de la personalidad y del comportamiento del adulto Trastornos de los hábitos y del control de los impulsos NA NA NA NA Traumatismos y secuelas secundarios Sin otros problemas de salud mental Severo Medias Medias Medias Bajas 04/01/2019 No Si Alta Terapéutica NA Logro Alto Logro Alto Logro Alto Logro Alto Logro Alto Logro Alto Logro Alto Logro Alto NA Altas Altas Altas Altas NA SERVICIO DE SALUD ANTOFAGASTA no Hombre NA 2,019 1 4 00528a091ac4ef26ae603b4effc4e9cb_2019_1_4 FALSE 1 -273


In Table 7, we can see the first 6 cases that had differences ordered by the magnitude of the difference. The rest of the 18,133 had 12 months of difference.


However, we may take account that there are 0.4% cases with invalid years, representing 426 cases with less than 18 years, and 19 cases with more than 90 years. We might probably wonder why we are getting invalid cases from the age at the date of retrieval and not from the age at the time of admission; however, we replicated the rule applied by SENDA professionals. Additionally, many of the SENDA IDs of these cases have the same values of the year and month of admission, as can be seen in Table 8:


  CONS_C1_df_dup_ENE_2020_prev2 %>% 
  dplyr::mutate(fech_nac=lubridate::parse_date_time(stringi::stri_sub(id,-8,-1),"dmY")) %>% 
  dplyr::mutate(Edad_al_ing=lubridate::time_length(difftime(as.Date(fech_ing), as.Date(fech_nac)),"years")) %>% #AGREGADO EN APR 2020.
  dplyr::mutate(Edad_al_ing=replace(Edad_al_ing, is.na(Edad), NA)) %>% #AGREGADO EN APR 2020.
  dplyr::select(row, HASH_KEY, id_mod, ano_nac, ano_bd,Edad,fech_ing,fech_nac, Edad_al_ing) %>%  #AGREGADO EN APR 2020.
  dplyr::filter(Edad<18|Edad>90) %>% 
  #dplyr::filter(Edad_al_ing<18|Edad_al_ing>90) %>% 
  #ACTUALIZACION A ABRIL 2020, SÓLO BAJA DE 445 A 444 CUANDO SELECCIONO POR EDAD DE INGRESO
  #nrow()
 knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
               caption="Table 8. Cases that have a wrongly asigned age",
                 align =rep('c', 101))  %>%
   kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 8) %>%
  kableExtra::scroll_box(width = "100%", height = "350px")
Table 8. Cases that have a wrongly asigned age
row HASH_KEY id_mod ano_nac ano_bd Edad fech_ing fech_nac Edad_al_ing
144,673 2ba2a92ace74249379d27a134119603f ROPE1**061917 1,917 2,018 102 2018-11-29 1917-06-16 101.4537988
125,808 578ae693be289de023125ddd2777dd1c GARO1**012015 2,015 2,018 4 2015-01-07 2015-01-07 0.0000000
128,353 66e4d31c4c6575527f8ed58455396f17 VICA1**071917 1,917 2,018 102 2017-07-24 1917-07-15 100.0246407
125,944 711029aaa5f478f2c55223d285eb84fe SHMA1**082013 2,013 2,018 6 2016-01-13 2013-08-08 2.4312115
125,800 8d2dfe24c7a24d541a13b4e82b82eede HEAV1**112014 2,014 2,018 4 2014-08-07 2014-11-10 -0.2600958
125,778 ad16844e62fd0a0db5ddd59ccffccbf6 SUUB2**102013 2,013 2,018 6 2013-10-03 2013-10-10 -0.0191650
105,661 0d5782868d35d58892a0f938813f7608 EDHO1**052015 2,015 2,017 4 2015-05-04 2015-05-04 0.0000000
105,857 1fcf34aa0db73c4218e224628c6173f9 GUVE1**082015 2,015 2,017 4 2015-08-20 2015-08-20 0.0000000
105,458 2cdd842e8b1102992ff2c060e7b46178 CASA1**122014 2,014 2,017 4 2014-11-21 2014-12-12 -0.0574949
106,128 32c4704bfeef5a559ca9c67197cee23e JOSO1**092015 2,015 2,017 4 2015-11-27 2015-09-12 0.2080767
105,447 385db5fabdcc42c18df66d707507b4a8 RIPL1**012014 2,014 2,017 5 2014-12-01 2014-01-26 0.8459959
115,192 4372e151fd421219f5122cc46b15b18b VADI2**072014 2,014 2,017 5 2017-03-27 2014-07-06 2.7241615
105,492 560ad471cc24efe2380be130700783e2 ROCH1**012015 2,015 2,017 4 2015-01-07 2015-01-02 0.0136893
106,134 68a1abebf175673e62b97b65fde63b50 BRHE1**092015 2,015 2,017 4 2015-12-09 2015-09-28 0.1971253
109,874 6d533b6ebd408688d42997b791dd8a75 MARA2**111917 1,917 2,017 102 2016-10-05 1917-11-04 98.9185489
105,628 6d672b5d02dada8fd6ad1c3a38a69b7f LUGO2**022015 2,015 2,017 4 2015-05-06 2015-02-25 0.1916496
105,641 7bb2cbe20c6cfefb16c861d7bac904a5 TIHE2**052015 2,015 2,017 4 2015-05-06 2015-05-04 0.0054757
105,847 87afef689812b1ad6f576f0e83e5c963 DABU1**032015 2,015 2,017 4 2015-08-21 2015-03-04 0.4654346
105,787 a26b1ac1007562c9e19cd5163a68c2ec KAAN2**072015 2,015 2,017 4 2015-06-11 2015-07-25 -0.1204654
105,599 e89eb1528cbb255f7a94ade170a93768 FRJA1**042015 2,015 2,017 4 2015-04-20 2015-04-23 -0.0082136
92,324 067111045233f423b404adc621ae9f37 JACO2**122015 2,015 2,016 3 2015-12-02 2015-12-02 0.0000000
89,933 06faceb13defbd9a1bb63e22913ab1bb JALO2**102015 2,015 2,016 4 2015-10-09 2015-10-06 0.0082136
90,494 079ed7fb1f01ba66a7d3409808f3471c SIOV2**012015 2,015 2,016 4 2015-10-31 2015-01-01 0.8295688
88,915 0d450685425ac7fc4e184894e1e84e22 FESO1**032015 2,015 2,016 4 2015-07-10 2015-03-31 0.2765229
89,000 11bcfa643c44875d8bdcaf47536f8d21 CHFI1**082015 2,015 2,016 4 2015-08-17 2015-08-17 0.0000000
90,666 11e10f01088fec73c3faf6c1e4c262d2 NIGA1**022015 2,015 2,016 4 2015-11-02 2015-02-12 0.7200548
89,018 153b828278ea88dc5ab15039e3e0c882 JONA1**012015 2,015 2,016 4 2015-08-13 2015-01-21 0.5585216
90,298 17427b747a8e5d8ecdcdec6a781a277b MAZU1**102015 2,015 2,016 4 2015-10-27 2015-10-21 0.0164271
85,829 18d02fe910027e6dd0688cb544367604 BEMO2**042014 2,014 2,016 5 2014-08-01 2014-04-16 0.2929500
87,968 18f1041924d48c9440b4b397267a58f2 MAAL1**062015 2,015 2,016 4 2015-06-22 2015-06-04 0.0492813
89,092 1cca291c439af8de53eefaad88ffedde DADU2**052015 2,015 2,016 4 2015-05-25 2015-05-25 0.0000000
88,058 1ccc23513d404cbc37a37b1bc3b7ce77 RASE1**062015 2,015 2,016 4 2015-06-08 2015-06-01 0.0191650
89,952 1dfa0e65e45414b0dc071b61d1bac1a9 PAGU2**082015 2,015 2,016 4 2015-09-30 2015-08-11 0.1368925
89,613 1e68079fe8042f39debe84e3f1661e58 IVCA1**042015 2,015 2,016 4 2015-09-10 2015-04-09 0.4216290
88,696 1ec175566a7db6b94d4caf1b5b60be1e ROFL1**052015 2,015 2,016 4 2015-08-06 2015-05-22 0.2080767
90,277 1ec3f2c2efb06ba95486d0324984a867 MERO2**022015 2,015 2,016 4 2015-08-24 2015-02-13 0.5256674
87,458 26228558eb3142a325eb9793b7a7643c GEPI1**052015 2,015 2,016 4 2015-05-19 2015-05-19 0.0000000
89,828 2b45294e123346196cd1849a73934b5f MAEU2**092015 2,015 2,016 4 2015-10-01 2015-09-29 0.0054757
86,169 2e4323b185c2452a0c2d6592b1c04520 ABAV1**082014 2,014 2,016 5 2014-12-12 2014-08-08 0.3449692
88,114 3694089f54b38b8d0a07079102a1e3dc CLHE1**052015 2,015 2,016 4 2015-07-09 2015-05-06 0.1752225
85,971 3755bba9469ee445d50e20190fa83bbf CLAL1**092014 2,014 2,016 5 2014-10-06 2014-09-30 0.0164271
91,609 3b604ebd59968de97237cf6a47a22502 IVBO1**112015 2,015 2,016 4 2015-11-16 2015-11-04 0.0328542
89,772 3bb60d41dee218ae5ae3846057d48b95 DACA2**092015 2,015 2,016 4 2015-09-11 2015-09-10 0.0027379
89,803 3d108204060b79bd179ed442cd81c510 VAUR2**082015 2,015 2,016 4 2015-08-24 2015-08-07 0.0465435
86,860 3d58ce54ad57203b04f0fe7b8cb010d4 MAVE1**032015 2,015 2,016 4 2015-03-02 2015-03-25 -0.0629706
88,595 43ff82a0657a99412f9af20ed2e9d79d JORE1**082015 2,015 2,016 4 2015-08-05 2015-08-04 0.0027379
86,035 451cc0dcd48441aafd693dd477bdaa88 CLSO1**092014 2,014 2,016 5 2014-11-19 2014-09-19 0.1670089
90,792 46923f82f46c14595e0b398ed4248eae PACO2**112015 2,015 2,016 3 2015-11-17 2015-11-17 0.0000000
88,815 48358f8da531b84db0c85f3639a09a04 LUCA1**022015 2,015 2,016 4 2015-08-25 2015-02-15 0.5229295
90,247 4c7781ef7fdf301ebff0b016367c4df4 HEIB1**092015 2,015 2,016 4 2015-10-01 2015-09-28 0.0082136
85,946 4fbe50d4e687e3fed9bb73a1b50e1783 JAES1**052014 2,014 2,016 5 2014-10-14 2014-05-22 0.3969884
90,139 553ac3927dd9ab869f240c5da4f95361 PATA2**072015 2,015 2,016 4 2015-09-05 2015-07-08 0.1615332
85,601 577e7eaf4ebd8d1bb224798636dd13c5 PAOL1**012014 2,014 2,016 5 2014-04-01 2014-01-06 0.2327173
91,652 5af954ff3acde4f7d82caee53f35ddc3 JUVA2**092015 2,015 2,016 4 2015-10-26 2015-09-20 0.0985626
87,482 5d8091081085c2019f231071c383dea0 JOGU1**042015 2,015 2,016 4 2015-05-04 2015-04-22 0.0328542
86,156 60b094b379debfc27e4accd6d60cd354 JOMA2**082014 2,014 2,016 5 2014-12-01 2014-08-28 0.2600958
88,306 65f57f0a6a732ea3780954d538a75428 SECA1**032015 2,015 2,016 4 2015-07-07 2015-03-17 0.3066393
87,019 675db915f9b72ca8209af209da1a5b09 JOAR1**022015 2,015 2,016 4 2015-04-20 2015-02-16 0.1724846
97,904 6d533b6ebd408688d42997b791dd8a75 MARA2**111917 1,917 2,016 102 2016-05-05 1917-11-04 98.4996578
88,390 70597f2a60f6148d50cf465be1a3edb5 MAVI1**012015 2,015 2,016 4 2015-07-29 2015-01-06 0.5585216
86,097 7174125eeee1dee2ecd1867301ccb51d PASO1**112014 2,014 2,016 5 2014-11-11 2014-11-02 0.0246407
85,514 72d3bf07e1cfb2e15f7c0f186fa3062d KARI2**072013 2,013 2,016 6 2013-12-11 2013-07-21 0.3915127
89,286 78b53d7e099c895d0b0c9b0f73188539 HUPO1**092015 2,015 2,016 4 2015-09-03 2015-09-08 -0.0136893
90,982 7fbbdc4747c2ae7f8c11e215ef386645 NOME1**092015 2,015 2,016 4 2015-11-18 2015-09-21 0.1587953
90,316 84959e1b6bdc461afd0af4669917bf52 YERA2**072015 2,015 2,016 4 2015-10-29 2015-07-13 0.2956879
90,101 8ce26be094be2c7073d8e0d61084747c ANNE1**102015 2,015 2,016 4 2015-10-13 2015-10-13 0.0000000
85,602 8f4f8d015d8c33c3f827fda19865c027 JUSA1**012014 2,014 2,016 5 2014-03-10 2014-01-24 0.1232033
89,724 8f7e43aaea738d130d9cc03b55666295 VESO2**082015 2,015 2,016 4 2015-09-08 2015-08-22 0.0465435
90,907 92d3465484cf355dc4e3127ebcf59720 CRAL1**112015 2,015 2,016 4 2015-09-07 2015-11-05 -0.1615332
85,877 92f2857a6e2b45b22cc31d704b77f856 MAAR2**062014 2,014 2,016 5 2014-09-15 2014-06-28 0.2162902
91,762 940072c88254c0601c2f9af1d52bdfa8 JOCO1**092015 2,015 2,016 4 2015-12-16 2015-09-29 0.2135524
86,356 94dc2d67662256121c25b1f22865d877 LUPE1**022014 2,014 2,016 5 2015-01-02 2014-02-03 0.9117043
88,024 9630831102f1ea74e3bd52359c335933 PAVI1**062015 2,015 2,016 4 2015-06-08 2015-06-30 -0.0602327
91,220 99184c090c1d5c6b346ee82ab4b267ff JUAS1**112015 2,015 2,016 3 2015-11-18 2015-11-14 0.0109514
90,474 9be202d4f43568a978050002a518f718 UBSA2**092015 2,015 2,016 4 2015-09-01 2015-09-01 0.0000000
89,525 9d1d56fca162aa59f99988e6cafcc296 JOAR1**092015 2,015 2,016 4 2015-09-29 2015-09-29 0.0000000
86,750 9eedcdd8ada0ac46c0457bd4c55f9dea JUGU1**022015 2,015 2,016 4 2015-02-11 2015-02-15 -0.0109514
88,716 a254177942d2718cb7382ba4d0b5464e PAZA2**082015 2,015 2,016 4 2015-08-19 2015-08-05 0.0383299
91,650 a2593b9c1e36f77aa936f7a1a820d4cd JUGO1**112015 2,015 2,016 3 2015-11-12 2015-11-12 0.0000000
91,059 a537681987ddbe972f0f090b10a699c3 RESA1**102015 2,015 2,016 4 2015-10-14 2015-10-08 0.0164271
91,601 a5b8d096bb62e725e52b61fb28aed343 EDLE1**032015 2,015 2,016 4 2015-12-01 2015-03-26 0.6844627
90,723 a664b554d169c5f88b243b8c5f47235d GAPE1**062015 2,015 2,016 4 2015-11-09 2015-06-22 0.3832991
88,178 add12d3ddf9271f589c627bbc79c4579 MICA1**072015 2,015 2,016 4 2015-07-20 2015-07-20 0.0000000
87,410 afa9a46f43298983918d3f5a9d821786 ALBR1**052015 2,015 2,016 4 2015-05-19 2015-05-19 0.0000000
85,793 b1bb5f860c2d5e6ece18574ccde902fc AROR2**072014 2,014 2,016 5 2014-07-24 2014-07-24 0.0000000
86,140 b1c056a8bab379d545d8e82621f329f9 ANAL2**022014 2,014 2,016 5 2014-12-10 2014-02-19 0.8049281
88,543 b9ea83c2b1fbdb556749399b4efd327f JAAL1**102014 2,014 2,016 5 2015-05-22 2014-10-22 0.5804244
90,239 bbad2b97c37995c0bd0acc4d7086cd76 FRCA1**012015 2,015 2,016 4 2015-10-29 2015-01-16 0.7830253
86,749 bbad69de47dec4c9d0d092210bb2af69 JOCA2**032015 2,015 2,016 4 2015-03-27 2015-03-06 0.0574949
86,441 bff381e310734e33e4fc846f7360ee77 BEGA1**122014 2,014 2,016 4 2014-12-15 2014-12-15 0.0000000
87,205 c1a8b024d7bcd74211fb7bf8a3d2d152 ORAR2**022015 2,015 2,016 4 2015-02-18 2015-02-18 0.0000000
91,942 c4d30a1c4557dc3a71da5f034ba3fc57 JUCU1**112015 2,015 2,016 3 2015-11-27 2015-11-27 0.0000000
88,611 c93824e1813aef5dcc4f242e999a6473 PAAD1**072014 2,014 2,016 5 2015-08-05 2014-07-27 1.0239562
87,738 c9c50b35412a1b9a7a1ff05c6291897d CAGO2**022015 2,015 2,016 4 2015-06-08 2015-02-18 0.3011636
87,302 cf1c08352647546c64c5e9db55c3c7d9 JOLU1**052015 2,015 2,016 4 2015-05-14 2015-05-14 0.0000000
87,545 d062b037a6143d839d0cade6d0e78880 DIOR1**092014 2,014 2,016 5 2015-05-04 2014-09-18 0.6242300
92,276 d196f8ff1ac48677345bccd7c76b7fea NICO2**102015 2,015 2,016 4 2015-12-21 2015-10-07 0.2053388
88,262 d2ed9aa7d6555131b46251846e8b8e7b RUCA2**072015 2,015 2,016 4 2015-07-27 2015-07-27 0.0000000
90,168 d50338c03da03ab872fb654a5f38c86f YEBE2**082015 2,015 2,016 4 2015-10-15 2015-08-05 0.1943874
88,770 d5f73b599c69578e2436b8292eaa8cf2 MAAS2**062015 2,015 2,016 4 2015-08-01 2015-06-15 0.1286790
89,091 d83f8f183a061c8664e76b2a4e629a8e CRPE1**072015 2,015 2,016 4 2015-08-17 2015-07-20 0.0766598
89,744 d98d3ae82355931d0493ebd249120d23 GUSA1**062015 2,015 2,016 4 2015-09-28 2015-06-10 0.3011636
87,412 dc8d938d47360d6e85b4c040a00696eb LUIB1**042015 2,015 2,016 4 2015-03-30 2015-04-21 -0.0602327
85,982 ec17a1effd2c89815cc0620b0652a13b GEAL2**072014 2,014 2,016 5 2014-10-13 2014-07-14 0.2491444
88,043 eee917660c6c73d0554e56dfddf8e543 ARSO1**062015 2,015 2,016 4 2015-06-01 2015-06-03 -0.0054757
90,260 f02435c816333b972c7e14ec4cf3a6ad LUPA1**012015 2,015 2,016 4 2015-10-29 2015-01-10 0.7994524
89,346 f739264a92a4019c5875a5dc2cfa6e9a CEME1**092015 2,015 2,016 4 2015-09-02 2015-09-02 0.0000000
87,241 f88e060de83599227189511484dd9b44 CAAR1**042015 2,015 2,016 4 2015-04-06 2015-04-06 0.0000000
91,964 f9408fbf7e7f69d88f494c002795d85c ROGO1**092015 2,015 2,016 4 2015-12-16 2015-09-19 0.2409309
92,164 fbd1d4d518cf49e6d79dba77657d10f9 FIGA2**122015 2,015 2,016 3 2015-12-30 2015-12-16 0.0383299
72,692 0253e2fa101b8fefaf7cd01cd69713cd CLAV1**022015 2,015 2,015 4 2015-02-11 2015-02-11 0.0000000
79,569 031a3f135cc8da72da4da70e2111531a ISSA1**072015 2,015 2,015 4 2015-07-13 2015-07-13 0.0000000
69,740 0337bce679b733b0e7356ab12288d068 JORO1**091928 1,928 2,015 91 2014-11-13 1928-09-18 86.1519507
75,275 04b4bffa36994c2630693f4a54df5b67 MAGO1**042015 2,015 2,015 4 2015-04-01 2015-04-01 0.0000000
68,446 0597f7749e119dd2d9985d9d32ca1d40 VAMO1**082014 2,014 2,015 5 2014-08-07 2014-08-07 0.0000000
83,045 0616f30596be9524fbee513d685d2932 ROBE1**092015 2,015 2,015 4 2015-09-15 2015-09-15 0.0000000
66,658 064ea650536bddb515573f1261b3ff19 JEOL2**032014 2,014 2,015 5 2014-03-11 2014-03-11 0.0000000
76,089 0bb343da15bba120555cc4de136c9719 WACH1**042015 2,015 2,015 4 2015-04-30 2015-04-28 0.0054757
67,700 0c3e66e2db04da0d3423a9264874458c MAFU1**062014 2,014 2,015 5 2014-06-24 2014-06-23 0.0027379
83,519 10a7d484048197952a402d58199638f0 ROES2**102015 2,015 2,015 4 2015-10-15 2015-10-05 0.0273785
71,824 1477c904ac5398a6e67150861ef39fd1 LUCE1**012015 2,015 2,015 4 2015-01-09 2015-01-09 0.0000000
72,476 16344f388ae51c7cc12cc550acd2ff95 JOSA1**022015 2,015 2,015 4 2015-02-09 2015-02-09 0.0000000
80,128 1712f12578a18387328d0de6bf269671 OSFR1**082015 2,015 2,015 4 2015-08-03 2015-08-16 -0.0355921
70,629 19b20aa4a758b87ae992597fa0f8e166 EVFU1**012014 2,014 2,015 5 2014-12-03 2014-01-27 0.8487337
66,987 1b5a4c08bfc9db53e71419ed6b7418c2 MANA1**022014 2,014 2,015 5 2014-03-24 2014-02-25 0.0739220
79,986 21803297911589576d8ddacd79b5d55d CAMA2**082015 2,015 2,015 4 2015-08-10 2015-08-04 0.0164271
72,525 23c1b3a412e3b90dd0b06389df178058 CAAR1**012014 2,014 2,015 5 2015-02-11 2014-01-23 1.0513347
76,765 23d171a1e81628ce29ca5c83d29ac59b CRMA1**032015 2,015 2,015 4 2015-05-12 2015-03-28 0.1232033
83,832 2576e8499b6e9b9c0eb33037741df8d6 ALIN1**112015 2,015 2,015 3 2015-11-19 2015-11-19 0.0000000
73,280 25c36b6820ac514094c458ba22918452 ELVI2**112014 2,014 2,015 4 2015-02-11 2014-11-22 0.2217659
74,358 26e45f32b4f6ff42ec7d6d46d7aff22a RISO1**032015 2,015 2,015 4 2015-03-25 2015-03-17 0.0219028
70,848 284cbae307136f57dc7d41335d55d58d MIVA1**102014 2,014 2,015 5 2014-12-01 2014-10-20 0.1149897
69,260 295ffae266ef2715937d60071b8014cc JOAN1**102014 2,014 2,015 5 2014-10-16 2014-10-28 -0.0328542
68,841 2b5678acbd5e4353d3e9fb911de43ab7 RURI1**092014 2,014 2,015 5 2014-09-02 2014-09-16 -0.0383299
68,405 2b6acccc2cc4d497fb01d0045a41b8f5 CRVA1**072014 2,014 2,015 5 2014-08-01 2014-07-24 0.0219028
70,353 2c2ee233da3f8c82ce2086568d31c26f DAAS1**062014 2,014 2,015 5 2014-11-24 2014-06-26 0.4134155
74,306 2f9c6bdeb0243e28bee1b104c0253940 IGRE1**032015 2,015 2,015 4 2015-03-17 2015-03-27 -0.0273785
75,884 302ed871d749f5bc3c73ae857a61a04f HEPA1**042015 2,015 2,015 4 2015-04-28 2015-04-28 0.0000000
70,894 352d4af019cf9259d17b9e617e84374a FEMO1**052014 2,014 2,015 5 2014-12-22 2014-05-23 0.5831622
81,682 3536ecb01a030126c6ff59f315c95682 OSBU1**092015 2,015 2,015 4 2015-09-23 2015-09-02 0.0574949
78,287 35d671008a3675d718729ae27236f451 LUTO1**102014 2,014 2,015 5 2015-03-25 2014-10-10 0.4544832
79,992 39dd71d814e69327a313cdef2d7cd806 FEPI1**072015 2,015 2,015 4 2015-08-10 2015-07-27 0.0383299
72,285 3a8eb8edf401af5695c140f3a5698829 DIRA1**012015 2,015 2,015 4 2015-01-30 2015-01-30 0.0000000
71,342 3c78a6af51709bf3f9a0c5ae9bed4a95 LUMO1**012015 2,015 2,015 4 2014-12-22 2015-01-17 -0.0711841
84,895 3e59c66a1aebcb3d9fdfa1d3bbc1a85c ROAL1**012015 2,015 2,015 4 2015-12-09 2015-01-10 0.9117043
80,281 3f77045375df8c1ce7e74ae8c36846ff JACA1**062015 2,015 2,015 4 2015-08-03 2015-06-16 0.1314168
78,839 40dca59840a518a1c1419b462180edd2 ITQU1**042015 2,015 2,015 4 2015-06-18 2015-04-02 0.2108145
81,439 4124ab2d1b1d4b06b9fe7c82f35087c2 HERO2**062015 2,015 2,015 4 2015-09-03 2015-06-16 0.2162902
75,182 449ace14bc362c285c7a7a6a648240a0 MAQU1**032015 2,015 2,015 4 2015-03-17 2015-03-06 0.0301164
80,980 44d3b44b5e1af81046b94f18b9bf6719 HAST1**012015 2,015 2,015 4 2015-08-10 2015-01-26 0.5366188
73,097 4642a23aada9426b78c649b329597857 BASA1**022015 2,015 2,015 4 2015-02-20 2015-02-13 0.0191650
75,942 47ef1ed889728efa8c0f2deb0a220669 MAVI2**032015 2,015 2,015 4 2015-04-07 2015-03-16 0.0602327
81,762 499c84ea7b979ac92d9676d9733473cb LUFA1**092015 2,015 2,015 4 2015-09-28 2015-09-28 0.0000000
74,269 49fa8657fc41e47ea2b0eb0262cd016c JUGO1**082014 2,014 2,015 5 2015-03-05 2014-08-06 0.5776865
70,612 4a0cdcf2a03c76f799020c095f4564f2 HERI1**122013 2,013 2,015 5 2014-12-01 2013-12-02 0.9965777
67,865 4a2e82359ab80f4110208bc1ef219894 FRMI1**072014 2,014 2,015 5 2014-07-28 2014-07-28 0.0000000
73,331 4abfecb81b952e2f8ec21a770a51c2a2 RARO1**022015 2,015 2,015 4 2015-03-02 2015-02-27 0.0082136
79,686 4ae1f1d592ec4b436a529f14d4fcf81c LOMA2**072015 2,015 2,015 4 2015-07-30 2015-07-08 0.0602327
65,989 4b3d323421de18da767233bda9b0bc87 CLAL1**112013 2,013 2,015 5 2013-11-07 2013-11-07 0.0000000
80,190 4ba0607a91d0e839fbd5427c855d30ec DICE1**022014 2,014 2,015 5 2015-08-17 2014-02-06 1.5249829
67,890 4c3b027aaab3ebb21acd62330d1292f2 JOPI1**052014 2,014 2,015 5 2014-06-09 2014-05-14 0.0711841
76,426 4c4865e8e336059576dafff791406b3d ORMU1**092014 2,014 2,015 5 2015-05-14 2014-09-12 0.6680356
68,915 500f972bc4189dcc23b1fa48d3f0bf91 GLHU2**032014 2,014 2,015 5 2014-09-30 2014-03-25 0.5174538
70,334 519508aebc18c11a82240a788f40231c MAGO1**112014 2,014 2,015 4 2014-11-21 2014-11-29 -0.0219028
73,543 522a8c3d145abd04ebcca385a72f6fd4 JUAL1**072014 2,014 2,015 5 2015-03-04 2014-07-27 0.6023272
83,668 5669a5838dc918a38827778a7f028dc1 JOLA1**042015 2,015 2,015 4 2015-11-05 2015-04-24 0.5338809
72,964 567ff79213fc81839632ea14ad3715ae RIMO1**042014 2,014 2,015 5 2015-02-20 2014-04-10 0.8651608
79,777 56b3ce1aba672f5ac1f78a849709d430 LUVI1**062015 2,015 2,015 4 2015-07-09 2015-06-21 0.0492813
66,253 56e428e0a109d38555aa56f80298b55f NEOR1**092013 2,013 2,015 6 2014-01-22 2013-09-29 0.3148528
80,224 572a0c1831cd90fd046f1ebc1d67994a LUGO1**082015 2,015 2,015 4 2015-08-10 2015-08-10 0.0000000
66,707 5985ca3d94a92d6159abbcf091a8505e CRTO1**032014 2,014 2,015 5 2014-03-19 2014-03-14 0.0136893
69,414 5acc266b551b73f526c5350f441d64cb SECO1**102014 2,014 2,015 5 2014-09-01 2014-10-02 -0.0848734
69,931 5bf2ffac7d9611eaca35ca015b8da022 GUGU1**102014 2,014 2,015 5 2014-11-19 2014-10-22 0.0766598
80,440 5c42f484a032a08deae9a0774beb9549 MARO1**112014 2,014 2,015 4 2015-08-06 2014-11-09 0.7392197
70,049 5d1ddee3c47756a7faacd4eb6fc05693 CLHA1**042014 2,014 2,015 5 2014-11-03 2014-04-22 0.5338809
82,297 5ea1c7ba606efe2df58e49e360312e75 ROZU1**092015 2,015 2,015 4 2015-09-22 2015-09-22 0.0000000
76,684 5f2e9af63730ca0c5f5e37f61595f7d1 ROSA1**042015 2,015 2,015 4 2015-04-22 2015-04-22 0.0000000
66,001 5f3f15beb64e965bb3c6e89f1936d3eb RIVA1**042013 2,013 2,015 6 2013-11-05 2013-04-15 0.5585216
76,629 636046ed13f419997e2c05bfd3ac6ae6 MOAR1**012015 2,015 2,015 4 2015-04-23 2015-01-23 0.2464066
69,369 638dc4fb2f068057ea83872b81b939c1 MAMU2**102014 2,014 2,015 5 2014-10-13 2014-10-13 0.0000000
67,894 65e32b6aaa8e3cc506bdd56a69b355d4 VAVI2**072014 2,014 2,015 5 2014-07-19 2014-07-19 0.0000000
69,781 698507f0316d47f1c63f9e104554cd40 RUAG1**112014 2,014 2,015 5 2014-11-18 2014-11-04 0.0383299
74,586 6d6a0565c927a30d8fd5a12567a8a5ee CASA2**032015 2,015 2,015 4 2015-02-26 2015-03-24 -0.0711841
81,596 71a82aae5397aa241fa4dada09813f9f SEPA1**022015 2,015 2,015 4 2015-08-25 2015-02-14 0.5256674
76,917 71c03223af1ce120cdfb9c0b55b4db53 ROTR1**052015 2,015 2,015 4 2015-05-04 2015-05-20 -0.0438056
77,489 71ddf29f1cc888fdc73304ec5d6aa270 FRME1**012015 2,015 2,015 4 2015-01-29 2015-01-09 0.0547570
66,096 753861a2ae44c51b6dc7096f99c15b67 MAFL1**122013 2,013 2,015 5 2013-12-04 2013-12-04 0.0000000
70,882 760ab7c11c153e3f46a49b28e7d28109 VIMA1**122014 2,014 2,015 4 2014-12-01 2014-12-01 0.0000000
79,422 78137d8b5d25f99a46ac5e27f740dfa9 MADI2**072015 2,015 2,015 4 2015-07-27 2015-07-27 0.0000000
74,157 784296c4ebb2cdad231eaa4ea6e8280b GHSO2**032015 2,015 2,015 4 2015-03-05 2015-03-05 0.0000000
74,523 7a63ad8ba5f2f5794d1a5193b0f3df27 ROAG1**012015 2,015 2,015 4 2015-03-10 2015-01-15 0.1478439
79,759 7c7a382fbee4f066ddc8afb03be3c826 EVGA2**062015 2,015 2,015 4 2015-06-04 2015-06-04 0.0000000
66,646 7cecf6ed64eb80f86f0d2db834fd85dc ARFE1**032014 2,014 2,015 5 2014-03-05 2014-03-04 0.0027379
76,575 804947be8b59ba91b7600127e11ea3a1 SEVA1**052015 2,015 2,015 4 2015-05-04 2015-05-21 -0.0465435
75,178 80c08f09810f85cf3494b3475b4855fc NIGA2**032015 2,015 2,015 4 2015-04-01 2015-03-26 0.0164271
75,311 80f24bdee1dead2b03206b20db9eed95 JOVI1**042015 2,015 2,015 4 2015-04-23 2015-04-13 0.0273785
81,288 82fbe76a90e5ec2d518f1f4b01ed76cc DATA1**092015 2,015 2,015 4 2015-09-08 2015-09-08 0.0000000
79,903 84fca3988c6479194fd5709bf61e0139 MIVI1**052015 2,015 2,015 4 2015-08-03 2015-05-30 0.1779603
66,136 859278a1dab22f623200a8fb82cc88eb JORO1**112013 2,013 2,015 5 2013-12-05 2013-11-26 0.0246407
67,168 86ee53ec9a2b925edcb11152db6ca7e2 CAVE1**012014 2,014 2,015 5 2014-05-26 2014-01-19 0.3477070
71,913 8933013b58f550a8a72b9d4bc7f694c5 ZUNA2**062014 2,014 2,015 5 2015-01-02 2014-06-10 0.5639973
78,195 8b9ede9e8fda1c93f5864009a1e18767 JUBA1**062015 2,015 2,015 4 2015-06-26 2015-06-26 0.0000000
67,050 8beb99b458dcb70a2c6bdac15d1ffae8 HICA2**032014 2,014 2,015 5 2014-05-19 2014-03-03 0.2108145
76,822 8e3ee020d0e375a5465551855beef0d9 IBFR1**052015 2,015 2,015 4 2015-05-27 2015-05-27 0.0000000
76,817 8e5281ff55f663f7f125e66b1eed5e30 CLNE1**052015 2,015 2,015 4 2015-05-27 2015-05-23 0.0109514
83,465 8e572a0351477ce0b449d79e728935c3 ANSE2**102015 2,015 2,015 4 2015-10-20 2015-10-20 0.0000000
69,801 8f0cf60837bebad31c04b86f96f2fc23 EMFR1**062014 2,014 2,015 5 2014-10-28 2014-06-26 0.3394935
77,294 9097ba34be47c5e4769cbb380b1a19c3 SOHU2**052015 2,015 2,015 4 2015-05-08 2015-05-06 0.0054757
80,158 92c8a023b443094c1c8a30e73c8d4d49 ANIB1**032015 2,015 2,015 4 2015-08-18 2015-03-08 0.4462697
69,826 93d59d2ed7fbf4af1de869edfc63fc65 NANU2**112014 2,014 2,015 5 2014-11-04 2014-11-04 0.0000000
69,296 950e158fe666407f88c577bd7615dfd2 DAMU2**092014 2,014 2,015 5 2014-10-21 2014-09-30 0.0574949
84,891 95da9c51b0a9acafac6c4da28a96d3fa GURI1**112015 2,015 2,015 3 2015-12-01 2015-11-08 0.0629706
66,790 971bb94af6c2953cfa47d01d40c25a3b SETA1**082013 2,013 2,015 6 2014-04-15 2013-08-13 0.6707734
68,693 9816684f0ad904d3a326d6f567e6dba9 EDSA1**092014 2,014 2,015 5 2014-09-11 2014-09-19 -0.0219028
80,293 98a06fe9e54997548d1a404274857dd4 LULI1**042015 2,015 2,015 4 2015-05-20 2015-04-02 0.1314168
71,367 9a7094f7872f46a3f95bc811141ab0b1 CAHO1**012015 2,015 2,015 4 2015-01-29 2015-01-05 0.0657084
69,711 9b9700657d2d1f743c15748be8635987 ROCA1**072014 2,014 2,015 5 2014-11-10 2014-07-07 0.3449692
83,946 9d13f7974119875c68872c9bb1315169 CRGA1**102015 2,015 2,015 4 2015-10-20 2015-10-22 -0.0054757
68,241 9d4067490872679cabd325391f43973a BOCA1**082014 2,014 2,015 5 2014-03-24 2014-08-11 -0.3832991
66,596 a0c04efc4020b66bc9e202d870848f7a SOMO2**032014 2,014 2,015 5 2014-03-13 2014-03-13 0.0000000
77,309 a0c21e91c5df0785a42f2800657231db RASE1**052015 2,015 2,015 4 2015-06-01 2015-05-12 0.0547570
69,538 a444a079cae143f4c1a81333206b1fa2 CRCE1**092014 2,014 2,015 5 2014-10-30 2014-09-10 0.1368925
74,691 a6e602feb838ea9b7392e5134f66acb7 RILI1**022015 2,015 2,015 4 2015-03-02 2015-02-25 0.0136893
72,298 a73c7452763307541b29b174fcfeb8c8 JEMO2**092014 2,014 2,015 5 2015-02-04 2014-09-21 0.3723477
70,012 aa55d971c98f1d169262f93fbeb6860c HEMU1**112014 2,014 2,015 4 2014-11-26 2014-11-26 0.0000000
73,483 ae9d88ab75abd959fe3462608dc7702f GUGA1**032013 2,013 2,015 6 2015-02-24 2013-03-28 1.9110198
68,930 af102bfd448a47b7624e89ce6df6acec ROCO1**062014 2,014 2,015 5 2014-09-01 2014-06-10 0.2272416
77,067 affbdb3a781e3be1a5aa20966d2cc696 DAVE1**052015 2,015 2,015 4 2015-05-27 2015-05-27 0.0000000
81,022 b05925d3aec79d9c5328ce69353e0fdd UBFU2**082015 2,015 2,015 4 2015-08-11 2015-08-11 0.0000000
82,460 b36bc9b83aee187478fa1c1b30435529 ASRO2**082015 2,015 2,015 4 2015-10-07 2015-08-15 0.1451061
66,561 b9a7dc1763b1eff304d698a26d45987a PASH2**032014 2,014 2,015 5 2014-03-17 2014-03-17 0.0000000
79,701 bb6fe40dbae548db255b939ec75d56eb HUFL1**012015 2,015 2,015 4 2015-07-30 2015-01-24 0.5119781
68,727 bda266c70897a4a4d4c34b9286b3ac26 HEFA1**072014 2,014 2,015 5 2014-08-29 2014-07-01 0.1615332
74,175 c1680c07dc59050febafc3d2fd20401c SEDU1**022015 2,015 2,015 4 2015-03-23 2015-02-15 0.0985626
72,301 c448e5cd3e78582182916796bf1cd0a3 JUSA1**122014 2,014 2,015 4 2014-12-24 2014-12-24 0.0000000
67,595 c4a738e3e147557918f4f3a29384617e RAGA1**062014 2,014 2,015 5 2014-06-13 2014-06-13 0.0000000
72,452 c4b87ed143a1328df096ac3e5ac66752 CRCR1**012015 2,015 2,015 4 2015-02-05 2015-01-15 0.0574949
79,988 c667fcdcaa8983d2d0d3e805c762543a JUHE1**082015 2,015 2,015 4 2015-08-04 2015-08-04 0.0000000
65,866 c67c0b06dc6a2fc010c201d7b2455731 PARO2**092013 2,013 2,015 6 2013-09-02 2013-09-26 -0.0657084
82,933 ca640aaf41385bea310d7b73f7cdba25 RARO1**042015 2,015 2,015 4 2015-08-26 2015-04-09 0.3805613
67,569 cc3f918ca077e0fa589264817e7dfc63 JUCE1**062014 2,014 2,015 5 2014-06-26 2014-06-26 0.0000000
70,258 d36b9cd8f1aa0a07ad209b0006af1465 PALO1**072014 2,014 2,015 5 2014-11-13 2014-07-08 0.3504449
69,013 d3ff7adfe0d73fe255e7eaeae652d093 HUPO1**092014 2,014 2,015 5 2014-10-01 2014-09-10 0.0574949
82,593 d44603ff4147d1f87a0a8187ea7a7dfe CLIT2**102015 2,015 2,015 4 2015-10-05 2015-10-05 0.0000000
81,553 d4e29a163ddfed590de7ff27125a2a7e JOSO1**092015 2,015 2,015 4 2015-09-10 2015-09-09 0.0027379
69,958 d5952e9b80d0713beb9024174ab0f727 JOAL1**012014 2,014 2,015 5 2014-11-05 2014-01-01 0.8432580
69,347 d9c6875344fd216fe006cc26f6ab3554 CRRO1**072014 2,014 2,015 5 2014-10-01 2014-07-04 0.2436687
68,618 da430c8ff2f2e7059c4e402228c980d7 ARFL1**022014 2,014 2,015 5 2014-09-08 2014-02-14 0.5639973
85,252 dc734b38de361955000b96e6253d148a DAMO2**062015 2,015 2,015 4 2015-12-09 2015-06-27 0.4517454
69,628 dcc35e6bacea2093d845764c4541f5fd JOAN1**072014 2,014 2,015 5 2014-11-05 2014-07-23 0.2874743
78,731 dd4b4ceef916a24a277300e57d15847a PEME1**042015 2,015 2,015 4 2015-07-08 2015-04-22 0.2108145
71,685 e2e8be29aee4522e31cf3f6632a7f67d PARA2**012015 2,015 2,015 4 2015-01-27 2015-01-26 0.0027379
72,176 e60223e49c88aa125912e44ae1405982 RACA1**122014 2,014 2,015 4 2014-12-01 2014-12-01 0.0000000
70,653 e907ad15203b08eec69e4ac53cf2ed1c VIRE1**122014 2,014 2,015 4 2014-12-17 2014-12-10 0.0191650
82,004 e9b8767932d2c1c268c50986f37d1ac3 FRVE1**082015 2,015 2,015 4 2015-09-28 2015-08-21 0.1040383
78,289 ea7b8f69ea7b4c84ec05336daea2bd5a SIAR2**062015 2,015 2,015 4 2015-06-18 2015-06-05 0.0355921
77,086 eb7178edd29bc7938a16af25e718aa06 PERO1**052015 2,015 2,015 4 2015-05-04 2015-05-04 0.0000000
67,778 ebd792c25167912fa4ba477282968198 VIGA1**032014 2,014 2,015 5 2014-07-10 2014-03-04 0.3504449
74,513 ee1416f105555711f905f8bb38bbbc85 ANZA1**032015 2,015 2,015 4 2015-03-04 2015-03-04 0.0000000
73,321 f0e8cdce8a16fae7f1f8f1d7eb726e42 FRGO1**032015 2,015 2,015 4 2015-03-05 2015-03-04 0.0027379
68,980 f2b452b7b3cb57347dffef25fb906533 MAAR1**042013 2,013 2,015 6 2014-09-03 2013-04-02 1.4209446
71,052 f3200c510b74bf2c038243cfa11bb511 BERU2**062014 2,014 2,015 5 2014-12-29 2014-06-16 0.5366188
81,047 f40e50584376f17c5209a446aded88a5 MACA1**082015 2,015 2,015 4 2015-08-20 2015-08-20 0.0000000
74,448 f4b40bf329913b8d3f4b5ad5e387ceeb PEME1**022015 2,015 2,015 4 2015-03-17 2015-02-02 0.1177276
67,848 f60d6664ff94ad84d3f6fa5857df8554 LUVE1**062014 2,014 2,015 5 2014-07-02 2014-06-30 0.0054757
72,387 fa2ea15f6f06cf6d26eb350fe06d3169 PABA1**042014 2,014 2,015 5 2015-02-01 2014-04-06 0.8240931
68,175 fa82f67ef3d75abfe25d757e3fd94dda CAMA1**082014 2,014 2,015 5 2014-08-06 2014-08-06 0.0000000
66,526 faeef8906f3656cf2fd1c20a6e073f3f ERQU2**032014 2,014 2,015 5 2014-03-10 2014-03-04 0.0164271
69,969 fc9685f0326cd580c91283cef901de83 FELI1**112014 2,014 2,015 4 2014-11-03 2014-11-16 -0.0355921
51,471 0185474236a78bd34f1f598e07021075 BOCO1**022013 2,013 2,014 6 2013-10-08 2013-02-02 0.6789870
62,068 01e54166db8cc46ba02cc1261bad7025 NAFA2**092014 2,014 2,014 5 2014-09-08 2014-09-11 -0.0082136
62,795 01fbe3da4feb1c3219154541973737fb ALKL1**092014 2,014 2,014 5 2014-09-03 2014-09-07 -0.0109514
53,854 050d90c29749bafec11dffebad0166a6 VACA1**082013 2,013 2,014 6 2014-01-02 2013-08-08 0.4024641
54,592 0a2dabadf8ca1b2e9ba2e22b38e8ddcb ANZA1**022014 2,014 2,014 5 2014-02-18 2014-02-18 0.0000000
64,283 0a36a632748c09dcf24fdc962bde1f1a ROAN1**062014 2,014 2,014 5 2014-11-10 2014-06-15 0.4052019
60,957 0c66c0b765a83da8d1de567a6463b309 ANVI1**062014 2,014 2,014 5 2014-08-01 2014-06-02 0.1642710
62,380 0c8e2d388c54c38b56d727848623e1c3 FAFL1**092014 2,014 2,014 5 2014-09-22 2014-09-26 -0.0109514
64,529 0ecdd96aa26acffb0443024302c88b19 JECO1**022014 2,014 2,014 5 2014-11-03 2014-02-19 0.7036277
59,544 1033515b6c374de294fc70f88738d49c YUJA1**012014 2,014 2,014 5 2014-07-01 2014-01-14 0.4599589
51,610 12bcf88002321230829c390f370e5a94 LUSE1**102013 2,013 2,014 6 2013-10-01 2013-10-09 -0.0219028
57,944 14604a942e84698e0484ec20a8eca468 PEER1**042014 2,014 2,014 5 2014-05-29 2014-04-06 0.1451061
62,595 1881f1555ce2c4753b5ee918c1d32bf8 CASE2**092014 2,014 2,014 5 2014-09-26 2014-09-29 -0.0082136
57,991 1892dab247fd46439de490b350394c36 HESA1**012014 2,014 2,014 5 2014-05-28 2014-01-11 0.3750856
59,643 18ed67cbe7d0be3b407be54f181fbb49 FECA2**052014 2,014 2,014 5 2014-05-30 2014-05-30 0.0000000
55,397 1925b5752041680a6494ecb6a185c753 CAGA1**012014 2,014 2,014 5 2014-03-17 2014-01-21 0.1505818
54,902 1a6377dca692b67788c885a4bc1ec3f9 IGMU1**022014 2,014 2,014 5 2014-02-05 2014-02-17 -0.0328542
51,069 1c3c2376668e31123e289c63079700cb DASA1**102013 2,013 2,014 6 2013-10-07 2013-10-07 0.0000000
51,041 1e605b52e9b58e4bb66f9a6c2f32176d PUSI2**102013 2,013 2,014 6 2013-10-09 2013-10-09 0.0000000
51,204 1e837895d8784a93f1c62e919afad21c JOSA1**072013 2,013 2,014 6 2013-10-18 2013-07-26 0.2299795
56,536 2112f4ef70d436947acb8057a43ea2a4 CLPA1**042014 2,014 2,014 5 2014-04-14 2014-04-14 0.0000000
57,291 21e1a0cb1dd23fabdb68277bcec401b8 CRMA1**042014 2,014 2,014 5 2014-04-22 2014-04-22 0.0000000
58,608 2311d4b022b6b0ca7f3c8f781db5bd6e IVMO1**102013 2,013 2,014 6 2014-06-12 2013-10-04 0.6872005
53,493 2442f03286793ebc9875b7520acc486a JHRI1**112013 2,013 2,014 5 2013-12-04 2013-11-26 0.0219028
50,789 28a68f9ac9ad88bef6d71c87650e171c DEMU2**092013 2,013 2,014 6 2013-09-30 2013-09-23 0.0191650
52,308 29fd17afa366812eeae4f070d949b621 ALPA1**042013 2,013 2,014 6 2013-11-21 2013-04-12 0.6105407
51,848 2a77572cc6a27c03e6fe4cc2057891c7 CAPI2**072013 2,013 2,014 6 2013-11-07 2013-07-12 0.3230664
57,292 2bf4303825646ee1fb044f426a3a69e0 IVME1**042014 2,014 2,014 5 2014-04-24 2014-04-24 0.0000000
52,194 2f72fa7496b7083591d2caff4142a540 ROMU1**072013 2,013 2,014 6 2013-11-01 2013-07-30 0.2573580
64,664 307478874831e6772e116074a1115afd MARO1**042014 2,014 2,014 5 2014-11-04 2014-04-27 0.5229295
64,325 32ed8512c8004bf8dc40a2c081dd3788 ALPA1**092014 2,014 2,014 5 2014-11-18 2014-09-22 0.1560575
51,909 33846b3d1ab12c80e895f2c97183fd6e IGMU1**112013 2,013 2,014 5 2013-10-30 2013-11-15 -0.0438056
54,604 34988293c8162aa967982d80b52679f8 MIBU2**022014 2,014 2,014 5 2014-02-18 2014-02-19 -0.0027379
60,588 376cacf6012ee8b1eb6c9594610033e5 ROCA1**072014 2,014 2,014 5 2014-07-28 2014-07-28 0.0000000
52,011 3abe9a42141394f5d7dcd8cc6599dcb5 ANLO1**102013 2,013 2,014 6 2013-10-21 2013-10-04 0.0465435
60,040 3c95fa27af813ce64585b46390470d28 GUES1**072014 2,014 2,014 5 2014-07-03 2014-07-03 0.0000000
50,977 4000849a3b0c044434724ac011e14fb2 CLVA1**102013 2,013 2,014 6 2013-10-03 2013-10-02 0.0027379
57,293 42096bc0d7cc104bff333c7bb7ab8712 PAPI1**042014 2,014 2,014 5 2014-04-17 2014-04-17 0.0000000
54,888 429718cc352bec4dff3cd8c5733dccb3 WLCU1**092013 2,013 2,014 6 2013-11-12 2013-09-25 0.1314168
61,040 429adc359b8b2c6d00eec510b8545971 CRVA2**052014 2,014 2,014 5 2014-05-02 2014-05-29 -0.0739220
51,689 4527b737a811d4145e677ea5336d53c1 ENCA1**032013 2,013 2,014 6 2013-11-12 2013-03-03 0.6954141
58,112 45ee4dbdf00e06132d4413bbbd7df417 PAAD2**052014 2,014 2,014 5 2014-05-13 2014-05-01 0.0328542
63,550 4d172b7d430a3d84688623da52d8dc7c DACE1**082014 2,014 2,014 5 2014-10-06 2014-08-09 0.1587953
52,329 4e0ae098b557c5b79a094a4f3d629092 ALLO1**062013 2,013 2,014 6 2013-12-03 2013-06-21 0.4517454
50,990 4feab54661843621e99998f4d6b57380 CIJO1**042013 2,013 2,014 6 2013-09-11 2013-04-28 0.3723477
62,889 53f1bae51684d06843d5bf7e15fe658c JUOL1**032014 2,014 2,014 5 2014-10-01 2014-03-25 0.5201916
58,526 53fd1e903046ccbf29f0328f2fbada0c CHRA1**062014 2,014 2,014 5 2014-06-02 2014-06-13 -0.0301164
56,580 5674b142391373e01dfcc306df2d0dca CESO1**042014 2,014 2,014 5 2014-04-08 2014-04-10 -0.0054757
58,446 569445fd9ec006917858027e18df04b4 JUFL1**042014 2,014 2,014 5 2014-06-10 2014-04-20 0.1396304
58,543 56f99f0c1058dfdc2d862821be68908d ALBA1**052014 2,014 2,014 5 2014-06-16 2014-05-30 0.0465435
65,294 57f7766d6acfaf329f8a6c7c5546f4cc LUNA1**082014 2,014 2,014 5 2014-12-10 2014-08-09 0.3367556
51,295 5ca7f13aa49592a33df47a8c92e1a833 NOCA2**102013 2,013 2,014 6 2013-10-17 2013-10-17 0.0000000
51,627 5e1528a265d1f0896cb353a44e765354 GALE1**112013 2,013 2,014 6 2013-11-05 2013-11-05 0.0000000
53,634 5f8c1b285772d02d0b886ed5a2460fbd MIMI1**022013 2,013 2,014 6 2014-01-13 2013-02-27 0.8761123
56,445 6218383ca3245f183d37109cbad00e7b ALSU1**042014 2,014 2,014 5 2014-04-11 2014-04-11 0.0000000
53,993 62a9e64ddba550f4004a6327918f57fc RARU1**062013 2,013 2,014 6 2014-01-23 2013-06-27 0.5749487
59,254 6342c5d72382ca9d24de6e277e2df32f MASA2**032014 2,014 2,014 5 2014-05-23 2014-03-07 0.2108145
52,403 65f57f0a6a732ea3780954d538a75428 SECA1**052013 2,013 2,014 6 2013-12-06 2013-05-01 0.5995893
51,997 689bae1438650be7199ded91cbc7552f JOCO1**092013 2,013 2,014 6 2013-10-25 2013-09-29 0.0711841
51,995 702968577b4f960a8c1c08df3c495ff0 ENRO1**072013 2,013 2,014 6 2013-11-04 2013-07-21 0.2902122
52,932 72326747760e7be6a2162ab0037f2a07 JOCO2**122013 2,013 2,014 5 2013-08-12 2013-12-19 -0.3531828
64,279 7254ade7587f29202196fb75b17dc272 CRBA1**022014 2,014 2,014 5 2014-11-03 2014-02-17 0.7091034
60,757 72cffa8571b63fa2bbdc803a1f2572f6 GUCO1**072014 2,014 2,014 5 2014-08-08 2014-07-31 0.0219028
52,371 736fae09679c81655531176f2d1fd5e5 MAAG1**102013 2,013 2,014 6 2013-12-03 2013-10-18 0.1259411
56,845 743347c25e9f31237b16863597fd9010 BATA2**042014 2,014 2,014 5 2014-04-28 2014-04-21 0.0191650
51,272 76f23cc26b988b93413645ba8119c6cc ESES1**102013 2,013 2,014 6 2013-10-23 2013-10-11 0.0328542
52,100 76fa641216f9a7ebf3a5f14344383c44 LUCO2**042013 2,013 2,014 6 2013-11-13 2013-04-21 0.5639973
58,307 7f436efd7a0821acc4276c007e0cab22 BEBE1**052014 2,014 2,014 5 2014-05-30 2014-05-29 0.0027379
51,169 81ab2481a76df0933bf153220a6a5e9e LIRE2**042013 2,013 2,014 6 2013-10-04 2013-04-11 0.4818617
62,798 8aaca219f703edb8180889af34c95af7 VIZA2**092014 2,014 2,014 5 2014-10-01 2014-09-02 0.0793977
56,429 9186bf55e02db4cfa18a94877faaeaae JOCA1**042014 2,014 2,014 5 2014-04-04 2014-04-01 0.0082136
64,539 91cf26bab3740af962ca4b4c8d66fa7f BEMA2**102014 2,014 2,014 5 2014-11-03 2014-10-22 0.0328542
51,050 9326cee4bf6b78a580d94d7a2918defe IVCA1**072013 2,013 2,014 6 2013-09-10 2013-07-08 0.1752225
56,731 9354d0a7e62f4e1770b183e1a47fa950 ALAD1**042014 2,014 2,014 5 2014-04-01 2014-04-21 -0.0547570
51,835 94402c3f517402391dfbd454223559af EZSU1**062009 2,009 2,014 10 2013-11-22 2009-06-19 4.4271047
52,929 94bdff9b0c5c651015c78f48fc56f831 CIGF1**122013 2,013 2,014 5 2014-11-04 2013-12-11 0.8980151
50,568 954bec2ee088c12db31904b363e78a98 JUSC1**092013 2,013 2,014 6 2013-09-10 2013-09-03 0.0191650
52,208 9642c561b4782b5626610105f2054076 JUNU1**112013 2,013 2,014 5 2013-09-03 2013-11-25 -0.2272416
51,267 971a392201dca223bc07f635a7412443 REJI1**022013 2,013 2,014 6 2013-08-05 2013-02-16 0.4654346
62,080 972709af06218bfc09d4f028a7f2fa36 MAOR1**092014 2,014 2,014 5 2014-09-03 2014-09-01 0.0054757
62,450 975241fd05550f886bc9ff823e488587 YABE1**072014 2,014 2,014 5 2014-09-01 2014-07-13 0.1368925
50,768 9b4349d272c562d022b673e4faf943eb STVA2**012013 2,013 2,014 6 2013-09-25 2013-01-01 0.7310062
57,513 9b802c0391a72f833e0b7f6b4fa9f429 NEPI1**052014 2,014 2,014 5 2014-05-15 2014-05-15 0.0000000
53,928 9cafeebef314301a4d28f9617eb2db84 HEPO1**012014 2,014 2,014 5 2014-01-30 2014-01-03 0.0739220
57,337 a13505adffa3137e32ef126953465083 JOPA1**022014 2,014 2,014 5 2014-02-25 2014-02-25 0.0000000
53,955 a16577eeed6c1bbb24cad0e96f60b2a2 PAIB2**012014 2,014 2,014 5 2014-01-21 2014-01-01 0.0547570
57,826 a3d1c81f683127b3f98a6dc8ee0aea95 ANME1**042014 2,014 2,014 5 2014-05-27 2014-04-05 0.1423682
56,288 a444a079cae143f4c1a81333206b1fa2 CRCE1**042014 2,014 2,014 5 2014-04-01 2014-04-01 0.0000000
52,008 a510b674f569b6bd720ae2f9c4b038b8 SECA1**112013 2,013 2,014 5 2013-11-06 2013-11-06 0.0000000
59,851 a53efaf4077a6d170947d8e3cbb8617a JOZU1**032014 2,014 2,014 5 2014-07-01 2014-03-14 0.2984257
56,065 a72f953a356b5a624e919918b63a2fad JOIB1**032014 2,014 2,014 5 2014-03-12 2014-03-07 0.0136893
61,398 a7b45b17accde476fc79803b461c48a3 HURA1**032014 2,014 2,014 5 2014-08-28 2014-03-12 0.4626968
62,097 a81b5a68a64ec4989b15b06382a45f6c ROCI2**092014 2,014 2,014 5 2014-09-08 2014-09-02 0.0164271
54,563 a8f536730514fc652fb2b0cba216d73a SUBR2**022014 2,014 2,014 5 2014-01-20 2014-02-04 -0.0410678
62,503 aa7cc08fd4579be84bdc2dc1ffbd8616 JOSA1**092014 2,014 2,014 5 2014-09-01 2014-09-01 0.0000000
52,552 ad62e5dacd4b89a12721135a164c2369 DAVI2**112013 2,013 2,014 5 2013-11-21 2013-11-21 0.0000000
60,994 b3b4e92d7d3256b4bdefc1d57c9a6d01 PEFR1**072014 2,014 2,014 5 2014-08-01 2014-07-18 0.0383299
56,061 b48858a7082e55ba898bc1905399513c YESA1**032014 2,014 2,014 5 2014-03-28 2014-03-28 0.0000000
59,634 b57bb1be348e3c4c896be4d68043bfdc EMHE1**012014 2,014 2,014 5 2014-05-29 2014-01-05 0.3942505
53,764 b781ad6ad261463e0113dd2a9666a6d7 YEAR2**012014 2,014 2,014 5 2014-01-24 2014-01-29 -0.0136893
57,604 bb1e3ec5ad90ed912270b85c22bc22dc MASA1**022014 2,014 2,014 5 2014-03-10 2014-02-15 0.0629706
61,779 bd4ddaf7e28aa380f777efe2528a5ffe VIGA1**092014 2,014 2,014 5 2014-09-01 2014-09-01 0.0000000
55,549 bda338a09bf4112f34c232b78571e081 ANPI1**032014 2,014 2,014 5 2014-03-17 2014-03-17 0.0000000
57,347 bdf80f280bdd5ea5a2467e595550bb16 FRSA2**042014 2,014 2,014 5 2014-04-30 2014-04-21 0.0246407
62,576 be113baceb35ea5ae5a34de7d5c23b84 CHME1**032014 2,014 2,014 5 2014-09-09 2014-03-23 0.4654346
61,502 be3bcadab217fd812c6b3d88ddbaee09 HECO1**072014 2,014 2,014 5 2014-07-29 2014-07-29 0.0000000
54,559 be52751573bf2adb0360879c30b371ef MAGU1**122013 2,013 2,014 5 2014-02-05 2013-12-17 0.1368925
52,656 c3a1407863ea6dd75f7897cad33835c7 DUFR1**102013 2,013 2,014 6 2013-11-18 2013-10-04 0.1232033
60,595 c608039402f2ad468835c3ab9d12e677 CAAL1**072014 2,014 2,014 5 2014-07-21 2014-07-21 0.0000000
58,523 c6a7be0fcf4c6f66221e329104e48883 PEBR1**052014 2,014 2,014 5 2014-06-06 2014-05-19 0.0492813
62,474 c765a4e2af7ab3cc7ae001070b503050 JADI2**092014 2,014 2,014 5 2014-09-30 2014-09-17 0.0355921
54,418 c8ac6673fe449df4dc4413cf8c9878b6 GEOR1**022014 2,014 2,014 5 2014-02-14 2014-02-14 0.0000000
62,659 ca50b266929877ca56170af4b6ca7501 ALLI1**092014 2,014 2,014 5 2014-09-25 2014-09-25 0.0000000
58,656 ccc2249f59cc52ac8d616662b12c3038 ANOR2**052014 2,014 2,014 5 2014-05-29 2014-05-29 0.0000000
51,048 ce8713622fc6042467a3d3729292eae0 ENAL2**092013 2,013 2,014 6 2013-10-15 2013-09-03 0.1149897
54,905 cee383e8075524a15a3e243382edbc47 SEUR1**022014 2,014 2,014 5 2014-02-18 2014-02-13 0.0136893
52,904 cfb8e2fc00adc59d9a2afdf5334d80a9 JOUR1**122013 2,013 2,014 5 2013-12-03 2013-12-03 0.0000000
59,768 d0096113be91f1ce643534aa8c0704b6 JARO1**022014 2,014 2,014 5 2014-07-02 2014-02-15 0.3750856
52,719 d19d1ea1d2d029f4bc0f2675d93f3234 LUGU1**072013 2,013 2,014 6 2013-11-26 2013-07-21 0.3504449
52,050 d2111418ab78f0a344deaa3a897f08bd JOCA1**112013 2,013 2,014 5 2013-11-21 2013-11-21 0.0000000
51,786 df2ce933562770d4c8914edbd8738541 SAGO1**062013 2,013 2,014 6 2013-10-28 2013-06-23 0.3477070
64,540 e13c8e73574fa1097e9ba61c472a8784 HEMO1**042014 2,014 2,014 5 2014-11-24 2014-04-17 0.6050650
56,435 e2b3a2ebe811d7ee66df5aa536a3695f JOGA1**042014 2,014 2,014 5 2014-04-09 2014-04-02 0.0191650
56,263 e2cf471bd0e20f2bedebcb7606d0cacb YEVA1**032014 2,014 2,014 5 2014-03-21 2014-03-21 0.0000000
59,115 e40c7ad76b14bfe0f18fed93b19e2dca ROLO1**062014 2,014 2,014 5 2014-06-16 2014-06-14 0.0054757
51,695 e7b55af427ba709d30c6005f693eb66f JEGA2**012013 2,013 2,014 6 2013-11-04 2013-01-04 0.8323066
63,518 e8d4e7ec9067faee7252e3421fc131fd PALL1**042014 2,014 2,014 5 2014-10-13 2014-04-19 0.4845996
64,867 e9c1c6248f996ae3f578602d9953ca13 ISOR1**092014 2,014 2,014 5 2014-12-12 2014-09-23 0.2190281
56,675 ee76b9e38e4a9eff202f4a56660c7eca CAHE2**042014 2,014 2,014 5 2014-04-22 2014-04-22 0.0000000
51,698 eee34348656d96521f9562193c8a3007 CAGU2**012013 2,013 2,014 6 2013-11-05 2013-01-24 0.7802875
61,634 ef00f137abde81b272a2a803ff3b5353 FRCA1**072014 2,014 2,014 5 2014-08-01 2014-07-08 0.0657084
53,508 f0a981419be2548644ba07dcafe0c4a3 LUJO1**092013 2,013 2,014 6 2014-01-27 2013-09-25 0.3394935
51,219 f21bbc9bf555d4e829f3db65e56b510d CABA1**082013 2,013 2,014 6 2013-10-17 2013-08-24 0.1478439
56,069 f3612fadeb097f6554c56683d7b3e5f2 LEAS2**032014 2,014 2,014 5 2014-03-31 2014-03-02 0.0793977
61,891 f40d70dfb94c7086d9de0ab004a293c6 DANU2**022014 2,014 2,014 5 2014-08-20 2014-02-05 0.5366188
59,459 f52d7d44debd140b3cd42af6e92d80f9 EXMA1**062014 2,014 2,014 5 2014-06-20 2014-06-20 0.0000000
51,452 f69caa1b82135a69956c4f4293ec4d6f MAAL2**102013 2,013 2,014 6 2013-10-24 2013-10-24 0.0000000
52,811 f988c37e7ce91c77cf4009e3714d40b1 TARE2**062013 2,013 2,014 6 2013-12-16 2013-06-05 0.5311431
54,560 fba602106f2a581a65a4db020e013642 NOES2**112013 2,013 2,014 5 2014-02-06 2013-11-25 0.1998631
61,288 fc49568e7fd2ffdfb2a3cef77af89459 ISMA1**082014 2,014 2,014 5 2014-08-05 2014-08-05 0.0000000
54,187 fcb6557f60d2759df2513c9f9b9115c1 KLST1**012014 2,014 2,014 5 2014-01-29 2014-01-29 0.0000000
55,302 fdf286edf7d8f4bd5cd61f88d7e4f89d REAE1**032014 2,014 2,014 5 2014-03-06 2014-03-05 0.0027379
52,554 fee26755a3e4dd7729c1ad2ed5d58fff RAMA1**102013 2,013 2,014 6 2013-10-21 2013-10-21 0.0000000
36,728 001ba6dfc8332930f9d9d20a0fa6685b MIMO1**061913 1,913 2,013 106 2013-02-06 1913-06-28 99.6112252
45,760 0a21d1124c0c4a5d0da592ed6f14cff7 CAPE1**102013 2,013 2,013 6 2013-10-24 2013-10-24 0.0000000
46,812 1a8bf763c9745393c20c89f46fcc56b4 TAGU2**012013 2,013 2,013 6 2013-10-21 2013-01-24 0.7392197
44,664 23938bd85a47c2e8730e47ae8054f62c VISA2**022013 2,013 2,013 6 2013-09-23 2013-02-04 0.6324435
45,721 29b93a33e7344cc48d3cbf4a5facad38 JAFU1**062013 2,013 2,013 6 2013-04-18 2013-06-12 -0.1505818
45,085 2df0eb141ab0b668005ee0524fc91eb7 JOPA1**082013 2,013 2,013 6 2013-08-12 2013-08-12 0.0000000
45,018 3ca3b680130f62d361dbb5826ae1dfda TERO2**102013 2,013 2,013 6 2013-10-14 2013-10-14 0.0000000
44,517 3e6a828045d78e1702575a459bbce640 JOUR2**092013 2,013 2,013 6 2013-09-30 2013-09-07 0.0629706
44,559 6567363878a5b347f469a390f9644d52 BAAR1**062013 2,013 2,013 6 2013-09-26 2013-06-03 0.3148528
44,578 6c0fd2b68d3a9f0e2b6598e1ab72b94d DEVI2**092013 2,013 2,013 6 2013-09-02 2013-09-02 0.0000000
44,259 6ff5532362ac764da4ad9c2e85ae2d61 ALMO1**082013 2,013 2,013 6 2013-09-03 2013-08-22 0.0328542
45,399 8f5e3e9746af356cc4fc83d9a115e043 LEMO1**102013 2,013 2,013 6 2013-10-14 2013-10-16 -0.0054757
46,615 a7c467c7d652f1861fd9ac231821ab24 ADMO2**112013 2,013 2,013 5 2013-11-04 2013-11-21 -0.0465435
44,778 aca1dbae04cca9acea253b7b3d4db474 JASO1**082013 2,013 2,013 6 2013-09-01 2013-08-12 0.0547570
47,228 add23dc42ee2d765da142f8f554e98c5 ANPA1**102013 2,013 2,013 6 2013-12-12 2013-10-24 0.1341547
47,492 c7290f91f32f5b89f3d1824972859c1f MOAR2**122013 2,013 2,013 5 2013-12-17 2013-12-17 0.0000000
44,637 cd0e56e0fcd787b52022747c37377a47 JOGA1**092013 2,013 2,013 6 2013-09-30 2013-09-16 0.0383299
45,972 d92c4a27171e52747526875b92cfde9a GECA1**102013 2,013 2,013 6 2013-10-22 2013-10-22 0.0000000
45,641 e0a72ef727d9d08f4e47817ccbe361b9 JUDI1**102013 2,013 2,013 6 2013-10-10 2013-10-29 -0.0520192
44,083 e88a3ae889b0c7a5c06244f67acdb09c MICL1**032013 2,013 2,013 6 2013-09-03 2013-03-08 0.4900753
29,147 0278b423c68cb673a95672f75904e20f MAPE2**021913 1,913 2,012 106 2012-07-09 1913-02-22 99.3757700
20,682 54941be1a9e27de0e090c3ca4cc20196 NACO1**051910 1,910 2,012 109 2010-04-20 1910-05-05 99.9589322
29,110 8f354ed21b55fd6e2918d26debc1b248 ANES2**101912 1,912 2,012 107 2012-07-30 1912-10-02 99.8247775
384 0872294f48bd7e30ee2dfedbc7d85954 CAFL2**041909 1,909 2,010 110 2009-09-10 1909-04-06 100.4298426
1,444 1257b2d7deca5d747569d13ee288aaca ELGO2**091909 1,909 2,010 110 2009-09-03 1909-09-04 99.9972621
1,192 2a3853fc81a5770ceda4e0b85d7e330a ALVE2**021909 1,909 2,010 110 2009-01-27 1909-02-06 99.9726215
61 40b6915c6ee34519efcbe0d312a140a6 SAHE2**111909 1,909 2,010 109 2009-11-13 1909-11-13 100.0000000
2,784 4d1619ea9534b215c6f8729d32950fb6 MIGU1**091909 1,909 2,010 110 2009-11-23 1909-09-08 100.2080767
2,305 79e485608bd9fae7c792c4c379a0681b BRGA1**021909 1,909 2,010 110 2009-12-10 1909-02-28 100.7802875
1,359 8adcaecd02f133ab38eedf0c0036d9ff ELMO2**091909 1,909 2,010 110 2008-07-31 1909-09-15 98.8747433
2,768 92f7992b962d02a791ff9e2829ff9bb4 MAES1**051907 1,907 2,010 112 2007-05-16 1907-05-16 100.0000000
436 9b66f589b973bca1142d7e9995e5c2d0 WLMO1**081909 1,909 2,010 110 2009-08-24 1909-08-24 100.0000000
385 a67601047b085141dd804da881c173a7 ALME2**101909 1,909 2,010 110 2009-10-05 1909-10-05 100.0000000


As advised at the beginning of this section, these invalid values may condition the data linkage, given that if we assign a missing value to a user that in other registry has the correct age, cases that share the same HASH and date of admission won’t match within the block assigned. To account for this possible bias, we checked whether with valid data of another case with the same HASH Key could replace missing or invalid ages (that is, the same user with another duplicated entry, or another treatment).


#list of distinct HASHs that have a wrongly assigned age
CONS_C1_df_dup_ENE_2020_prev2 %>% dplyr::filter(Edad<18|Edad>90) %>%
  dplyr::distinct(HASH_KEY) %>%
  assign("distinct_hash_wrong_age2",., envir = .GlobalEnv)

#Then, apply these cases to the whole population
CONS_C1_df_dup_ENE_2020_prev2 %>%
dplyr::filter(HASH_KEY %in% as.character(as.vector(unlist(as.data.table(unlist(distinct_hash_wrong_age2)))))) %>% # select hashs of wrongly assigned ages
dplyr::arrange(HASH_KEY) %>% #order by hashs 
  dplyr::filter(Edad>=18,Edad<=90) %>% #nrow() #if you want to see how many cases would be changed: 387.
  #dplyr::filter(!duplicated(HASH_KEY)) %>% nrow() # 211 DIFFERENT HASHS WERE CAPTURED.
      #dplyr::select(-id,-TABLE,-14,-16,-17,-26,-27,-28,-29,-35,-36,-37,-88,-93,-94,-96,-101) %>%
      dplyr::select(row, ano_bd, HASH_KEY, id_mod, ano_nac, ano_bd,Edad, fech_ing, fech_egres,tipo_de_plan, tipo_de_programa, ID.centro) %>%
 knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
               caption="Table 9. Total cases with wrong ages but their HASH had a valid age along the dataset",
                 align =rep('c', 101))  %>%
   kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 8) %>%
  kableExtra::scroll_box(width = "100%", height = "350px")
Table 9. Total cases with wrong ages but their HASH had a valid age along the dataset
row ano_bd HASH_KEY id_mod ano_nac Edad fech_ing fech_egres tipo_de_plan tipo_de_programa ID.centro
73,339 2,015 001ba6dfc8332930f9d9d20a0fa6685b MIMO1**061993 1,993 26 2015-02-05 2015-03-24 PG-PAI Programa Población General 495
44,192 2,013 001ba6dfc8332930f9d9d20a0fa6685b MIMO1**061993 1,993 26 2013-09-17 2013-09-30 PG-PR Programa Población General 303
109,675 2,017 0185474236a78bd34f1f598e07021075 BOCO1**021987 1,987 32 2016-10-20 2017-02-06 PG-PAI Programa Población General 176
73,137 2,015 0185474236a78bd34f1f598e07021075 BOCO1**021987 1,987 32 2015-02-27 2015-12-01 PG-PR Programa Población General 183
56,952 2,014 0185474236a78bd34f1f598e07021075 BOCO1**021987 1,987 32 2014-04-23 2014-07-31 PG-PAI Programa Población General 176
107,762 2,017 01e54166db8cc46ba02cc1261bad7025 NAFA2**091988 1,988 31 2016-06-21 2017-06-15 PG-PAI Programa Población General 146
48,089 2,014 01e54166db8cc46ba02cc1261bad7025 NAFA2**091988 1,988 31 2012-12-06 2014-03-31 PG-PAB Programa Población General 367
24,959 2,012 01e54166db8cc46ba02cc1261bad7025 NAFA2**091988 1,988 31 2012-02-08 2012-05-22 PG-PAB Programa Población General 367
58,682 2,014 0278b423c68cb673a95672f75904e20f PECA2**021994 1,994 25 2014-06-02 2014-08-18 M-PR Programa Específico Mujeres 159
30,152 2,012 0278b423c68cb673a95672f75904e20f MAPE2**021993 1,993 26 2012-09-05 2012-10-03 M-PR Programa Específico Mujeres 142
8,920 2,010 050d90c29749bafec11dffebad0166a6 VIVA1**081978 1,978 41 2010-11-26 2011-05-31 PG-PAI Programa Población General 225
79,393 2,015 0616f30596be9524fbee513d685d2932 ROBE2**101987 1,987 32 2015-07-22 2015-09-21 PG-PAB Programa Población General 256
68,772 2,015 0616f30596be9524fbee513d685d2932 ROBE1**101987 1,987 32 2014-08-20 2015-04-30 PG-PAI Programa Población General 254
40,912 2,013 0616f30596be9524fbee513d685d2932 ROBE1**101987 1,987 32 2013-06-07 2013-08-24 PG-PAB Programa Población General 256
22,790 2,012 0616f30596be9524fbee513d685d2932 ROBE1**101987 1,987 32 2011-09-12 2012-05-08 PG-PR Programa Población General 258
15,610 2,011 0616f30596be9524fbee513d685d2932 ROBE1**101987 1,987 32 2011-04-04 2011-10-03 PG-PAB Programa Población General 256
37,854 2,013 06faceb13defbd9a1bb63e22913ab1bb JALO2**071963 1,963 56 2011-05-24 2013-11-29 PG-PAB Programa Población General 168
140,323 2,018 079ed7fb1f01ba66a7d3409808f3471c SIOV2**011995 1,995 24 2018-04-30 2018-10-22 M-PAI Programa Específico Mujeres 149
96,747 2,016 0872294f48bd7e30ee2dfedbc7d85954 CAFL2**041980 1,980 39 2016-05-02 2016-09-01 PG-PAB Programa Población General 612
126,695 2,018 0a21d1124c0c4a5d0da592ed6f14cff7 CAPE1**041987 1,987 32 2016-12-23 2018-03-05 PG-PR Programa Población General 167
70,511 2,015 0a2dabadf8ca1b2e9ba2e22b38e8ddcb ANZA1**041979 1,979 40 2014-12-15 2015-01-30 PG-PAI Programa Población General 338
52,022 2,014 0a2dabadf8ca1b2e9ba2e22b38e8ddcb ANZA1**041979 1,979 40 2013-10-29 2014-03-17 PG-PAB Programa Población General 109
148,694 2,019 0a36a632748c09dcf24fdc962bde1f1a ROAN1**061980 1,980 39 2018-08-01 2019-03-08 PG-PAI Programa Población General 290
118,299 2,017 0a36a632748c09dcf24fdc962bde1f1a ROAN1**061999 1,999 20 2017-05-09 2017-12-06 PG-PAB Programa Población General 290
83,582 2,015 0a36a632748c09dcf24fdc962bde1f1a ROAN1**101980 1,980 39 2015-10-22 2015-12-01 PG-PAI Programa Población General 290
74,377 2,015 0a36a632748c09dcf24fdc962bde1f1a ROAN1**061980 1,980 39 2015-03-26 2015-10-01 PG-PR Programa Población General 297
74,151 2,015 0a36a632748c09dcf24fdc962bde1f1a ROAN1**051980 1,980 39 2015-03-02 2015-03-25 PG-PAI Programa Población General 290
38,055 2,013 0a36a632748c09dcf24fdc962bde1f1a ROAN1**061980 1,980 39 2013-03-11 2013-06-04 PG-PAI Programa Población General 290
27,822 2,012 0a36a632748c09dcf24fdc962bde1f1a ROAN1**061980 1,980 39 2012-05-30 2012-11-05 PG-PAB Programa Población General 290
17,971 2,011 0a36a632748c09dcf24fdc962bde1f1a ROAN1**061980 1,980 39 2011-08-12 2011-10-27 PG-PAB Programa Población General 290
6,103 2,010 0a36a632748c09dcf24fdc962bde1f1a ROAN1**061980 1,980 39 2010-05-27 2011-01-26 PG-PAB Programa Población General 290
3,595 2,010 0a36a632748c09dcf24fdc962bde1f1a ROAN1**061980 1,980 39 2009-06-02 2010-04-30 PG-PAB Programa Población General 290
32,489 2,013 0c66c0b765a83da8d1de567a6463b309 ANVI2**011978 1,978 41 2012-01-09 2013-04-25 M-PR Programa Específico Mujeres 302
19,974 2,011 0c66c0b765a83da8d1de567a6463b309 ANVI2**011978 1,978 41 2011-11-09 2012-01-07 M-PR Programa Específico Mujeres 300
110,751 2,017 0d450685425ac7fc4e184894e1e84e22 FESO1**051996 1,996 23 2016-11-04 2017-07-01 PG-PAB Programa Población General 502
134,666 2,018 0d5782868d35d58892a0f938813f7608 EDHO1**041960 1,960 59 2018-02-21 2018-09-03 PG-PAI Programa Población General 246
141,214 2,018 0ecdd96aa26acffb0443024302c88b19 JECO1**021992 1,992 27 2018-08-20 2018-09-20 PG-PR Programa Población General 104
44,023 2,013 0ecdd96aa26acffb0443024302c88b19 JECO1**021992 1,992 27 2013-09-06 2013-09-20 PG-PAI Programa Población General 320
14,854 2,011 10a7d484048197952a402d58199638f0 ROES2**071986 1,986 33 2011-03-10 2011-09-30 PG-PAB Programa Población General 292
148,280 2,019 11bcfa643c44875d8bdcaf47536f8d21 CRFI1**021991 1,991 28 2018-07-12 2019-01-31 PG-PAI Programa Población General 294
34,361 2,013 12bcf88002321230829c390f370e5a94 LUSE1**081989 1,989 30 2012-10-23 2013-04-02 PG-PAB Programa Población General 139
74,755 2,015 153b828278ea88dc5ab15039e3e0c882 JONA1**011985 1,985 34 2015-04-01 2015-08-06 PG-PAB Programa Población General 626
132,263 2,018 16344f388ae51c7cc12cc550acd2ff95 JOSA1**041981 1,981 38 2017-12-27 2018-07-23 PG-PAB Programa Población General 124
70,111 2,015 1881f1555ce2c4753b5ee918c1d32bf8 CASE2**011984 1,984 35 2014-11-12 2015-09-02 M-PR Programa Específico Mujeres 159
58,521 2,014 1881f1555ce2c4753b5ee918c1d32bf8 CASE2**011984 1,984 35 2014-06-10 2014-09-24 M-PR Programa Específico Mujeres 277
53,565 2,014 1881f1555ce2c4753b5ee918c1d32bf8 CASE2**011984 1,984 35 2014-01-20 2014-06-10 M-PAI Programa Específico Mujeres 438
13,506 2,011 1892dab247fd46439de490b350394c36 HESA1**011985 1,985 34 2010-10-27 2011-05-11 PG-PAI Programa Población General 108
9,006 2,010 1892dab247fd46439de490b350394c36 HESA1**011985 1,985 34 2010-10-27 2011-02-01 PG-PAB Programa Población General 108
161,042 2,019 18d02fe910027e6dd0688cb544367604 BEMO2**041985 1,985 34 2019-07-18 NA PG-PAB Programa Población General 232
108,163 2,017 18d02fe910027e6dd0688cb544367604 BEMO2**041985 1,985 34 2016-07-18 2017-08-31 M-PAI Programa Específico Mujeres 438
24,824 2,012 18d02fe910027e6dd0688cb544367604 BEMO2**041985 1,985 34 2012-01-16 2012-03-21 M-PAI Programa Específico Mujeres 149
112,501 2,017 18ed67cbe7d0be3b407be54f181fbb49 FECA1**081988 1,988 31 2017-01-26 2017-09-15 PG-PR Programa Población General 267
44,181 2,013 18ed67cbe7d0be3b407be54f181fbb49 FECA1**081988 1,988 31 2013-09-05 2013-12-03 PG-PAI Programa Población General 428
54,843 2,014 1925b5752041680a6494ecb6a185c753 CAGA1**011974 1,974 45 2014-02-14 2014-03-16 PG-PR Programa Población General 496
141,906 2,018 19b20aa4a758b87ae992597fa0f8e166 EVFU1**011986 1,986 33 2018-09-11 2018-12-14 PG-PR Programa Población General 358
108,661 2,017 1a8bf763c9745393c20c89f46fcc56b4 TAGU2**011986 1,986 33 2016-07-28 2017-05-12 PG-PAI Programa Población General 261
70,253 2,015 1a8bf763c9745393c20c89f46fcc56b4 TAGU2**011986 1,986 33 2014-11-24 2015-03-05 M-PR Programa Específico Mujeres 358
63,135 2,014 1a8bf763c9745393c20c89f46fcc56b4 TAGU2**011986 1,986 33 2014-10-02 2014-12-01 PG-PAI Programa Población General 428
35,288 2,013 1a8bf763c9745393c20c89f46fcc56b4 TAGU2**011986 1,986 33 2012-12-05 2013-01-31 M-PR Programa Específico Mujeres 243
28,548 2,012 1a8bf763c9745393c20c89f46fcc56b4 TAGU2**011986 1,986 33 2012-07-10 2012-10-30 PG-PAB Programa Población General 123
112,492 2,017 1b5a4c08bfc9db53e71419ed6b7418c2 MANA1**021969 1,969 50 2017-01-16 2017-08-04 PG-PR Programa Población General 682
117,592 2,017 1cca291c439af8de53eefaad88ffedde DADU2**031985 1,985 34 2017-05-02 2018-01-01 PG-PAB Programa Población General 337
21,986 2,012 1cca291c439af8de53eefaad88ffedde DADU2**031985 1,985 34 2011-08-29 2012-03-29 PG-PAB Programa Población General 337
162,026 2,019 1ccc23513d404cbc37a37b1bc3b7ce77 RASE1**101972 1,972 47 2019-09-23 NA PG-PAB Programa Población General 476
83,535 2,015 1e605b52e9b58e4bb66f9a6c2f32176d PASI2**031989 1,989 30 2015-11-03 2015-11-30 M-PR Programa Específico Mujeres 243
68,079 2,015 1e605b52e9b58e4bb66f9a6c2f32176d PASI2**031989 1,989 30 2014-08-04 2015-01-06 M-PR Programa Específico Mujeres 258
56,039 2,014 1e605b52e9b58e4bb66f9a6c2f32176d PASI2**031989 1,989 30 2014-03-01 2014-07-28 PG-PAI Programa Población General 427
43,356 2,013 1e605b52e9b58e4bb66f9a6c2f32176d PASI2**031989 1,989 30 2013-08-21 2013-10-03 M-PR Programa Población General 258
29,473 2,012 1e605b52e9b58e4bb66f9a6c2f32176d PASI2**031989 1,989 30 2012-08-28 2012-12-03 M-PR Programa Específico Mujeres 243
109,110 2,017 1ec3f2c2efb06ba95486d0324984a867 MERO2**021960 1,960 59 2016-08-24 2017-04-10 PG-PAB Programa Población General 224
55,595 2,014 2112f4ef70d436947acb8057a43ea2a4 CLPA1**121980 1,980 38 2014-03-25 2014-04-11 PG-PR Programa Población General 154
50,992 2,014 2112f4ef70d436947acb8057a43ea2a4 CLPA1**121980 1,980 38 2013-10-04 2014-01-21 PG-PAB Programa Población General 139
24,684 2,012 2112f4ef70d436947acb8057a43ea2a4 CLPA1**121980 1,980 38 2012-02-21 2012-11-26 PG-PAB Programa Población General 139
141,137 2,018 21803297911589576d8ddacd79b5d55d CAMA2**101977 1,977 42 2018-08-28 2018-10-01 PG-PAI Programa Población General 619
88,976 2,016 21e1a0cb1dd23fabdb68277bcec401b8 CRMA1**011993 1,993 26 2015-08-17 2016-10-13 PG-PAI Programa Población General 336
67,981 2,015 21e1a0cb1dd23fabdb68277bcec401b8 CRMA1**011993 1,993 26 2014-07-04 2015-01-29 PG-PAB Programa Población General 260
136,067 2,018 2311d4b022b6b0ca7f3c8f781db5bd6e IVMO1**101974 1,974 45 2018-04-12 2018-04-15 PG-PR Programa Población General 682
96,182 2,016 23938bd85a47c2e8730e47ae8054f62c VISA2**021982 1,982 37 2016-04-22 2016-11-06 M-PR Programa Específico Mujeres 345
41,569 2,013 23938bd85a47c2e8730e47ae8054f62c VISA2**021982 1,982 37 2013-06-24 2013-09-10 M-PR Programa Específico Mujeres 219
37,184 2,013 23938bd85a47c2e8730e47ae8054f62c VISA2**021982 1,982 37 2013-02-06 2013-06-19 PG-PAI Programa Población General 213
99,224 2,016 2576e8499b6e9b9c0eb33037741df8d6 ALIN1**071975 1,975 44 2016-07-09 2016-09-02 PG-PAB Programa Población General 618
73,491 2,015 2576e8499b6e9b9c0eb33037741df8d6 ALIN1**071975 1,975 44 2015-03-13 2015-06-04 PG-PAB Programa Población General 618
149,240 2,019 25c36b6820ac514094c458ba22918452 ELVI2**111962 1,962 56 2018-09-01 2019-02-08 M-PR Programa Específico Mujeres 104
128,968 2,018 25c36b6820ac514094c458ba22918452 ELVI2**111962 1,962 56 2017-08-02 2018-02-19 M-PR Programa Específico Mujeres 104
117,470 2,017 25c36b6820ac514094c458ba22918452 ELVI2**111962 1,962 56 2017-05-03 2017-08-01 M-PAI Programa Específico Mujeres 170
108,602 2,017 25c36b6820ac514094c458ba22918452 ELVI2**111962 1,962 56 2016-08-18 2017-04-28 M-PR Programa Específico Mujeres 104
97,694 2,016 25c36b6820ac514094c458ba22918452 ELVI2**111962 1,962 56 2016-05-27 2016-07-19 M-PAI Programa Específico Mujeres 122
94,527 2,016 25c36b6820ac514094c458ba22918452 ELVI2**111962 1,962 56 2016-03-04 2016-05-22 M-PR Programa Población General 652
92,114 2,016 25c36b6820ac514094c458ba22918452 ELVI2**111962 1,962 56 2016-01-04 2016-03-03 M-PAI Programa Específico Mujeres 122
83,765 2,015 25c36b6820ac514094c458ba22918452 ELVI2**111963 1,963 55 2015-09-24 2015-12-31 PG-PAB Programa Población General 122
61,750 2,014 25c36b6820ac514094c458ba22918452 ELVI2**111962 1,962 56 2014-08-05 2014-11-05 M-PR Programa Específico Mujeres 163
34,403 2,013 25c36b6820ac514094c458ba22918452 ELVI2**111962 1,962 56 2012-10-04 2013-05-03 M-PR Programa Específico Mujeres 163
14,097 2,011 25c36b6820ac514094c458ba22918452 ELVI2**111962 1,962 56 2011-01-31 2011-12-30 M-PAI Programa Específico Mujeres 122
8,392 2,010 25c36b6820ac514094c458ba22918452 ELVI2**111962 1,962 56 2010-08-20 2010-12-22 PG-PAI Programa Población General 122
7,698 2,010 25c36b6820ac514094c458ba22918452 ELVI2**111962 1,962 56 2010-08-20 2010-09-30 PG-PAB Programa Población General 122
3,022 2,010 28a68f9ac9ad88bef6d71c87650e171c DAMU2**091983 1,983 36 2009-12-02 2010-08-29 PG-PAB Programa Población General 259
111,672 2,017 29b93a33e7344cc48d3cbf4a5facad38 JAFU1**061991 1,991 28 2017-01-03 2017-03-01 PG-PAI Programa Población General 119
78,911 2,015 29b93a33e7344cc48d3cbf4a5facad38 JAFU1**061991 1,991 28 2015-07-20 2016-01-27 PG-PAB Programa Población General 113
67,073 2,015 29fd17afa366812eeae4f070d949b621 ALPA1**041981 1,981 38 2014-04-09 2015-07-30 PG-PAI Programa Población General 490
70,564 2,015 2b45294e123346196cd1849a73934b5f MAEU2**091985 1,985 34 2014-12-05 2015-10-05 PG-PAB Programa Población General 256
51,544 2,014 2b45294e123346196cd1849a73934b5f MAEU2**091985 1,985 34 2013-10-23 2014-02-07 M-PAI Programa Específico Mujeres 149
121,152 2,017 2b6acccc2cc4d497fb01d0045a41b8f5 CRVA1**071979 1,979 40 2017-08-09 2017-10-24 PG-PAI Programa Población General 207
58,377 2,014 2b6acccc2cc4d497fb01d0045a41b8f5 CRVA1**071979 1,979 40 2014-06-01 2014-08-01 PG-PAB Programa Población General 177
116,833 2,017 2ba2a92ace74249379d27a134119603f ROPE1**071983 1,983 36 2017-05-08 2017-08-31 PG-PAI Programa Población General 301
69,232 2,015 2ba2a92ace74249379d27a134119603f ROPE1**071983 1,983 36 2014-10-06 2015-04-01 PG-PAB Programa Población General 294
57,959 2,014 2ba2a92ace74249379d27a134119603f ROPE1**071983 1,983 36 2014-04-28 2014-10-27 PG-PAI Programa Población General 301
136,436 2,018 2bf4303825646ee1fb044f426a3a69e0 IVME1**011980 1,980 39 2018-04-04 2018-07-31 PG-PAI Programa Población General 246
95,170 2,016 2bf4303825646ee1fb044f426a3a69e0 IVME1**011980 1,980 39 2016-03-08 2016-05-22 PG-PAB Programa Población General 238
78,815 2,015 2f72fa7496b7083591d2caff4142a540 ROMU1**071972 1,972 47 2015-07-01 2015-09-30 PG-PAI Programa Población General 162
107,082 2,017 302ed871d749f5bc3c73ae857a61a04f HEPA1**101953 1,953 66 2016-04-21 2017-03-01 PG-PAB Programa Población General 599
43,916 2,013 307478874831e6772e116074a1115afd MARO1**041976 1,976 43 2013-08-08 2013-11-24 PG-PR Programa Población General 258
63,614 2,014 33846b3d1ab12c80e895f2c97183fd6e IGMU1**111980 1,980 38 2014-10-10 2014-12-20 PG-PR Programa Población General 358
134,421 2,018 352d4af019cf9259d17b9e617e84374a FEMO1**051988 1,988 31 2018-02-28 2018-03-05 PG-PR Programa Población General 596
131,135 2,018 3536ecb01a030126c6ff59f315c95682 OSBU1**091971 1,971 48 2017-11-09 2018-08-29 PG-PAB Programa Población General 613
70,553 2,015 3694089f54b38b8d0a07079102a1e3dc CLHE1**051982 1,982 37 2014-12-11 2015-06-30 PG-PAB Programa Población General 368
146,908 2,019 3755bba9469ee445d50e20190fa83bbf CLAL1**091982 1,982 37 2018-03-05 2019-07-01 PG-PAB Programa Población General 290
74,751 2,015 376cacf6012ee8b1eb6c9594610033e5 ROCA1**101991 1,991 28 2015-03-20 2015-05-29 PG-PAI Programa Población General 246
138,576 2,018 39dd71d814e69327a313cdef2d7cd806 FEPI1**071992 1,992 27 2018-06-14 2018-06-15 PG-PR Programa Población General 682
93,785 2,016 3a8eb8edf401af5695c140f3a5698829 DIRA1**091990 1,990 29 2015-12-22 2016-03-10 PG-PAI Programa Población General 298
45,478 2,013 3abe9a42141394f5d7dcd8cc6599dcb5 ANLO1**091967 1,967 52 2013-10-14 2013-11-04 PG-PR Programa Población General 117
33,638 2,013 3abe9a42141394f5d7dcd8cc6599dcb5 ANLO1**091967 1,967 52 2011-08-02 2013-03-29 PG-PAB Programa Población General 109
22,028 2,012 3abe9a42141394f5d7dcd8cc6599dcb5 ANLO1**091967 1,967 52 2011-08-02 2012-07-31 PG-PAI Programa Población General 109
131,206 2,018 3b604ebd59968de97237cf6a47a22502 IVBO1**061975 1,975 44 2017-11-22 2018-03-01 PG-PAI Programa Población General 141
68,021 2,015 3b604ebd59968de97237cf6a47a22502 IVBO1**061975 1,975 44 2014-06-10 2015-03-16 PG-PAI Programa Población General 272
70,356 2,015 3bb60d41dee218ae5ae3846057d48b95 DACA2**091983 1,983 36 2014-12-05 2015-04-30 PG-PAI Programa Población General 557
139,556 2,018 3c78a6af51709bf3f9a0c5ae9bed4a95 LUMO1**111987 1,987 31 2018-07-02 2018-07-31 PG-PR Programa Población General 688
93,417 2,016 3ca3b680130f62d361dbb5826ae1dfda TERO2**101984 1,984 35 2016-02-05 2016-07-31 M-PR Programa Específico Mujeres 488
51,507 2,014 3ca3b680130f62d361dbb5826ae1dfda TERO2**101984 1,984 35 2013-10-14 2014-05-16 M-PR Programa Específico Mujeres 488
147,937 2,019 3e59c66a1aebcb3d9fdfa1d3bbc1a85c ROAL1**011990 1,990 29 2018-06-19 2019-03-29 PG-PAI Programa Población General 338
103,787 2,016 3f77045375df8c1ce7e74ae8c36846ff JACA1**061976 1,976 43 2016-11-03 2016-12-12 PG-PR Programa Población General 132
74,293 2,015 3f77045375df8c1ce7e74ae8c36846ff JACA1**061976 1,976 43 2015-03-25 2015-07-01 PG-PAB Programa Población General 602
37,592 2,013 4000849a3b0c044434724ac011e14fb2 CLVA1**101970 1,970 49 2013-03-05 2013-10-02 PG-PAI Programa Población General 185
72,098 2,015 42096bc0d7cc104bff333c7bb7ab8712 CAPI1**111960 1,960 58 2015-01-28 2015-03-31 PG-PAB Programa Población General 246
46,455 2,013 429718cc352bec4dff3cd8c5733dccb3 WLCU1**031981 1,981 38 2013-11-12 2014-01-29 PG-PAI Programa Población General 123
152,659 2,019 4372e151fd421219f5122cc46b15b18b VADI2**071991 1,991 28 2019-01-02 2019-03-12 M-PAI Programa Específico Mujeres 756
144,608 2,018 4372e151fd421219f5122cc46b15b18b VADI2**071991 1,991 28 2018-11-26 2018-12-20 PG-PAI Programa Población General 200
121,942 2,017 4372e151fd421219f5122cc46b15b18b VADI2**071991 1,991 28 2017-09-15 2018-01-02 PG-PAI Programa Población General 200
87,582 2,016 4372e151fd421219f5122cc46b15b18b VADI2**071991 1,991 28 2015-05-29 2016-03-31 PG-PAI Programa Población General 501
59,110 2,014 4372e151fd421219f5122cc46b15b18b VADI2**071991 1,991 28 2014-06-04 2014-09-30 M-PAI Programa Específico Mujeres 165
98,376 2,016 45ee4dbdf00e06132d4413bbbd7df417 PAAD2**011980 1,980 39 2016-06-13 2016-08-29 M-PAI Programa Específico Mujeres 263
90,745 2,016 45ee4dbdf00e06132d4413bbbd7df417 PAAD2**051980 1,980 39 2015-11-17 2016-06-10 M-PR Programa Específico Mujeres 277
69,742 2,015 45ee4dbdf00e06132d4413bbbd7df417 PAAD2**051980 1,980 39 2014-11-05 2015-09-30 M-PR Programa Específico Mujeres 277
63,274 2,014 45ee4dbdf00e06132d4413bbbd7df417 PAAD2**051980 1,980 39 2014-10-03 2014-11-07 PG-PAI Programa Población General 309
34,492 2,013 45ee4dbdf00e06132d4413bbbd7df417 PAAD2**051980 1,980 39 2012-10-02 2013-06-25 PG-PAB Programa Población General 309
12,185 2,011 45ee4dbdf00e06132d4413bbbd7df417 PAAD2**051980 1,980 39 2010-11-18 2011-04-13 PG-PAI Programa Población General 309
1,417 2,010 45ee4dbdf00e06132d4413bbbd7df417 PAAD2**051980 1,980 39 2009-07-07 2010-04-01 PG-PAB Programa Población General 309
35,542 2,013 4642a23aada9426b78c649b329597857 BASA1**041985 1,985 34 2013-01-04 2014-02-14 PG-PAB Programa Población General 146
129,150 2,018 46923f82f46c14595e0b398ed4248eae PACO2**051980 1,980 39 2017-08-25 2018-03-08 M-PAI Programa Específico Mujeres 263
85,314 2,015 47ef1ed889728efa8c0f2deb0a220669 MAVI2**081993 1,993 26 2015-12-18 2016-01-03 M-PR Programa Población General 652
59,157 2,014 47ef1ed889728efa8c0f2deb0a220669 MAVI2**081993 1,993 26 2014-06-02 2014-12-01 PG-PAI Programa Población General 115
92,548 2,016 4a2e82359ab80f4110208bc1ef219894 FRMI1**041992 1,992 27 2016-01-19 2016-05-27 PG-PAB Programa Población General 238
57,430 2,014 4a2e82359ab80f4110208bc1ef219894 FRMI1**041992 1,992 27 2014-05-12 2014-07-14 PG-PAI Programa Población General 238
54,598 2,014 4abfecb81b952e2f8ec21a770a51c2a2 RARO1**021977 1,977 42 2013-12-19 2014-06-27 PG-PAI Programa Población General 260
78,509 2,015 4b3d323421de18da767233bda9b0bc87 CLAL1**021982 1,982 37 2015-06-01 2015-09-29 PG-PAI Programa Población General 353
97,278 2,016 4ba0607a91d0e839fbd5427c855d30ec DICE1**021996 1,996 23 2016-05-16 2016-07-12 PG-PR Programa Población General 162
72,281 2,015 4c4865e8e336059576dafff791406b3d ORMU1**091977 1,977 42 2015-02-03 2015-03-05 PG-PR Programa Población General 163
95,879 2,016 4fbe50d4e687e3fed9bb73a1b50e1783 JAES2**051986 1,986 33 2016-04-01 2016-05-18 M-PAI Programa Específico Mujeres 290
151,845 2,019 519508aebc18c11a82240a788f40231c MAGO1**111971 1,971 47 2019-01-09 2019-05-02 PG-PAI Programa Población General 721
135,511 2,018 519508aebc18c11a82240a788f40231c MAGO1**111971 1,971 47 2018-03-02 2018-06-25 PG-PAI Programa Población General 502
53,984 2,014 519508aebc18c11a82240a788f40231c MAGO1**111971 1,971 47 2014-01-20 2014-05-06 PG-PAB Programa Población General 502
34,898 2,013 519508aebc18c11a82240a788f40231c MAGO1**111971 1,971 47 2012-11-05 2014-01-29 PG-PAB Programa Población General 328
37,852 2,013 522a8c3d145abd04ebcca385a72f6fd4 JUAL1**071987 1,987 32 2013-03-06 2013-06-28 PG-PAI Programa Población General 176
51,158 2,014 560ad471cc24efe2380be130700783e2 ROCH1**011984 1,984 35 2013-10-07 2015-01-02 PG-PAB Programa Población General 148
126,955 2,018 5669a5838dc918a38827778a7f028dc1 JOLA1**041972 1,972 47 2017-03-21 2018-05-24 PG-PAB Programa Población General 632
26,984 2,012 5674b142391373e01dfcc306df2d0dca CESO1**041982 1,982 37 2012-03-28 2012-08-09 PG-PAI Programa Población General 149
128,673 2,018 56f99f0c1058dfdc2d862821be68908d ALBA1**051980 1,980 39 2017-08-01 2018-06-24 PG-PR Programa Población General 134
41,042 2,013 56f99f0c1058dfdc2d862821be68908d ALBA1**051980 1,980 39 2013-06-25 2013-11-01 PG-PAI Programa Población General 134
11,437 2,011 56f99f0c1058dfdc2d862821be68908d ALBA1**051980 1,980 39 2010-09-29 2011-02-04 PG-PR Programa Población General 258
35,066 2,013 572a0c1831cd90fd046f1ebc1d67994a LUGO1**011978 1,978 41 2012-12-10 2013-07-30 PG-PAB Programa Población General 255
147,051 2,019 577e7eaf4ebd8d1bb224798636dd13c5 PAOL1**011963 1,963 56 2018-03-16 NA PG-PAB Programa Población General 270
16,993 2,011 577e7eaf4ebd8d1bb224798636dd13c5 PAOL1**011963 1,963 56 2011-02-23 2012-01-02 PG-PAB Programa Población General 232
161,401 2,019 5af954ff3acde4f7d82caee53f35ddc3 JUVA2**091974 1,974 45 2019-09-02 NA PG-PAI Programa Población General 309
136,799 2,018 5af954ff3acde4f7d82caee53f35ddc3 JUVA2**091974 1,974 45 2018-03-02 2018-05-30 PG-PAI Programa Población General 309
68,928 2,015 5af954ff3acde4f7d82caee53f35ddc3 JUVA2**091974 1,974 45 2014-09-25 2015-03-30 PG-PAI Programa Población General 309
2,488 2,010 5af954ff3acde4f7d82caee53f35ddc3 JUVA2**091974 1,974 45 2009-12-30 2010-08-04 PG-PAI Programa Población General 309
53,457 2,014 5bf2ffac7d9611eaca35ca015b8da022 GUGU1**101986 1,986 33 2014-01-10 2014-10-17 PG-PR Programa Población General 183
48,507 2,014 5bf2ffac7d9611eaca35ca015b8da022 GUGU1**091986 1,986 33 2013-03-20 2014-01-20 PG-PAB Programa Población General 405
24,921 2,012 5bf2ffac7d9611eaca35ca015b8da022 GUGU1**091986 1,986 33 2012-02-15 2012-10-12 PG-PAI Programa Población General 363
66,650 2,015 5ca7f13aa49592a33df47a8c92e1a833 NOCA2**061978 1,978 41 2014-02-28 2015-07-03 M-PAI Programa Específico Mujeres 196
28,076 2,012 5ca7f13aa49592a33df47a8c92e1a833 NOCA2**061978 1,978 41 2012-06-27 2012-12-03 PG-PAI Programa Población General 178
71,082 2,015 5d1ddee3c47756a7faacd4eb6fc05693 CLHA1**041992 1,992 27 2015-01-21 2015-01-22 PG-PR Programa Población General 303
58,863 2,014 5d1ddee3c47756a7faacd4eb6fc05693 CLHA1**041992 1,992 27 2014-05-29 2014-07-29 PG-PAI Programa Población General 290
41,139 2,013 5d1ddee3c47756a7faacd4eb6fc05693 CLHA1**041992 1,992 27 2013-06-06 2013-07-30 PG-PAI Programa Población General 290
138,080 2,018 5f2e9af63730ca0c5f5e37f61595f7d1 ROSA1**061979 1,979 40 2018-05-28 2018-07-25 PG-PAI Programa Población General 261
123,705 2,017 5f2e9af63730ca0c5f5e37f61595f7d1 ROSA1**061979 1,979 40 2017-10-02 2017-11-15 PG-PAI Programa Población General 428
88,017 2,016 5f2e9af63730ca0c5f5e37f61595f7d1 ROSA1**061979 1,979 40 2015-06-16 2016-03-31 PG-PR Programa Población General 358
132,975 2,018 6218383ca3245f183d37109cbad00e7b ALSU1**101968 1,968 51 2017-12-28 2018-04-06 PG-PAI Programa Población General 316
25,311 2,012 6218383ca3245f183d37109cbad00e7b ALSU1**101968 1,968 51 2012-03-12 2012-05-16 PG-PR Programa Población General 289
50,415 2,014 6342c5d72382ca9d24de6e277e2df32f MASA2**031980 1,980 39 2013-08-08 2014-05-20 M-PAI Programa Población General 157
95,724 2,016 638dc4fb2f068057ea83872b81b939c1 MAMU2**071959 1,959 60 2016-03-10 2016-08-24 PG-PAI Programa Población General 156
69,661 2,015 65f57f0a6a732ea3780954d538a75428 SECA1**041963 1,963 56 2014-11-01 2015-03-16 PG-PR Programa Población General 496
114,720 2,017 675db915f9b72ca8209af209da1a5b09 JOAR1**021979 1,979 40 2017-03-27 2017-05-22 PG-PAI Programa Población General 640
127,415 2,018 6c0fd2b68d3a9f0e2b6598e1ab72b94d DEVI2**081985 1,985 34 2017-05-02 2018-05-01 M-PAI Programa Específico Mujeres 502
102,013 2,016 6c0fd2b68d3a9f0e2b6598e1ab72b94d DEVI2**081985 1,985 34 2016-09-20 2016-11-28 M-PR Programa Específico Mujeres 345
89,862 2,016 6d533b6ebd408688d42997b791dd8a75 MARA2**111947 1,947 72 2015-10-01 2016-04-07 PG-PAB Programa Población General 120
159,697 2,019 6ff5532362ac764da4ad9c2e85ae2d61 ALMO1**081992 1,992 27 2019-05-21 2019-10-01 PG-PAI Programa Población General 106
89,626 2,016 6ff5532362ac764da4ad9c2e85ae2d61 ALMO1**081992 1,992 27 2015-09-09 2016-02-01 PG-PR Programa Población General 117
70,491 2,015 6ff5532362ac764da4ad9c2e85ae2d61 ALMO1**081992 1,992 27 2014-12-01 2015-06-01 PG-PAI Programa Población General 106
61,522 2,014 70597f2a60f6148d50cf465be1a3edb5 MAVI1**011988 1,988 31 2014-07-14 2014-09-29 PG-PAI Programa Población General 133
41,405 2,013 711029aaa5f478f2c55223d285eb84fe SHYA1**081984 1,984 35 2013-06-04 2013-09-01 PG-PR Programa Población General 163
34,069 2,013 711029aaa5f478f2c55223d285eb84fe SHYA1**081984 1,984 35 2012-10-04 2013-03-25 PG-PAI Programa Población General 164
90,078 2,016 7254ade7587f29202196fb75b17dc272 CRBA1**021982 1,982 37 2015-10-21 2015-12-30 PG-PR Programa Población General 297
70,972 2,015 7254ade7587f29202196fb75b17dc272 CRBA1**021982 1,982 37 2015-01-21 2015-10-16 PG-PAI Programa Población General 295
15,005 2,011 72cffa8571b63fa2bbdc803a1f2572f6 GUCO1**021983 1,983 36 2011-04-12 2011-10-26 PG-PAB Programa Población General 146
149,129 2,019 72d3bf07e1cfb2e15f7c0f186fa3062d KARI2**071983 1,983 36 2018-09-10 NA M-PAI Programa Específico Mujeres 436
37,139 2,013 736fae09679c81655531176f2d1fd5e5 MAAG1**101972 1,972 47 2013-02-01 2013-12-02 PG-PAI Programa Población General 330
36,185 2,013 736fae09679c81655531176f2d1fd5e5 MAAG1**101972 1,972 47 2013-01-01 2013-02-01 Otro Programa Población General 330
91,764 2,016 760ab7c11c153e3f46a49b28e7d28109 VIMA1**091981 1,981 38 2015-12-01 2016-09-26 PG-PAB Programa Población General 454
49,518 2,014 78137d8b5d25f99a46ac5e27f740dfa9 MADI2**081993 1,993 26 2013-06-21 2014-09-30 PG-PAI Programa Población General 436
154,659 2,019 78b53d7e099c895d0b0c9b0f73188539 HUPO1**091958 1,958 61 2019-02-15 2019-05-03 PG-PAI Programa Población General 251
11,110 2,011 78b53d7e099c895d0b0c9b0f73188539 HUPO1**091958 1,958 61 2010-07-27 2011-09-27 PG-PAB Programa Población General 251
111,655 2,017 79e485608bd9fae7c792c4c379a0681b BRGA1**021984 1,984 35 2016-12-22 2017-10-01 PG-PAI Programa Población General 419
77,886 2,015 7c7a382fbee4f066ddc8afb03be3c826 EVGA2**051981 1,981 38 2015-06-04 2015-07-21 PG-PAI Programa Población General 153
20,812 2,012 7f436efd7a0821acc4276c007e0cab22 BEBE2**121954 1,954 64 2010-11-01 2012-01-31 PG-PAB Programa Población General 241
68,432 2,015 84959e1b6bdc461afd0af4669917bf52 YERA2**071984 1,984 35 2014-08-18 2015-05-04 M-PR Programa Específico Mujeres 449
55,836 2,014 84959e1b6bdc461afd0af4669917bf52 YERA2**071984 1,984 35 2014-03-25 2014-09-01 M-PAI Programa Específico Mujeres 196
74,391 2,015 87afef689812b1ad6f576f0e83e5c963 DABU1**031991 1,991 28 2015-03-27 2015-08-26 PG-PAI Programa Población General 140
72,293 2,015 87afef689812b1ad6f576f0e83e5c963 DABU1**031991 1,991 28 2015-01-12 2015-03-20 PG-PAI Programa Población General 138
56,904 2,014 8933013b58f550a8a72b9d4bc7f694c5 ZUNA2**061973 1,973 46 2014-04-03 2014-07-23 PG-PAB Programa Población General 347
111,486 2,017 8aaca219f703edb8180889af34c95af7 VIZA2**091969 1,969 50 2016-12-01 2017-01-13 PG-PAB Programa Población General 295
100,639 2,016 8aaca219f703edb8180889af34c95af7 VIZA2**091969 1,969 50 2016-08-16 2016-11-30 M-PR Programa Específico Mujeres 432
99,752 2,016 8aaca219f703edb8180889af34c95af7 VIZA1**091969 1,969 50 2016-07-01 2016-08-12 M-PAI Programa Específico Mujeres 290
93,885 2,016 8aaca219f703edb8180889af34c95af7 VIZA2**091969 1,969 50 2016-02-23 2016-04-05 M-PAI Programa Específico Mujeres 290
88,856 2,016 8aaca219f703edb8180889af34c95af7 VIZA2**091969 1,969 50 2015-08-01 2016-02-22 PG-PAI Programa Población General 299
63,218 2,014 8aaca219f703edb8180889af34c95af7 VIZA2**091969 1,969 50 2014-10-21 2015-02-27 PG-PAB Programa Población General 295
59,152 2,014 8aaca219f703edb8180889af34c95af7 VIZA2**091969 1,969 50 2014-06-26 2014-10-01 M-PR Programa Específico Mujeres 302
56,745 2,014 8aaca219f703edb8180889af34c95af7 VIZA2**091969 1,969 50 2014-04-09 2014-06-27 PG-PAI Programa Población General 290
37,238 2,013 8aaca219f703edb8180889af34c95af7 VIZA2**091969 1,969 50 2013-02-01 2014-03-31 PG-PAI Programa Población General 295
52,582 2,014 8b9ede9e8fda1c93f5864009a1e18767 JUBA1**101967 1,967 52 2013-06-26 2013-11-13 PG-PAI Programa Población General 336
53,745 2,014 8beb99b458dcb70a2c6bdac15d1ffae8 HICA2**101983 1,983 36 2014-01-13 2014-02-21 M-PR Programa Específico Mujeres 165
48,329 2,014 8e3ee020d0e375a5465551855beef0d9 IBFR1**081971 1,971 48 2013-01-30 2014-12-29 PG-PAI Programa Población General 178
48,110 2,014 8e5281ff55f663f7f125e66b1eed5e30 CLNE1**051976 1,976 43 2012-12-07 2014-07-28 PG-PAI Programa Población General 178
92,557 2,016 8e572a0351477ce0b449d79e728935c3 ANSE2**091992 1,992 27 2015-12-01 2016-12-26 PG-PAI Programa Población General 194
157,565 2,019 8f354ed21b55fd6e2918d26debc1b248 ANES2**111994 1,994 25 2019-05-27 2019-08-23 PG-PAI Programa Población General 132
153,934 2,019 8f354ed21b55fd6e2918d26debc1b248 ANES2**111994 1,994 25 2019-02-12 2019-02-28 PG-PR Programa Población General 725
75,540 2,015 8f354ed21b55fd6e2918d26debc1b248 ANES2**111994 1,994 25 2015-04-13 2015-06-01 M-PAI Programa Específico Mujeres 161
64,937 2,014 8f354ed21b55fd6e2918d26debc1b248 ANES2**111994 1,994 25 2014-12-02 2015-03-17 M-PAI Programa Específico Mujeres 161
54,653 2,014 8f354ed21b55fd6e2918d26debc1b248 ANES2**111994 1,994 25 2014-02-03 2014-04-01 M-PAI Programa Específico Mujeres 161
55,445 2,014 8f5e3e9746af356cc4fc83d9a115e043 LEMO1**051978 1,978 41 2014-03-18 2014-08-12 PG-PR Programa Población General 258
127,356 2,018 9097ba34be47c5e4769cbb380b1a19c3 SOHU2**051980 1,980 39 2017-04-12 2018-04-02 PG-PAI Programa Población General 333
79,276 2,015 9097ba34be47c5e4769cbb380b1a19c3 SOHU2**051980 1,980 39 2015-07-21 2015-11-30 M-PR Programa Específico Mujeres 142
59,653 2,014 9186bf55e02db4cfa18a94877faaeaae JOCA1**021985 1,985 34 2014-07-03 2015-01-29 PG-PAB Programa Población General 175
51,561 2,014 9186bf55e02db4cfa18a94877faaeaae JOCA1**021985 1,985 34 2013-10-29 2014-03-31 PG-PAB Programa Población General 175
24,352 2,012 91cf26bab3740af962ca4b4c8d66fa7f BEMA2**101964 1,964 55 2011-10-05 2012-04-03 M-PAI Programa Específico Mujeres 105
68,530 2,015 9326cee4bf6b78a580d94d7a2918defe IVCA1**071960 1,960 59 2014-09-04 2015-12-03 PG-PAB Programa Población General 166
65,369 2,015 940072c88254c0601c2f9af1d52bdfa8 JOCO1**081982 1,982 37 2012-06-27 2015-10-01 PG-PAI Programa Población General 396
23,039 2,012 940072c88254c0601c2f9af1d52bdfa8 JOCO1**081982 1,982 37 2011-11-10 2012-06-30 PG-PR Programa Población General 104
36,716 2,013 954bec2ee088c12db31904b363e78a98 JUSC1**061983 1,983 36 2013-02-04 2013-09-02 PG-PAI Programa Población General 132
128,103 2,018 9642c561b4782b5626610105f2054076 JUNU1**021972 1,972 47 2017-06-21 2018-03-29 PG-PAB Programa Población General 218
135,607 2,018 971a392201dca223bc07f635a7412443 REJI1**021984 1,984 35 2018-03-20 2018-07-23 PG-PR Programa Población General 193
129,771 2,018 971a392201dca223bc07f635a7412443 REJI1**021984 1,984 35 2017-09-01 2018-03-19 PG-PAI Programa Población General 181
42,494 2,013 972709af06218bfc09d4f028a7f2fa36 MAOR1**071979 1,979 40 2013-07-11 2014-01-07 PG-PAB Programa Población General 370
117,213 2,017 99184c090c1d5c6b346ee82ab4b267ff JUAS1**091980 1,980 39 2017-05-17 2017-09-20 PG-PAI Programa Población General 137
87,623 2,016 9a7094f7872f46a3f95bc811141ab0b1 CAHO1**011993 1,993 26 2015-06-04 2016-04-01 PG-PAB Programa Población General 590
67,319 2,015 9a7094f7872f46a3f95bc811141ab0b1 CAHO1**011993 1,993 26 2014-06-16 2015-01-29 PG-PAI Programa Población General 218
103,214 2,016 9b4349d272c562d022b673e4faf943eb STVA2**071991 1,991 28 2016-10-17 2017-01-01 M-PAI Programa Específico Mujeres 502
70,015 2,015 9b4349d272c562d022b673e4faf943eb STVA2**071991 1,991 28 2014-11-25 2015-06-01 PG-PR Programa Población General 117
22,290 2,012 9b4349d272c562d022b673e4faf943eb STVA2**071991 1,991 28 2011-09-20 2012-06-15 PG-PAI Programa Población General 115
76,064 2,015 9cafeebef314301a4d28f9617eb2db84 HEPO1**011986 1,986 33 2015-04-07 2015-06-16 PG-PR Programa Población General 162
55,071 2,014 9d13f7974119875c68872c9bb1315169 MAGA1**101971 1,971 48 2014-02-25 2014-07-01 PG-PAI Programa Población General 246
145,821 2,019 9d4067490872679cabd325391f43973a BOCA1**021974 1,974 45 2016-12-05 NA PG-PAI Programa Población General 299
45,258 2,013 9d4067490872679cabd325391f43973a BOCA1**081971 1,971 48 2013-09-27 2014-03-04 PG-PAB Programa Población General 295
155,622 2,019 a0c04efc4020b66bc9e202d870848f7a SOMO2**071984 1,984 35 2019-03-22 NA PG-PAI Programa Población General 501
91,565 2,016 a0c04efc4020b66bc9e202d870848f7a SOMO2**101984 1,984 35 2015-12-10 2016-06-30 PG-PAI Programa Población General 501
27,094 2,012 a0c04efc4020b66bc9e202d870848f7a SOMO1**071984 1,984 35 2012-05-28 2012-06-20 M-PR Programa Específico Mujeres 165
6,603 2,010 a0c04efc4020b66bc9e202d870848f7a SOMO2**071984 1,984 35 2010-07-01 2011-01-31 M-PAI Programa Específico Mujeres 165
37,843 2,013 a16577eeed6c1bbb24cad0e96f60b2a2 PAIB2**011971 1,971 48 2013-01-15 2013-12-12 M-PAI Programa Específico Mujeres 149
155,711 2,019 a2593b9c1e36f77aa936f7a1a820d4cd JUGO1**081978 1,978 41 2019-01-31 NA PG-PAB Programa Población General 290
75,734 2,015 a26b1ac1007562c9e19cd5163a68c2ec KAAN2**041989 1,989 30 2015-03-30 2015-07-06 PG-PAB Programa Población General 592
160,562 2,019 a444a079cae143f4c1a81333206b1fa2 CRCE1**091974 1,974 45 2019-08-02 NA PG-PAI Programa Población General 202
98,690 2,016 a444a079cae143f4c1a81333206b1fa2 CRCE1**091974 1,974 45 2016-06-02 2016-10-24 PG-PAI Programa Población General 202
92,889 2,016 a444a079cae143f4c1a81333206b1fa2 CRCE1**091974 1,974 45 2015-12-21 2016-04-04 PG-PAI Programa Población General 202
36,783 2,013 a510b674f569b6bd720ae2f9c4b038b8 SECA1**081989 1,989 30 2013-02-13 2013-07-31 PG-PAI Programa Población General 283
10,562 2,011 a510b674f569b6bd720ae2f9c4b038b8 SECA1**081989 1,989 30 2010-06-14 2011-05-31 PG-PAB Programa Población General 195
157,210 2,019 a5b8d096bb62e725e52b61fb28aed343 EDLE1**031967 1,967 52 2019-04-08 2019-10-18 PG-PAI Programa Población General 218
69,949 2,015 a664b554d169c5f88b243b8c5f47235d GAPE1**061993 1,993 26 2014-11-26 2015-11-09 PG-PAI Programa Población General 169
38,174 2,013 a664b554d169c5f88b243b8c5f47235d GAPE1**061993 1,993 26 2013-03-18 2013-12-30 PG-PR Programa Población General 162
156,540 2,019 a67601047b085141dd804da881c173a7 ALME2**101987 1,987 32 2019-04-22 NA PG-PAB Programa Población General 476
127,719 2,018 a67601047b085141dd804da881c173a7 ALME2**101987 1,987 32 2017-05-29 2018-04-16 PG-PAB Programa Población General 476
48,119 2,014 a6e602feb838ea9b7392e5134f66acb7 RILI1**061973 1,973 46 2012-12-28 2014-03-03 PG-PAB Programa Población General 366
57,219 2,014 a72f953a356b5a624e919918b63a2fad JOIB1**071982 1,982 37 2014-04-28 2014-08-28 PG-PR Programa Población General 193
15,409 2,011 a73c7452763307541b29b174fcfeb8c8 JEMO2**091974 1,974 45 2011-04-01 2011-08-31 PG-PAB Programa Población General 145
4,039 2,010 a73c7452763307541b29b174fcfeb8c8 JEMO2**091974 1,974 45 2010-03-15 2010-05-03 PG-PAB Programa Población General 145
62,388 2,014 a81b5a68a64ec4989b15b06382a45f6c ROCI2**091974 1,974 45 2014-09-08 2015-01-02 M-PAI Programa Específico Mujeres 438
70,006 2,015 aa7cc08fd4579be84bdc2dc1ffbd8616 JOSA1**121975 1,975 43 2014-11-12 2015-03-02 PG-PAI Programa Población General 149
39,740 2,013 aa7cc08fd4579be84bdc2dc1ffbd8616 JOSA1**121975 1,975 43 2013-05-14 2013-09-02 PG-PR Programa Población General 147
39,137 2,013 ad62e5dacd4b89a12721135a164c2369 DAVI2**061990 1,990 29 2013-04-03 2013-09-25 PG-PAB Programa Población General 428
71,075 2,015 ae9d88ab75abd959fe3462608dc7702f GUGA1**031984 1,984 35 2015-01-12 2015-03-13 PG-PAB Programa Población General 489
34,857 2,013 b05925d3aec79d9c5328ce69353e0fdd UBFU2**011982 1,982 37 2012-11-20 2013-02-26 M-PAI Programa Específico Mujeres 262
108,310 2,017 b1bb5f860c2d5e6ece18574ccde902fc AROR2**061996 1,996 23 2016-07-13 2017-05-24 M-PR Programa Específico Mujeres 488
72,326 2,015 b36bc9b83aee187478fa1c1b30435529 ASRO2**081984 1,984 35 2014-12-17 2015-02-11 PG-PAI Programa Población General 427
54,997 2,014 b36bc9b83aee187478fa1c1b30435529 ASRO2**081984 1,984 35 2014-02-01 2014-05-20 PG-PAI Programa Población General 427
54,083 2,014 b36bc9b83aee187478fa1c1b30435529 ASRO2**081984 1,984 35 2014-01-06 2014-01-23 M-PR Programa Específico Mujeres 358
38,019 2,013 b36bc9b83aee187478fa1c1b30435529 ASRO2**081984 1,984 35 2013-03-25 2013-04-17 M-PR Programa Población General 258
52,248 2,014 b3b4e92d7d3256b4bdefc1d57c9a6d01 PEFR1**011976 1,976 43 2013-11-06 2014-03-13 PG-PAI Programa Población General 428
50,073 2,014 b57bb1be348e3c4c896be4d68043bfdc EMHE1**011994 1,994 25 2013-07-12 2014-03-17 PG-PAB Programa Población General 428
158,811 2,019 b781ad6ad261463e0113dd2a9666a6d7 YEAR2**011989 1,989 30 2019-06-03 2019-06-04 M-PR Programa Específico Mujeres 165
66,686 2,015 b781ad6ad261463e0113dd2a9666a6d7 YEAR2**011989 1,989 30 2014-03-06 2015-05-29 M-PAI Programa Específico Mujeres 165
41,150 2,013 b781ad6ad261463e0113dd2a9666a6d7 YEAR2**011989 1,989 30 2013-06-14 2013-06-27 M-PR Programa Específico Mujeres 165
115,058 2,017 b9a7dc1763b1eff304d698a26d45987a PASC2**021970 1,970 49 2017-03-24 2017-11-24 M-PR Programa Específico Mujeres 258
89,244 2,016 b9a7dc1763b1eff304d698a26d45987a PASC2**021970 1,970 49 2015-09-01 2016-03-24 M-PR Programa Específico Mujeres 258
4,456 2,010 b9a7dc1763b1eff304d698a26d45987a PASC2**021970 1,970 49 2009-10-05 2010-06-01 PG-PAB Programa Población General 258
115,163 2,017 b9ea83c2b1fbdb556749399b4efd327f JAAL1**101986 1,986 33 2017-03-31 2017-11-24 PG-PR Programa Población General 662
115,096 2,017 b9ea83c2b1fbdb556749399b4efd327f JAAL1**101986 1,986 33 2017-01-12 2017-03-30 PG-PAI Programa Población General 694
159,199 2,019 bbad69de47dec4c9d0d092210bb2af69 JOCA2**031985 1,985 34 2019-07-15 NA PG-PAI Programa Población General 186
141,224 2,018 bbad69de47dec4c9d0d092210bb2af69 JOCA2**031985 1,985 34 2018-08-02 2018-12-01 PG-PAI Programa Población General 186
71,160 2,015 bbad69de47dec4c9d0d092210bb2af69 JOCA2**031985 1,985 34 2015-01-20 2015-03-04 PG-PAI Programa Población General 194
34,072 2,013 bbad69de47dec4c9d0d092210bb2af69 JOCA2**031985 1,985 34 2012-10-05 2013-10-30 M-PR Programa Específico Mujeres 197
29,975 2,012 bbad69de47dec4c9d0d092210bb2af69 JOCA2**031985 1,985 34 2012-09-25 2012-10-04 PG-PAI Programa Población General 187
86,817 2,016 be113baceb35ea5ae5a34de7d5c23b84 CHME1**031990 1,990 29 2015-03-27 2016-06-09 PG-PAI Programa Población General 161
49,881 2,014 bff381e310734e33e4fc846f7360ee77 BEGA1**121973 1,973 45 2013-07-19 2014-02-05 PG-PAI Programa Población General 290
42,418 2,013 c3a1407863ea6dd75f7897cad33835c7 DOFR1**101977 1,977 42 2013-06-21 2013-10-04 PG-PAI Programa Población General 149
28,636 2,012 c448e5cd3e78582182916796bf1cd0a3 JUSA1**081989 1,989 30 2012-07-30 2012-09-24 PG-PAI Programa Población General 164
10,273 2,011 c4a738e3e147557918f4f3a29384617e RAGA1**071973 1,973 46 2010-02-22 2011-09-05 PG-PAB Programa Población General 254
154,313 2,019 c4b87ed143a1328df096ac3e5ac66752 CRCR1**021985 1,985 34 2019-03-06 2019-07-19 PG-PR Programa Población General 596
107,069 2,017 c4b87ed143a1328df096ac3e5ac66752 CRCR1**021985 1,985 34 2016-04-28 2017-01-31 PG-PR Programa Población General 596
33,062 2,013 c4b87ed143a1328df096ac3e5ac66752 CRCR1**021985 1,985 34 2012-06-04 2013-06-04 PG-PR Programa Población General 215
80,532 2,015 c4d30a1c4557dc3a71da5f034ba3fc57 JOCU1**111984 1,984 34 2015-08-24 2015-11-27 PG-PR Programa Población General 183
70,519 2,015 c765a4e2af7ab3cc7ae001070b503050 JADI2**091984 1,984 35 2014-12-01 2015-04-27 M-PR Programa Específico Mujeres 234
60,941 2,014 c765a4e2af7ab3cc7ae001070b503050 JADI2**091984 1,984 35 2014-08-20 2014-09-30 M-PR Programa Específico Mujeres 234
60,454 2,014 c765a4e2af7ab3cc7ae001070b503050 JADI2**091984 1,984 35 2014-07-17 2014-08-19 PG-PAB Programa Población General 251
63,397 2,014 c8ac6673fe449df4dc4413cf8c9878b6 GEOR1**051968 1,968 51 2014-10-01 2015-03-09 PG-PAB Programa Población General 290
50,874 2,014 c8ac6673fe449df4dc4413cf8c9878b6 GEOR1**051968 1,968 51 2013-09-13 2014-01-31 PG-PAB Programa Población General 290
21,314 2,012 c93824e1813aef5dcc4f242e999a6473 PAAD1**071974 1,974 45 2011-05-05 2012-03-09 PG-PAI Programa Población General 174
109,934 2,017 ca50b266929877ca56170af4b6ca7501 ALLI1**071983 1,983 36 2016-10-07 2017-04-28 PG-PAI Programa Población General 212
101,245 2,016 ca50b266929877ca56170af4b6ca7501 ALLI1**061983 1,983 36 2016-08-05 2016-10-06 PG-PAI Programa Población General 146
43,198 2,013 ca50b266929877ca56170af4b6ca7501 ALLI1**071983 1,983 36 2013-08-07 2013-11-19 PG-PAI Programa Población General 212
159,703 2,019 ca640aaf41385bea310d7b73f7cdba25 RARO1**041986 1,986 33 2019-07-09 NA PG-PAI Programa Población General 162
1,707 2,010 ca640aaf41385bea310d7b73f7cdba25 RARO1**011986 1,986 33 2009-10-27 2010-02-10 PG-PR Programa Población General 271
48,901 2,014 cc3f918ca077e0fa589264817e7dfc63 JUCE1**101969 1,969 50 2013-05-13 2014-06-27 PG-PR Programa Población General 358
160,615 2,019 ccc2249f59cc52ac8d616662b12c3038 ANOR2**061982 1,982 37 2019-08-12 2019-09-05 PG-PAB Programa Población General 211
105,771 2,017 ccc2249f59cc52ac8d616662b12c3038 ANOR2**061982 1,982 37 2015-07-22 2017-07-24 PG-PAB Programa Población General 211
12,267 2,011 ccc2249f59cc52ac8d616662b12c3038 ANOR2**061982 1,982 37 2010-11-17 2011-03-10 M-PR Programa Específico Mujeres 277
8,801 2,010 ccc2249f59cc52ac8d616662b12c3038 ANOR2**061982 1,982 37 2010-10-14 2010-11-05 M-PR Programa Específico Mujeres 234
132,212 2,018 ce8713622fc6042467a3d3729292eae0 RAAL1**091979 1,979 40 2017-12-11 2018-03-06 PG-PAI Programa Población General 431
109,159 2,017 ce8713622fc6042467a3d3729292eae0 RAAL1**091979 1,979 40 2016-09-24 2017-03-01 PG-PR Programa Población General 297
100,300 2,016 ce8713622fc6042467a3d3729292eae0 RAAL1**091979 1,979 40 2016-07-01 2016-09-23 PG-PAI Programa Población General 431
55,860 2,014 ce8713622fc6042467a3d3729292eae0 RAAL1**091979 1,979 40 2014-03-26 2014-08-05 PG-PR Programa Población General 297
23,672 2,012 ce8713622fc6042467a3d3729292eae0 RAAL1**091979 1,979 40 2012-01-04 2012-03-05 PG-PAB Programa Población General 291
34,354 2,013 d19d1ea1d2d029f4bc0f2675d93f3234 LUGU1**071990 1,990 29 2012-10-22 2013-03-07 PG-PAI Programa Población General 207
147,739 2,019 d2ed9aa7d6555131b46251846e8b8e7b RUCA2**021985 1,985 34 2018-06-15 2019-05-31 PG-PAB Programa Población General 503
108,436 2,017 d2ed9aa7d6555131b46251846e8b8e7b RUCA2**021985 1,985 34 2016-08-12 2017-08-30 PG-PAB Programa Población General 503
55,511 2,014 d44603ff4147d1f87a0a8187ea7a7dfe CLIT2**111966 1,966 53 2014-03-12 2014-06-26 M-PR Programa Específico Mujeres 163
15,937 2,011 d44603ff4147d1f87a0a8187ea7a7dfe CLIT2**111966 1,966 53 2011-05-10 2011-11-02 PG-PR Programa Población General 163
100,908 2,016 d50338c03da03ab872fb654a5f38c86f YEBE2**081993 1,993 26 2016-08-17 2016-12-01 M-PAI Programa Específico Mujeres 290
61,761 2,014 d92c4a27171e52747526875b92cfde9a GECA1**091988 1,988 31 2014-09-03 2014-09-05 PG-PAI Programa Población General 320
118,723 2,017 da430c8ff2f2e7059c4e402228c980d7 ARFL1**021981 1,981 38 2017-06-27 2017-08-31 PG-PAB Programa Población General 502
1,820 2,010 da430c8ff2f2e7059c4e402228c980d7 ARFL1**021981 1,981 38 2010-01-13 2010-03-25 PG-PAI Programa Población General 123
122,775 2,017 df2ce933562770d4c8914edbd8738541 SAGO1**061972 1,972 47 2017-07-03 2018-01-31 PG-PAI Programa Población General 225
138,857 2,018 e0a72ef727d9d08f4e47817ccbe361b9 JUDI1**081968 1,968 51 2018-06-12 2018-08-01 PG-PAB Programa Población General 614
96,952 2,016 e0a72ef727d9d08f4e47817ccbe361b9 -JDI1**081968 1,968 51 2016-04-11 2016-12-12 PG-PAB Programa Población General 614
92,922 2,016 e0a72ef727d9d08f4e47817ccbe361b9 JUDI1**081968 1,968 51 2016-01-04 2016-02-25 Otro Programa Población General 141
64,470 2,014 e2e8be29aee4522e31cf3f6632a7f67d PARA2**061981 1,981 38 2014-10-29 2015-01-08 PG-PAB Programa Población General 145
118,787 2,017 e40c7ad76b14bfe0f18fed93b19e2dca ROLO1**061986 1,986 33 2017-06-22 2017-12-01 PG-PAI Programa Población General 418
75,878 2,015 e7b55af427ba709d30c6005f693eb66f JEGA2**011987 1,987 32 2015-04-29 2015-05-13 M-PR Programa Específico Mujeres 219
42,218 2,013 e7b55af427ba709d30c6005f693eb66f JEGA2**011987 1,987 32 2013-07-23 2013-09-23 M-PR Programa Específico Mujeres 219
90,090 2,016 e88a3ae889b0c7a5c06244f67acdb09c MICL1**031980 1,980 39 2015-10-26 2016-06-01 PG-PAI Programa Población General 559
68,645 2,015 e88a3ae889b0c7a5c06244f67acdb09c MICL1**031980 1,980 39 2014-09-01 2015-06-24 PG-PAB Programa Población General 156
20,844 2,012 e907ad15203b08eec69e4ac53cf2ed1c VIRE1**071989 1,989 30 2010-12-16 2012-10-04 PG-PAI Programa Población General 299
67,192 2,015 e9b8767932d2c1c268c50986f37d1ac3 FRVE1**081985 1,985 34 2014-05-22 2015-09-25 PG-PAI Programa Población General 359
79,294 2,015 ea7b8f69ea7b4c84ec05336daea2bd5a SIAR2**061980 1,980 39 2015-07-28 2015-08-10 M-PR Programa Específico Mujeres 142
80,895 2,015 ea7b8f69ea7b4c84ec05336daea2bd5a SIAR2**061980 1,980 39 2015-06-12 2015-11-26 PG-PAI Programa Población General 141
12,013 2,011 ec17a1effd2c89815cc0620b0652a13b JEAL2**071980 1,980 39 2010-03-30 2011-07-14 M-PAI Programa Específico Mujeres 196
152,581 2,019 ee76b9e38e4a9eff202f4a56660c7eca CAHE2**041988 1,988 31 2018-10-09 NA M-PR Programa Específico Mujeres 751
128,292 2,018 ee76b9e38e4a9eff202f4a56660c7eca CAHE2**041988 1,988 31 2017-06-12 2018-10-08 M-PAI Programa Específico Mujeres 149
136,444 2,018 eee917660c6c73d0554e56dfddf8e543 ARSO1**061984 1,984 35 2018-03-14 2018-06-29 PG-PAB Programa Población General 612
99,509 2,016 f0e8cdce8a16fae7f1f8f1d7eb726e42 FRGO1**041982 1,982 37 2016-07-22 2016-10-04 PG-PAB Programa Población General 287
50,676 2,014 f2b452b7b3cb57347dffef25fb906533 MAAR1**041983 1,983 36 2013-09-02 2014-08-11 PG-PR Programa Población General 273
42,751 2,013 f2b452b7b3cb57347dffef25fb906533 MAAR1**041983 1,983 36 2013-04-25 2013-09-02 PG-PAI Programa Población General 224
79,333 2,015 f40d70dfb94c7086d9de0ab004a293c6 DANU2**021974 1,974 45 2015-07-20 2015-11-23 M-PAI Programa Específico Mujeres 290
101,833 2,016 f40e50584376f17c5209a446aded88a5 MACA1**031974 1,974 45 2016-09-07 2016-10-26 PG-PAI Programa Población General 212
87,456 2,016 f4b40bf329913b8d3f4b5ad5e387ceeb PEME1**021970 1,970 49 2015-05-06 2016-01-08 PG-PR Programa Población General 289
69,370 2,015 f4b40bf329913b8d3f4b5ad5e387ceeb PEME1**021970 1,970 49 2014-10-10 2015-03-31 PG-PAI Programa Población General 288
110,487 2,017 f69caa1b82135a69956c4f4293ec4d6f MAAL2**121961 1,961 57 2016-10-26 2017-06-01 PG-PAB Programa Población General 370
32,200 2,013 f739264a92a4019c5875a5dc2cfa6e9a CEME1**031988 1,988 31 2011-06-29 2013-08-30 PG-PAB Programa Población General 151
102,583 2,016 f88e060de83599227189511484dd9b44 WACA1**061981 1,981 38 2016-09-26 2017-01-01 PG-PAI Programa Población General 246
160,222 2,019 f988c37e7ce91c77cf4009e3714d40b1 TARE2**071986 1,986 33 2019-06-18 NA PG-PAB Programa Población General 348
68,141 2,015 fa2ea15f6f06cf6d26eb350fe06d3169 PABA1**041978 1,978 41 2014-07-18 2015-02-06 PG-PAI Programa Población General 301
89,711 2,016 fa82f67ef3d75abfe25d757e3fd94dda CAMA1**061987 1,987 32 2015-09-16 2016-05-31 PG-PAB Programa Población General 244
86,231 2,016 fc9685f0326cd580c91283cef901de83 FELI1**121977 1,977 41 2015-01-02 2016-03-28 PG-PAI Programa Población General 141
51,939 2,014 fc9685f0326cd580c91283cef901de83 FELI1**121977 1,977 41 2013-11-25 2014-09-13 PG-PR Programa Población General 142
42,439 2,013 fc9685f0326cd580c91283cef901de83 FELI1**121977 1,977 41 2013-07-18 2013-11-21 PG-PAI Programa Población General 141
36,704 2,013 fcb6557f60d2759df2513c9f9b9115c1 KLKU1**121977 1,977 41 2013-01-31 2013-07-01 PG-PR Programa Población General 162
24,930 2,012 fcb6557f60d2759df2513c9f9b9115c1 KLST1**121977 1,977 41 2012-02-21 2012-04-02 PG-PAI Programa Población General 169
41,044 2,013 fee26755a3e4dd7729c1ad2ed5d58fff RAMA1**091967 1,967 52 2013-06-24 2013-10-14 PG-PAB Programa Población General 428
#Capture every valid case distinct that has a valid age
CONS_C1_df_dup_age <- dplyr::select(CONS_C1_df, HASH_KEY, id, id_mod, Edad)%>% 
                      dplyr::filter(Edad>=18, Edad<=90) %>% #%>%  #dim rows 85490, 4 columns
                      dplyr::filter(!duplicated(HASH_KEY)) #lo mismo que  dplyr::distinct(HASH_KEY)
#Join datasets 
  dplyr::left_join(CONS_C1_df_dup_ENE_2020_prev2,dplyr::select(CONS_C1_df_dup_age,HASH_KEY,Edad, id,id_mod), by = "HASH_KEY", suffix = c("", ".y")) %>% # dim()
  dplyr::mutate(OBS=case_when((Edad<18 & !is.na(Edad.y))|(Edad>90 & !is.na(Edad.y)) ~ paste0(OBS,";","1.4. Replaced invalid ages with same users within the dataset"), 
                              TRUE ~ OBS))%>%
    dplyr::mutate(id= ifelse((Edad<18 & !is.na(Edad.y))|(Edad>90 & !is.na(Edad.y)),id.y, id)) %>%
    dplyr::mutate(id_mod=ifelse((Edad<18 & !is.na(Edad.y))|(Edad>90 & !is.na(Edad.y)),id_mod.y,id_mod)) %>% 
    dplyr::mutate(Edad= ifelse(Edad<18|Edad>90,Edad.y, Edad)) %>% #treat as invalid
 dplyr::select(-id_mod.y, -id.y) %>%
    #dplyr::group_by(Edad) %>% summarise(n=n()) %>% View()
    assign("CONS_C1_df_dup_ENE_2020_prev3",., envir = .GlobalEnv) 
  #The modification of age must be in the end of the changes, so it does not affect the rest of variables


Considering that the age is a time-invariant variable, we identified the date of admission and the HASH Key. We found similar matches, leading to 0 invalid values in age (<18 or >90), but 232 missing values with 232 different HASH keys.


CONS_C1_df_dup_ENE_2020_prev3 %>% 
  dplyr::filter(is.na(Edad)) %>% 
  arrange(HASH_KEY) %>%
  dplyr::select(row, ano_bd, HASH_KEY, id_mod, ano_nac, ano_bd,fech_ing, fech_egres,tipo_de_plan, tipo_de_programa, ID.centro, Edad, SENDA) %>%
 knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
               caption="Table 10. Missing Ages among Users with Wrong Dates of Birth",
                 align =rep('c', 101))  %>%
   kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 8) %>%
  kableExtra::scroll_box(width = "100%", height = "350px")
Table 10. Missing Ages among Users with Wrong Dates of Birth
row ano_bd HASH_KEY id_mod ano_nac fech_ing fech_egres tipo_de_plan tipo_de_programa ID.centro Edad SENDA
62,795 2,014 01fbe3da4feb1c3219154541973737fb ALKL1**092014 2,014 2014-09-03 2015-03-31 PG-PAB Programa Población General 503 NA Si
72,692 2,015 0253e2fa101b8fefaf7cd01cd69713cd CLAV1**022015 2,015 2015-02-11 2015-09-22 PG-PR Programa Población General 289 NA Si
79,569 2,015 031a3f135cc8da72da4da70e2111531a ISSA1**072015 2,015 2015-07-13 2015-08-31 PG-PAI Programa Población General 246 NA Si
69,740 2,015 0337bce679b733b0e7356ab12288d068 JORO1**091928 1,928 2014-11-13 2015-05-19 PG-PAB Programa Población General 124 NA Si
75,275 2,015 04b4bffa36994c2630693f4a54df5b67 MAGO1**042015 2,015 2015-04-01 2015-05-15 PG-PAI Programa Población General 290 NA Si
68,446 2,015 0597f7749e119dd2d9985d9d32ca1d40 VAMO1**082014 2,014 2014-08-07 2015-03-31 PG-PAI Programa Población General 246 NA Si
66,658 2,015 064ea650536bddb515573f1261b3ff19 JEOL2**032014 2,014 2014-03-11 2015-07-31 PG-PAI Programa Población General 501 NA Si
92,324 2,016 067111045233f423b404adc621ae9f37 JACO2**122015 2,015 2015-12-02 2016-05-25 PG-PAI Programa Población General 218 NA Si
76,089 2,015 0bb343da15bba120555cc4de136c9719 WACH1**042015 2,015 2015-04-30 2015-09-01 PG-PAB Programa Población General 136 NA Si
67,700 2,015 0c3e66e2db04da0d3423a9264874458c MAFU1**062014 2,014 2014-06-24 2015-02-12 PG-PAB Programa Población General 428 NA Si
62,380 2,014 0c8e2d388c54c38b56d727848623e1c3 FAFL1**092014 2,014 2014-09-22 2014-11-03 PG-PAB Programa Población General 195 NA Si
59,544 2,014 1033515b6c374de294fc70f88738d49c YUJA1**012014 2,014 2014-07-01 2015-01-30 PG-PAB Programa Población General 211 NA Si
90,666 2,016 11e10f01088fec73c3faf6c1e4c262d2 NIGA1**022015 2,015 2015-11-02 2016-11-21 PG-PR Programa Población General 341 NA Si
1,444 2,010 1257b2d7deca5d747569d13ee288aaca ELGO2**091909 1,909 2009-09-03 2010-04-12 PG-PAB Programa Población General 261 NA Si
57,944 2,014 14604a942e84698e0484ec20a8eca468 PEER1**042014 2,014 2014-05-29 2014-08-01 PG-PAB Programa Población General 502 NA Si
71,824 2,015 1477c904ac5398a6e67150861ef39fd1 LUCE1**012015 2,015 2015-01-09 2015-03-24 PG-PAI Programa Población General 428 NA Si
80,128 2,015 1712f12578a18387328d0de6bf269671 OSFR1**082015 2,015 2015-08-03 2015-12-01 PG-PAB Programa Población General 410 NA Si
90,298 2,016 17427b747a8e5d8ecdcdec6a781a277b MAZU1**102015 2,015 2015-10-27 2016-04-01 PG-PR Programa Población General 496 NA Si
87,968 2,016 18f1041924d48c9440b4b397267a58f2 MAAL1**062015 2,015 2015-06-22 2016-05-31 PG-PAB Programa Población General 424 NA Si
54,902 2,014 1a6377dca692b67788c885a4bc1ec3f9 IGMU1**022014 2,014 2014-02-05 2014-03-03 PG-PAI Programa Población General 366 NA Si
51,069 2,014 1c3c2376668e31123e289c63079700cb DASA1**102013 2,013 2013-10-07 2014-12-19 PG-PAB Programa Población General 255 NA Si
89,952 2,016 1dfa0e65e45414b0dc071b61d1bac1a9 PAGU2**082015 2,015 2015-09-30 2016-10-18 PG-PAB Programa Población General 153 NA Si
89,613 2,016 1e68079fe8042f39debe84e3f1661e58 IVCA1**042015 2,015 2015-09-10 2016-11-01 PG-PAB Programa Población General 295 NA Si
51,204 2,014 1e837895d8784a93f1c62e919afad21c JOSA1**072013 2,013 2013-10-18 2014-01-22 PG-PAB Programa Población General 408 NA Si
88,696 2,016 1ec175566a7db6b94d4caf1b5b60be1e ROFL1**052015 2,015 2015-08-06 2016-04-07 PG-PAI Programa Población General 433 NA Si
105,857 2,017 1fcf34aa0db73c4218e224628c6173f9 GUVE1**082015 2,015 2015-08-20 2017-08-31 PG-PAI Programa Población General 246 NA Si
72,525 2,015 23c1b3a412e3b90dd0b06389df178058 CAAR1**012014 2,014 2015-02-11 2015-03-31 PG-PAI Programa Población General 169 NA Si
76,765 2,015 23d171a1e81628ce29ca5c83d29ac59b CRMA1**032015 2,015 2015-05-12 2015-06-30 PG-PAI Programa Población General 141 NA Si
53,493 2,014 2442f03286793ebc9875b7520acc486a JHRI1**112013 2,013 2013-12-04 2014-04-22 PG-PAB Programa Población General 298 NA Si
87,458 2,016 26228558eb3142a325eb9793b7a7643c GEPI1**052015 2,015 2015-05-19 2016-05-06 PG-PAI Programa Población General 502 NA Si
74,358 2,015 26e45f32b4f6ff42ec7d6d46d7aff22a RISO1**032015 2,015 2015-03-25 2015-06-01 PG-PAB Programa Población General 347 NA Si
70,848 2,015 284cbae307136f57dc7d41335d55d58d MIVA1**102014 2,014 2014-12-01 2015-04-24 PG-PAB Programa Población General 106 NA Si
69,260 2,015 295ffae266ef2715937d60071b8014cc JOAN1**102014 2,014 2014-10-16 2015-04-30 PG-PAI Programa Población General 140 NA Si
1,192 2,010 2a3853fc81a5770ceda4e0b85d7e330a ALVE2**021909 1,909 2009-01-27 2010-06-23 M-PAI Programa Específico Mujeres 105 NA Si
51,848 2,014 2a77572cc6a27c03e6fe4cc2057891c7 CAPI2**072013 2,013 2013-11-07 2014-03-03 M-PAI Programa Población General 288 NA No
68,841 2,015 2b5678acbd5e4353d3e9fb911de43ab7 RURI1**092014 2,014 2014-09-02 2015-05-05 PG-PAB Programa Población General 195 NA Si
70,353 2,015 2c2ee233da3f8c82ce2086568d31c26f DAAS1**062014 2,014 2014-11-24 2015-02-02 PG-PAI Programa Población General 504 NA No
105,458 2,017 2cdd842e8b1102992ff2c060e7b46178 CASA1**122014 2,014 2014-11-21 2017-05-04 PG-PAB Programa Población General 418 NA Si
45,085 2,013 2df0eb141ab0b668005ee0524fc91eb7 JOPA1**082013 2,013 2013-08-12 2014-01-31 PG-PAI Programa Población General 246 NA Si
86,169 2,016 2e4323b185c2452a0c2d6592b1c04520 ABAV1**082014 2,014 2014-12-12 2016-06-08 PG-PAI Programa Población General 320 NA Si
74,306 2,015 2f9c6bdeb0243e28bee1b104c0253940 IGRE1**032015 2,015 2015-03-17 2015-05-14 PG-PAB Programa Población General 211 NA Si
106,128 2,017 32c4704bfeef5a559ca9c67197cee23e JOSO1**092015 2,015 2015-11-27 2017-06-30 PG-PAI Programa Población General 425 NA Si
64,325 2,014 32ed8512c8004bf8dc40a2c081dd3788 ALPA1**092014 2,014 2014-11-18 2015-02-09 PG-PAB Programa Población General 139 NA Si
54,604 2,014 34988293c8162aa967982d80b52679f8 MIBU2**022014 2,014 2014-02-18 2014-05-30 PG-PAB Programa Población General 417 NA Si
78,287 2,015 35d671008a3675d718729ae27236f451 LUTO1**102014 2,014 2015-03-25 2016-02-15 PG-PAI Programa Población General 186 NA Si
105,447 2,017 385db5fabdcc42c18df66d707507b4a8 RIPL1**012014 2,014 2014-12-01 2017-04-28 PG-PAI Programa Población General 299 NA Si
60,040 2,014 3c95fa27af813ce64585b46390470d28 GUES1**072014 2,014 2014-07-03 2014-12-25 PG-PAB Programa Población General 292 NA Si
89,803 2,016 3d108204060b79bd179ed442cd81c510 VAUR2**082015 2,015 2015-08-24 NA Otro Otro 291 NA No
86,860 2,016 3d58ce54ad57203b04f0fe7b8cb010d4 MAVE1**032015 2,015 2015-03-02 2016-06-30 PG-PR Programa Población General 162 NA Si
44,517 2,013 3e6a828045d78e1702575a459bbce640 JOUR2**092013 2,013 2013-09-30 2013-10-07 M-PR Programa Específico Mujeres 234 NA Si
61 2,010 40b6915c6ee34519efcbe0d312a140a6 SAHE2**111909 1,909 2009-11-13 2010-02-26 PG-PAI Programa Población General 134 NA Si
78,839 2,015 40dca59840a518a1c1419b462180edd2 ITQU1**042015 2,015 2015-06-18 2015-12-15 PG-PAB Programa Población General 261 NA Si
81,439 2,015 4124ab2d1b1d4b06b9fe7c82f35087c2 HERO2**062015 2,015 2015-09-03 2015-12-16 PG-PAB Programa Población General 626 NA No
61,040 2,014 429adc359b8b2c6d00eec510b8545971 CRVA2**052014 2,014 2014-05-02 2014-11-25 Otro Otro 291 NA No
88,595 2,016 43ff82a0657a99412f9af20ed2e9d79d JORE1**082015 2,015 2015-08-05 2016-03-30 PG-PAI Programa Población General 595 NA Si
75,182 2,015 449ace14bc362c285c7a7a6a648240a0 MAQU1**032015 2,015 2015-03-17 2016-02-01 PG-PAI Programa Población General 309 NA Si
80,980 2,015 44d3b44b5e1af81046b94f18b9bf6719 HAST1**012015 2,015 2015-08-10 2015-12-14 PG-PAB Programa Población General 253 NA Si
86,035 2,016 451cc0dcd48441aafd693dd477bdaa88 CLSO1**092014 2,014 2014-11-19 2016-04-28 PG-PAB Programa Población General 406 NA Si
51,689 2,014 4527b737a811d4145e677ea5336d53c1 ENCA1**032013 2,013 2013-11-12 2014-02-03 PG-PAI Programa Población General 425 NA Si
88,815 2,016 48358f8da531b84db0c85f3639a09a04 LUCA1**022015 2,015 2015-08-25 2016-08-02 PG-PAB Programa Población General 455 NA Si
81,762 2,015 499c84ea7b979ac92d9676d9733473cb LUFA1**092015 2,015 2015-09-28 2015-11-30 PG-PAB Programa Población General 199 NA Si
74,269 2,015 49fa8657fc41e47ea2b0eb0262cd016c JUGO1**082014 2,014 2015-03-05 2015-07-30 PG-PAB Programa Población General 615 NA No
70,612 2,015 4a0cdcf2a03c76f799020c095f4564f2 HERI1**122013 2,013 2014-12-01 2015-11-02 PG-PAB Programa Población General 106 NA Si
79,686 2,015 4ae1f1d592ec4b436a529f14d4fcf81c LOMA2**072015 2,015 2015-07-30 2015-10-15 PG-PAB Programa Población General 632 NA Si
67,890 2,015 4c3b027aaab3ebb21acd62330d1292f2 JOPI1**052014 2,014 2014-06-09 2015-08-01 PG-PAI Programa Población General 337 NA Si
90,247 2,016 4c7781ef7fdf301ebff0b016367c4df4 HEIB1**092015 2,015 2015-10-01 2016-08-09 PG-PAI Programa Población General 634 NA Si
2,784 2,010 4d1619ea9534b215c6f8729d32950fb6 MIGU1**091909 1,909 2009-11-23 2010-05-01 PG-PR Programa Población General 179 NA Si
63,550 2,014 4d172b7d430a3d84688623da52d8dc7c DACE1**082014 2,014 2014-10-06 2015-01-27 Otro Programa Población General 141 NA No
52,329 2,014 4e0ae098b557c5b79a094a4f3d629092 ALLO1**062013 2,013 2013-12-03 2014-10-08 PG-PAI Programa Población General 365 NA Si
50,990 2,014 4feab54661843621e99998f4d6b57380 CIJO1**042013 2,013 2013-09-11 2014-05-27 PG-PAB Programa Población General 348 NA No
68,915 2,015 500f972bc4189dcc23b1fa48d3f0bf91 GLHU2**032014 2,014 2014-09-30 2015-07-10 PG-PAI Programa Población General 132 NA Si
62,889 2,014 53f1bae51684d06843d5bf7e15fe658c JUOL1**032014 2,014 2014-10-01 2015-01-28 PG-PAI Programa Población General 418 NA Si
58,526 2,014 53fd1e903046ccbf29f0328f2fbada0c CHRA1**062014 2,014 2014-06-02 2014-06-25 PG-PAI Programa Población General 290 NA Si
20,682 2,012 54941be1a9e27de0e090c3ca4cc20196 NACO1**051910 1,910 2010-04-20 2012-07-31 PG-PAB Programa Población General 151 NA Si
90,139 2,016 553ac3927dd9ab869f240c5da4f95361 PATA2**072015 2,015 2015-09-05 2016-03-18 PG-PAB Programa Población General 229 NA Si
72,964 2,015 567ff79213fc81839632ea14ad3715ae RIMO1**042014 2,014 2015-02-20 2015-11-30 PG-PAB Programa Población General 204 NA Si
58,446 2,014 569445fd9ec006917858027e18df04b4 JUFL1**042014 2,014 2014-06-10 2014-09-29 PG-PAB Programa Población General 177 NA Si
79,777 2,015 56b3ce1aba672f5ac1f78a849709d430 LUVI1**062015 2,015 2015-07-09 2015-11-02 Otro Programa Población General 146 NA No
66,253 2,015 56e428e0a109d38555aa56f80298b55f NEOR1**092013 2,013 2014-01-22 2015-04-08 PG-PAI Programa Población General 327 NA Si
125,808 2,018 578ae693be289de023125ddd2777dd1c GARO1**012015 2,015 2015-01-07 2018-05-15 PG-PAI Programa Población General 146 NA Si
65,294 2,014 57f7766d6acfaf329f8a6c7c5546f4cc LUNA1**082014 2,014 2014-12-10 2015-04-29 PG-PAB Programa Población General 224 NA Si
66,707 2,015 5985ca3d94a92d6159abbcf091a8505e CRTO1**032014 2,014 2014-03-19 2015-04-01 PG-PAB Programa Población General 195 NA Si
69,414 2,015 5acc266b551b73f526c5350f441d64cb SECO1**102014 2,014 2014-09-01 2015-07-14 PG-PAI Programa Población General 171 NA Si
80,440 2,015 5c42f484a032a08deae9a0774beb9549 MARO1**112014 2,014 2015-08-06 2015-10-29 Otro Programa Población General 141 NA No
87,482 2,016 5d8091081085c2019f231071c383dea0 JOGU1**042015 2,015 2015-05-04 2016-12-06 PG-PAB Programa Población General 204 NA Si
51,627 2,014 5e1528a265d1f0896cb353a44e765354 GALE1**112013 2,013 2013-11-05 2014-06-02 PG-PR Programa Población General 147 NA No
82,297 2,015 5ea1c7ba606efe2df58e49e360312e75 ROZU1**092015 2,015 2015-09-22 2015-10-31 PG-PAI Programa Población General 246 NA Si
66,001 2,015 5f3f15beb64e965bb3c6e89f1936d3eb RIVA1**042013 2,013 2013-11-05 2015-11-05 PG-PAB Programa Población General 253 NA Si
53,634 2,014 5f8c1b285772d02d0b886ed5a2460fbd MIMI1**022013 2,013 2014-01-13 2014-11-21 PG-PAB Programa Población General 153 NA No
86,156 2,016 60b094b379debfc27e4accd6d60cd354 JOMA2**082014 2,014 2014-12-01 2016-06-20 PG-PAI Programa Población General 299 NA Si
53,993 2,014 62a9e64ddba550f4004a6327918f57fc RARU1**062013 2,013 2014-01-23 2014-12-12 PG-PAB Programa Población General 151 NA Si
76,629 2,015 636046ed13f419997e2c05bfd3ac6ae6 MOAR1**012015 2,015 2015-04-23 2015-07-01 PG-PAI Programa Población General 443 NA Si
44,559 2,013 6567363878a5b347f469a390f9644d52 BAAR1**062013 2,013 2013-09-26 2013-10-21 PG-PR Programa Población General 201 NA Si
67,894 2,015 65e32b6aaa8e3cc506bdd56a69b355d4 VAVI2**072014 2,014 2014-07-19 2015-03-25 PG-PAB Programa Población General 124 NA Si
128,353 2,018 66e4d31c4c6575527f8ed58455396f17 VICA1**071917 1,917 2017-07-24 2018-04-30 PG-PAI Programa Población General 176 NA Si
51,997 2,014 689bae1438650be7199ded91cbc7552f JOCO1**092013 2,013 2013-10-25 2014-03-04 PG-PAI Programa Población General 207 NA Si
106,134 2,017 68a1abebf175673e62b97b65fde63b50 BRHE1**092015 2,015 2015-12-09 2017-10-30 PG-PAI Programa Población General 171 NA Si
69,781 2,015 698507f0316d47f1c63f9e104554cd40 RUAG1**112014 2,014 2014-11-18 2015-02-05 PG-PR Programa Población General 132 NA Si
105,628 2,017 6d672b5d02dada8fd6ad1c3a38a69b7f LUGO2**022015 2,015 2015-05-06 2017-03-30 PG-PAB Programa Población General 622 NA Si
74,586 2,015 6d6a0565c927a30d8fd5a12567a8a5ee CASA2**032015 2,015 2015-02-26 2015-06-05 M-PAI Programa Específico Mujeres 438 NA Si
51,995 2,014 702968577b4f960a8c1c08df3c495ff0 ENRO1**072013 2,013 2013-11-04 2014-03-03 PG-PAI Programa Población General 207 NA Si
86,097 2,016 7174125eeee1dee2ecd1867301ccb51d PASO1**112014 2,014 2014-11-11 2016-04-04 PG-PAI Programa Población General 115 NA Si
81,596 2,015 71a82aae5397aa241fa4dada09813f9f SEPA1**022015 2,015 2015-08-25 2016-01-06 PG-PAB Programa Población General 259 NA Si
76,917 2,015 71c03223af1ce120cdfb9c0b55b4db53 ROTR1**052015 2,015 2015-05-04 2015-12-16 PG-PAB Programa Población General 428 NA Si
77,489 2,015 71ddf29f1cc888fdc73304ec5d6aa270 FRME1**012015 2,015 2015-01-29 2015-06-30 PG-PAI Programa Población General 559 NA Si
52,932 2,014 72326747760e7be6a2162ab0037f2a07 JOCO2**122013 2,013 2013-08-12 2015-07-08 PG-PAB Programa Población General 224 NA Si
56,845 2,014 743347c25e9f31237b16863597fd9010 BATA2**042014 2,014 2014-04-28 2014-11-17 PG-PAB Programa Población General 151 NA Si
66,096 2,015 753861a2ae44c51b6dc7096f99c15b67 MAFL1**122013 2,013 2013-12-04 2015-02-03 PG-PAB Programa Población General 113 NA Si
51,272 2,014 76f23cc26b988b93413645ba8119c6cc ESES1**102013 2,013 2013-10-23 2014-04-01 PG-PAI Programa Población General 121 NA Si
52,100 2,014 76fa641216f9a7ebf3a5f14344383c44 LUCO2**042013 2,013 2013-11-13 2014-03-03 PG-PR Programa Población General 117 NA Si
74,157 2,015 784296c4ebb2cdad231eaa4ea6e8280b GHSO2**032015 2,015 2015-03-05 2015-05-19 PG-PAI Programa Población General 202 NA Si
74,523 2,015 7a63ad8ba5f2f5794d1a5193b0f3df27 ROAG1**012015 2,015 2015-03-10 2015-04-23 PG-PAI Programa Población General 133 NA Si
105,641 2,017 7bb2cbe20c6cfefb16c861d7bac904a5 TIHE2**052015 2,015 2015-05-06 2017-03-01 PG-PAB Programa Población General 600 NA Si
66,646 2,015 7cecf6ed64eb80f86f0d2db834fd85dc ARFE1**032014 2,014 2014-03-05 2015-05-14 PG-PAB Programa Población General 431 NA Si
90,982 2,016 7fbbdc4747c2ae7f8c11e215ef386645 NOME1**092015 2,015 2015-11-18 2016-01-05 PG-PAI Programa Población General 338 NA Si
76,575 2,015 804947be8b59ba91b7600127e11ea3a1 SEVA1**052015 2,015 2015-05-04 2015-09-29 Otro Programa Población General 141 NA No
75,178 2,015 80c08f09810f85cf3494b3475b4855fc NIGA2**032015 2,015 2015-04-01 2015-08-31 M-PAI Programa Específico Mujeres 170 NA Si
75,311 2,015 80f24bdee1dead2b03206b20db9eed95 JOVI1**042015 2,015 2015-04-23 2015-09-25 PG-PAB Programa Población General 464 NA Si
51,169 2,014 81ab2481a76df0933bf153220a6a5e9e LIRE2**042013 2,013 2013-10-04 2014-03-03 PG-PAI Programa Población General 412 NA Si
81,288 2,015 82fbe76a90e5ec2d518f1f4b01ed76cc DATA1**092015 2,015 2015-09-08 2016-01-21 PG-PAI Programa Población General 619 NA Si
79,903 2,015 84fca3988c6479194fd5709bf61e0139 MIVI1**052015 2,015 2015-08-03 2015-10-17 PG-PAI Programa Población General 174 NA Si
66,136 2,015 859278a1dab22f623200a8fb82cc88eb JORO1**112013 2,013 2013-12-05 2015-02-05 PG-PAI Programa Población General 207 NA Si
67,168 2,015 86ee53ec9a2b925edcb11152db6ca7e2 CAVE1**012014 2,014 2014-05-26 2015-08-31 PG-PAI Programa Población General 185 NA Si
1,359 2,010 8adcaecd02f133ab38eedf0c0036d9ff ELMO2**091909 1,909 2008-07-31 2010-01-29 PG-PAB Programa Población General 138 NA Si
90,101 2,016 8ce26be094be2c7073d8e0d61084747c ANNE1**102015 2,015 2015-10-13 2016-05-18 PG-PAB Programa Población General 290 NA Si
125,800 2,018 8d2dfe24c7a24d541a13b4e82b82eede HEAV1**112014 2,014 2014-08-07 2018-05-25 PG-PAI Programa Población General 155 NA Si
69,801 2,015 8f0cf60837bebad31c04b86f96f2fc23 EMFR1**062014 2,014 2014-10-28 2015-07-01 PG-PAI Programa Población General 291 NA Si
85,602 2,016 8f4f8d015d8c33c3f827fda19865c027 JUSA1**012014 2,014 2014-03-10 2016-06-30 PG-PAI Programa Población General 353 NA Si
89,724 2,016 8f7e43aaea738d130d9cc03b55666295 VESO2**082015 2,015 2015-09-08 2016-01-05 M-PAI Programa Específico Mujeres 331 NA Si
80,158 2,015 92c8a023b443094c1c8a30e73c8d4d49 ANIB1**032015 2,015 2015-08-18 2015-09-30 PG-PAI Programa Población General 205 NA Si
90,907 2,016 92d3465484cf355dc4e3127ebcf59720 CRAL1**112015 2,015 2015-09-07 2016-03-29 PG-PAI Programa Población General 260 NA No
85,877 2,016 92f2857a6e2b45b22cc31d704b77f856 MAAR2**062014 2,014 2014-09-15 2016-01-29 PG-PAI Programa Población General 445 NA Si
2,768 2,010 92f7992b962d02a791ff9e2829ff9bb4 MAES1**051907 1,907 2007-05-16 2010-07-01 PG-PAI Programa Población General 119 NA Si
56,731 2,014 9354d0a7e62f4e1770b183e1a47fa950 ALAD1**042014 2,014 2014-04-01 2014-04-09 PG-PAI Programa Población General 164 NA Si
69,826 2,015 93d59d2ed7fbf4af1de869edfc63fc65 NANU2**112014 2,014 2014-11-04 2015-03-30 PG-PAB Programa Población General 255 NA Si
51,835 2,014 94402c3f517402391dfbd454223559af EZSU1**062009 2,009 2013-11-22 2014-03-18 PG-PAB Programa Población General 146 NA Si
52,929 2,014 94bdff9b0c5c651015c78f48fc56f831 CIGF1**122013 2,013 2014-11-04 2016-08-04 Otro Otro NA NA No
86,356 2,016 94dc2d67662256121c25b1f22865d877 LUPE1**022014 2,014 2015-01-02 2016-12-30 PG-PAB Programa Población General 246 NA Si
69,296 2,015 950e158fe666407f88c577bd7615dfd2 DAMU2**092014 2,014 2014-10-21 2015-07-10 M-PAI Programa Específico Mujeres 438 NA Si
84,891 2,015 95da9c51b0a9acafac6c4da28a96d3fa GURI1**112015 2,015 2015-12-01 2016-01-29 PG-PAB Programa Población General 270 NA Si
88,024 2,016 9630831102f1ea74e3bd52359c335933 PAVI1**062015 2,015 2015-06-08 2016-12-20 PG-PAI Programa Población General 301 NA Si
66,790 2,015 971bb94af6c2953cfa47d01d40c25a3b SETA1**082013 2,013 2014-04-15 2015-09-15 PG-PAB Programa Población General 415 NA Si
62,450 2,014 975241fd05550f886bc9ff823e488587 YABE1**072014 2,014 2014-09-01 2014-10-31 PG-PAB Programa Población General 141 NA Si
68,693 2,015 9816684f0ad904d3a326d6f567e6dba9 EDSA1**092014 2,014 2014-09-11 2015-06-30 PG-PAI Programa Población General 557 NA Si
80,293 2,015 98a06fe9e54997548d1a404274857dd4 LULI1**042015 2,015 2015-05-20 2015-12-07 PG-PAI Programa Población General 130 NA Si
436 2,010 9b66f589b973bca1142d7e9995e5c2d0 WLMO1**081909 1,909 2009-08-24 2010-05-31 PG-PAI Programa Población General 156 NA Si
57,513 2,014 9b802c0391a72f833e0b7f6b4fa9f429 NEPI1**052014 2,014 2014-05-15 2014-08-08 PG-PAB Programa Población General 505 NA Si
69,711 2,015 9b9700657d2d1f743c15748be8635987 ROCA1**072014 2,014 2014-11-10 2015-03-05 PG-PAI Programa Población General 225 NA Si
90,474 2,016 9be202d4f43568a978050002a518f718 UBSA2**092015 2,015 2015-09-01 2016-07-22 PG-PAB Programa Población General 270 NA Si
89,525 2,016 9d1d56fca162aa59f99988e6cafcc296 JOAR1**092015 2,015 2015-09-29 2016-07-05 PG-PAI Programa Población General 619 NA No
86,750 2,016 9eedcdd8ada0ac46c0457bd4c55f9dea JUGU1**022015 2,015 2015-02-11 2016-07-29 PG-PAB Programa Población General 641 NA Si
77,309 2,015 a0c21e91c5df0785a42f2800657231db RASE1**052015 2,015 2015-06-01 2015-10-26 PG-PAI Programa Población General 620 NA Si
57,337 2,014 a13505adffa3137e32ef126953465083 JOPA1**022014 2,014 2014-02-25 2014-10-23 PG-PAI Programa Población General 502 NA Si
88,716 2,016 a254177942d2718cb7382ba4d0b5464e PAZA2**082015 2,015 2015-08-19 2016-03-09 PG-PAB Programa Población General 316 NA Si
57,826 2,014 a3d1c81f683127b3f98a6dc8ee0aea95 ANME1**042014 2,014 2014-05-27 2014-07-30 PG-PAI Programa Población General 556 NA Si
91,059 2,016 a537681987ddbe972f0f090b10a699c3 RESA1**102015 2,015 2015-10-14 2016-04-20 PG-PAI Programa Población General 105 NA Si
59,851 2,014 a53efaf4077a6d170947d8e3cbb8617a JOZU1**032014 2,014 2014-07-01 2014-11-12 PG-PAI Programa Población General 156 NA Si
61,398 2,014 a7b45b17accde476fc79803b461c48a3 HURA1**032014 2,014 2014-08-28 2014-12-19 PG-PAB Programa Población General 467 NA Si
46,615 2,013 a7c467c7d652f1861fd9ac231821ab24 ADMO2**112013 2,013 2013-11-04 2014-01-02 PG-PAB Programa Población General 206 NA Si
54,563 2,014 a8f536730514fc652fb2b0cba216d73a SUBR2**022014 2,014 2014-01-20 2014-11-21 PG-PAI Programa Población General 153 NA Si
70,012 2,015 aa55d971c98f1d169262f93fbeb6860c HEMU1**112014 2,014 2014-11-26 2015-02-13 PG-PR Programa Población General 358 NA Si
44,778 2,013 aca1dbae04cca9acea253b7b3d4db474 JASO1**082013 2,013 2013-09-01 2013-11-01 PG-PR Programa Población General 179 NA Si
125,778 2,018 ad16844e62fd0a0db5ddd59ccffccbf6 SUUB2**102013 2,013 2013-10-03 2018-03-27 PG-PAI Programa Población General 299 NA Si
88,178 2,016 add12d3ddf9271f589c627bbc79c4579 MICA1**072015 2,015 2015-07-20 2016-04-18 PG-PR Programa Población General 644 NA Si
47,228 2,013 add23dc42ee2d765da142f8f554e98c5 ANPA1**102013 2,013 2013-12-12 2014-05-29 PG-PAI Programa Población General 292 NA Si
68,930 2,015 af102bfd448a47b7624e89ce6df6acec ROCO1**062014 2,014 2014-09-01 2015-05-08 PG-PAI Programa Población General 115 NA Si
87,410 2,016 afa9a46f43298983918d3f5a9d821786 ALBR1**052015 2,015 2015-05-19 2016-12-14 PG-PAB Programa Población General 255 NA Si
77,067 2,015 affbdb3a781e3be1a5aa20966d2cc696 DAVE1**052015 2,015 2015-05-27 2015-07-13 PG-PR Programa Población General 163 NA Si
86,140 2,016 b1c056a8bab379d545d8e82621f329f9 ANAL2**022014 2,014 2014-12-10 2016-06-20 PG-PAI Programa Población General 299 NA Si
56,061 2,014 b48858a7082e55ba898bc1905399513c YESA1**032014 2,014 2014-03-28 2014-05-23 PG-PAI Programa Población General 556 NA Si
57,604 2,014 bb1e3ec5ad90ed912270b85c22bc22dc MASA1**022014 2,014 2014-03-10 2014-11-07 PG-PR Programa Población General 266 NA Si
79,701 2,015 bb6fe40dbae548db255b939ec75d56eb HUFL1**012015 2,015 2015-07-30 2016-02-01 PG-PAI Programa Población General 139 NA Si
90,239 2,016 bbad2b97c37995c0bd0acc4d7086cd76 FRCA1**012015 2,015 2015-10-29 2016-07-18 PG-PAB Programa Población General 113 NA Si
61,779 2,014 bd4ddaf7e28aa380f777efe2528a5ffe VIGA1**092014 2,014 2014-09-01 2015-01-02 PG-PAI Programa Población General 561 NA Si
68,727 2,015 bda266c70897a4a4d4c34b9286b3ac26 HEFA1**072014 2,014 2014-08-29 2015-01-28 PG-PAI Programa Población General 428 NA Si
55,549 2,014 bda338a09bf4112f34c232b78571e081 ANPI1**032014 2,014 2014-03-17 2014-07-01 PG-PAI Programa Población General 501 NA Si
57,347 2,014 bdf80f280bdd5ea5a2467e595550bb16 FRSA2**042014 2,014 2014-04-30 2014-06-30 PG-PAI Programa Población General 225 NA Si
61,502 2,014 be3bcadab217fd812c6b3d88ddbaee09 HECO1**072014 2,014 2014-07-29 2014-10-29 PG-PAB Programa Población General 290 NA Si
54,559 2,014 be52751573bf2adb0360879c30b371ef MAGU1**122013 2,013 2014-02-05 2014-08-29 PG-PAB Programa Población General 153 NA No
74,175 2,015 c1680c07dc59050febafc3d2fd20401c SEDU1**022015 2,015 2015-03-23 2015-07-01 PG-PAB Programa Población General 633 NA Si
87,205 2,016 c1a8b024d7bcd74211fb7bf8a3d2d152 ORAR2**022015 2,015 2015-02-18 2016-08-01 PG-PAI Programa Población General 366 NA Si
60,595 2,014 c608039402f2ad468835c3ab9d12e677 CAAL1**072014 2,014 2014-07-21 2014-09-01 PG-PAI Programa Población General 246 NA Si
79,988 2,015 c667fcdcaa8983d2d0d3e805c762543a JUHE1**082015 2,015 2015-08-04 2015-12-17 PG-PAI Programa Población General 619 NA Si
65,866 2,015 c67c0b06dc6a2fc010c201d7b2455731 PARO2**092013 2,013 2013-09-02 2015-05-07 PG-PAB Programa Población General 218 NA Si
58,523 2,014 c6a7be0fcf4c6f66221e329104e48883 PEBR1**052014 2,014 2014-06-06 2015-01-30 PG-PAI Programa Población General 418 NA Si
47,492 2,013 c7290f91f32f5b89f3d1824972859c1f MOAR2**122013 2,013 2013-12-17 2014-01-07 M-PR Programa Específico Mujeres 189 NA Si
87,738 2,016 c9c50b35412a1b9a7a1ff05c6291897d CAGO2**022015 2,015 2015-06-08 2016-02-02 M-PAI Programa Específico Mujeres 290 NA Si
44,637 2,013 cd0e56e0fcd787b52022747c37377a47 JOGA1**092013 2,013 2013-09-30 2013-11-04 PG-PAI Programa Población General 194 NA Si
54,905 2,014 cee383e8075524a15a3e243382edbc47 SEUR1**022014 2,014 2014-02-18 2014-03-01 PG-PAI Programa Población General 366 NA Si
87,302 2,016 cf1c08352647546c64c5e9db55c3c7d9 JOLU1**052015 2,015 2015-05-14 2016-05-13 PG-PAB Programa Población General 238 NA No
52,904 2,014 cfb8e2fc00adc59d9a2afdf5334d80a9 JOUR1**122013 2,013 2013-12-03 2014-05-30 PG-PAI Programa Población General 246 NA Si
59,768 2,014 d0096113be91f1ce643534aa8c0704b6 JARO1**022014 2,014 2014-07-02 2014-11-24 PG-PAB Programa Población General 239 NA No
87,545 2,016 d062b037a6143d839d0cade6d0e78880 DIOR1**092014 2,014 2015-05-04 2016-05-03 Otro Otro 291 NA No
92,276 2,016 d196f8ff1ac48677345bccd7c76b7fea NICO2**102015 2,015 2015-12-21 2016-03-01 PG-PAB Programa Población General 253 NA Si
52,050 2,014 d2111418ab78f0a344deaa3a897f08bd JOCA1**112013 2,013 2013-11-21 2014-06-16 PG-PAI Programa Población General 428 NA Si
70,258 2,015 d36b9cd8f1aa0a07ad209b0006af1465 PALO1**072014 2,014 2014-11-13 2015-06-15 PG-PAI Programa Población General 425 NA Si
69,013 2,015 d3ff7adfe0d73fe255e7eaeae652d093 HUPO1**092014 2,014 2014-10-01 2015-12-31 PG-PAI Programa Población General 451 NA Si
81,553 2,015 d4e29a163ddfed590de7ff27125a2a7e JOSO1**092015 2,015 2015-09-10 2015-11-11 PG-PAB Programa Población General 632 NA Si
69,958 2,015 d5952e9b80d0713beb9024174ab0f727 JOAL1**012014 2,014 2014-11-05 2015-06-25 PG-PAB Programa Población General 464 NA Si
88,770 2,016 d5f73b599c69578e2436b8292eaa8cf2 MAAS2**062015 2,015 2015-08-01 2016-12-28 PG-PAB Programa Población General 301 NA Si
89,091 2,016 d83f8f183a061c8664e76b2a4e629a8e CRPE1**072015 2,015 2015-08-17 2016-04-18 PG-PAI Programa Población General 337 NA Si
89,744 2,016 d98d3ae82355931d0493ebd249120d23 GUSA1**062015 2,015 2015-09-28 2016-01-29 PG-PAB Programa Población General 192 NA Si
69,347 2,015 d9c6875344fd216fe006cc26f6ab3554 CRRO1**072014 2,014 2014-10-01 2015-05-01 PG-PAB Programa Población General 156 NA Si
85,252 2,015 dc734b38de361955000b96e6253d148a DAMO2**062015 2,015 2015-12-09 2015-12-10 M-PR Programa Específico Mujeres 165 NA Si
87,412 2,016 dc8d938d47360d6e85b4c040a00696eb LUIB1**042015 2,015 2015-03-30 2016-10-01 PG-PAB Programa Población General 616 NA Si
69,628 2,015 dcc35e6bacea2093d845764c4541f5fd JOAN1**072014 2,014 2014-11-05 2015-11-12 PG-PAB Programa Población General 503 NA Si
78,731 2,015 dd4b4ceef916a24a277300e57d15847a PEME1**042015 2,015 2015-07-08 2015-08-07 PG-PAB Programa Población General 627 NA Si
64,540 2,014 e13c8e73574fa1097e9ba61c472a8784 HEMO1**042014 2,014 2014-11-24 2014-11-25 CALLE Programa Calles NA NA No
56,435 2,014 e2b3a2ebe811d7ee66df5aa536a3695f JOGA1**042014 2,014 2014-04-09 2014-05-28 PG-PAI Programa Población General 336 NA Si
56,263 2,014 e2cf471bd0e20f2bedebcb7606d0cacb YEVA1**032014 2,014 2014-03-21 2014-08-01 PG-PAI Programa Población General 246 NA Si
72,176 2,015 e60223e49c88aa125912e44ae1405982 RACA1**122014 2,014 2014-12-01 2015-05-27 PG-PAI Programa Población General 149 NA Si
105,599 2,017 e89eb1528cbb255f7a94ade170a93768 FRJA1**042015 2,015 2015-04-20 2017-03-31 PG-PAB Programa Población General 464 NA Si
63,518 2,014 e8d4e7ec9067faee7252e3421fc131fd PALL1**042014 2,014 2014-10-13 2014-11-28 Otro Programa Población General 141 NA No
64,867 2,014 e9c1c6248f996ae3f578602d9953ca13 ISOR1**092014 2,014 2014-12-12 2015-01-08 PG-PAI Programa Población General 140 NA Si
77,086 2,015 eb7178edd29bc7938a16af25e718aa06 PERO1**052015 2,015 2015-05-04 2015-06-30 PG-PAI Programa Población General 246 NA Si
67,778 2,015 ebd792c25167912fa4ba477282968198 VIGA1**032014 2,014 2014-07-10 2015-08-03 PG-PAB Programa Población General 418 NA Si
74,513 2,015 ee1416f105555711f905f8bb38bbbc85 ANZA1**032015 2,015 2015-03-04 2015-11-02 PG-PAB Programa Población General 290 NA Si
51,698 2,014 eee34348656d96521f9562193c8a3007 CAGU2**012013 2,013 2013-11-05 2014-02-03 PG-PAB Programa Población General 206 NA No
61,634 2,014 ef00f137abde81b272a2a803ff3b5353 FRCA1**072014 2,014 2014-08-01 2015-01-02 PG-PAB Programa Población General 429 NA Si
90,260 2,016 f02435c816333b972c7e14ec4cf3a6ad LUPA1**012015 2,015 2015-10-29 2016-09-28 PG-PAB Programa Población General 113 NA Si
53,508 2,014 f0a981419be2548644ba07dcafe0c4a3 LUJO1**092013 2,013 2014-01-27 2014-05-30 PG-PAI Programa Población General 327 NA Si
51,219 2,014 f21bbc9bf555d4e829f3db65e56b510d CABA1**082013 2,013 2013-10-17 2014-05-26 PG-PAI Programa Población General 207 NA Si
71,052 2,015 f3200c510b74bf2c038243cfa11bb511 BERU2**062014 2,014 2014-12-29 2015-06-08 PG-PAI Programa Población General 225 NA Si
56,069 2,014 f3612fadeb097f6554c56683d7b3e5f2 LEAS2**032014 2,014 2014-03-31 2014-06-26 M-PR Programa Específico Mujeres 197 NA Si
59,459 2,014 f52d7d44debd140b3cd42af6e92d80f9 EXMA1**062014 2,014 2014-06-20 2014-12-30 PG-PAI Programa Población General 246 NA Si
67,848 2,015 f60d6664ff94ad84d3f6fa5857df8554 LUVE1**062014 2,014 2014-07-02 2015-02-25 PG-PAI Programa Población General 118 NA Si
91,964 2,016 f9408fbf7e7f69d88f494c002795d85c ROGO1**092015 2,015 2015-12-16 2016-06-07 PG-PAI Programa Población General 151 NA Si
66,526 2,015 faeef8906f3656cf2fd1c20a6e073f3f ERQU2**032014 2,014 2014-03-10 2015-07-10 PG-PAB Programa Población General 138 NA Si
54,560 2,014 fba602106f2a581a65a4db020e013642 NOES2**112013 2,013 2014-02-06 2014-08-29 PG-PAI Programa Población General 153 NA Si
92,164 2,016 fbd1d4d518cf49e6d79dba77657d10f9 FIGA2**122015 2,015 2015-12-30 2016-12-26 PG-PAI Programa Población General 433 NA Si
61,288 2,014 fc49568e7fd2ffdfb2a3cef77af89459 ISMA1**082014 2,014 2014-08-05 2014-09-02 PG-PAI Programa Población General 264 NA Si
55,302 2,014 fdf286edf7d8f4bd5cd61f88d7e4f89d REAE1**032014 2,014 2014-03-06 2014-04-01 PG-PAB Programa Población General 204 NA Si


Table 10 shows users that do not present any other valid age throughout different cases. Is it possible that some of these users could be present in another SENDA dataset with a valid age? We checked into the Treatment Outcomes Profile dataset (more information on this dataset is available here).


CONS_TOP_df_dup_age <- dplyr::select(CONS_TOP, HASH_KEY, ID, Sexo, Edad)%>% 
  dplyr::filter(Edad>=18, Edad<=90) %>% #%>%  #dim rowa 162449, 4 columns
  dplyr::mutate(id_mod=sub("(.{5}).", "\\1*",ID)) %>%
  dplyr::mutate(id_mod=sub("(.{6}).", "\\1*",id_mod)) %>%
  dplyr::mutate(id=ID) %>%
  dplyr::filter(!duplicated(HASH_KEY)) #dplyr::distinct(HASH_KEY) %>% nrow() #37124 rows, 5 columns
#merge datasets w CONS C1

replaceable<- CONS_C1_df_dup_ENE_2020_prev3  %>% 
      dplyr::filter(is.na(Edad)) %>% 
      arrange(HASH_KEY) %>%
      dplyr::select(row, ano_bd, HASH_KEY, id_mod, ano_nac, ano_bd,fech_ing, fech_egres,tipo_de_plan, tipo_de_programa, ID.centro, Edad, SENDA) %>%
      dplyr::left_join(CONS_TOP_df_dup_age, by="HASH_KEY", suffix= c(".C1",".TOP")) %>%
      dplyr::filter(!is.na(id_mod.TOP)) 

CONS_C1_df_dup_ENE_2020_prev3  %>% 
  dplyr::filter(is.na(Edad)) %>% 
  arrange(HASH_KEY) %>%
  dplyr::select(row, ano_bd, HASH_KEY, id_mod, ano_nac, ano_bd,fech_ing, fech_egres,tipo_de_plan, tipo_de_programa, ID.centro, Edad, SENDA) %>%
  dplyr::left_join(CONS_TOP_df_dup_age, by="HASH_KEY", suffix= c(".C1",".TOP")) %>%
  dplyr::filter(!is.na(id_mod.TOP)) %>%
  dplyr::select(row, ano_bd, HASH_KEY, id_mod.C1, ano_nac, ano_bd,fech_ing, fech_egres,tipo_de_plan, tipo_de_programa, ID.centro, Edad.C1, Edad.TOP,SENDA, id_mod.TOP) %>%
  knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
               caption="Table 11. Replaced Ages from TOP dataset",
                 align =rep('c', 101))  %>%
   kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 9) %>%
  kableExtra::scroll_box(width = "100%", height = "175px")
Table 11. Replaced Ages from TOP dataset
row ano_bd HASH_KEY id_mod.C1 ano_nac fech_ing fech_egres tipo_de_plan tipo_de_programa ID.centro Edad.C1 Edad.TOP SENDA id_mod.TOP
90,298 2,016 17427b747a8e5d8ecdcdec6a781a277b MAZU1**102015 2,015 2015-10-27 2016-04-01 PG-PR Programa Población General 496 NA 60 Si MAZU1**031959
76,629 2,015 636046ed13f419997e2c05bfd3ac6ae6 MOAR1**012015 2,015 2015-04-23 2015-07-01 PG-PAI Programa Población General 443 NA 31 Si MOAR1**011988
#Join datasets 
CONS_TOP_df_dup_age <- dplyr::select(CONS_TOP, HASH_KEY, ID, Sexo, Edad)%>% 
  dplyr::filter(Edad>=18, Edad<=90) %>% #%>%  #dim rowa 162449, 4 columns
  dplyr::mutate(id_mod=sub("(.{5}).", "\\1*",ID)) %>%
  dplyr::mutate(id_mod=sub("(.{6}).", "\\1*",id_mod)) %>%
  dplyr::mutate(id=ID) %>%
  dplyr::filter(!duplicated(HASH_KEY)) %>%
  dplyr::select(-ID)
#CONS_C1_df_dup_ENE_2020_prev3 %>% group_by(Edad) %>% summarise() %>% View() #son puros NA's

  dplyr::left_join(CONS_C1_df_dup_ENE_2020_prev3, CONS_TOP_df_dup_age, by="HASH_KEY", suffix= c("",".TOP")) %>%
    #dplyr::mutate(Edad_error=Edad) %>%
  dplyr::mutate(OBS=case_when((is.na(Edad) & !is.na(id.TOP))~paste0(OBS,";","1.5. Replaced invalid ages with TOP information"),
                              TRUE ~ OBS))%>%
    dplyr::mutate(id= ifelse(is.na(Edad) & !is.na(id.TOP),id.TOP, id)) %>%
    dplyr::mutate(id_mod=ifelse(is.na(Edad) & !is.na(id_mod.TOP),id_mod.TOP,id_mod)) %>% 
    dplyr::mutate(Edad= ifelse(is.na(Edad) & !is.na(Edad.TOP),Edad.TOP, Edad)) %>%
    dplyr::mutate(fech_nac=lubridate::parse_date_time(stringi::stri_sub(id,-8,-1),"dmY")) %>% 
    #dplyr::mutate(Edad_fech_nac= lubridate::time_length(difftime(as.Date("2019-11-13"),as.Date(fech_nac)),"years")) %>%
    dplyr::mutate(fech_nac=replace(fech_nac, is.na(Edad), NA)) %>% #LA EDAD ESTA MALA PORQUE LA FECHA DE NAC ESTÁ MALA
    dplyr::mutate(ano_nac=replace(ano_nac, is.na(Edad), NA)) %>% #LA EDAD ESTA MALA PORQUE LA FECHA DE NAC ESTÁ MALA
    dplyr::select(-id_mod.TOP, -duplicated_HASH_date, -Edad.y, -Sexo.TOP, -Edad.TOP, -id.TOP) %>%  
    #dplyr::group_by(Edad) %>% summarise(n=n()) %>% View()
    as.data.frame() %>%
    assign("CONS_C1_df_dup_ENE_2020_prev4",., envir = .GlobalEnv) 
#PARA VER CÓMO SE COMPORTA CON IS.NA
  #CONS_C1_df_dup_ENE_2020_prev4 %>% dplyr::filter(is.na(Edad_error)) %>% dplyr::filter(!is.na(ID))
#CONS_C1_df_dup_ENE_2020 %>% dplyr::select(HASH_KEY, ano_bd, id, fech_ing, Edad_al_ing, fech_nac, Edad) %>%
  #dplyr::mutate(ano=as.numeric(fech_nac)/365.25) %>% dplyr::filter(is.na(Edad)) %>% View()
#CONS_C1_df_dup_ENE_2020_prev4 %>%
  #dplyr::filter(HASH_KEY=="17427b747a8e5d8ecdcdec6a781a277b"|HASH_KEY=="636046ed13f419997e2c05bfd3ac6ae6") %>%
  #print()
  #rows 57716 9972 6736, están perdidos en las bases de datos.


As can be seen in Table 11, only 2 cases could replace invalid ages from valid entries in the TOP dataset.


Still, to group cases of the same user within the same block by age, we must pay attention to all the HASHs that have more than one age. Among them, there are 20,156 different HASHs with more than one age. Possibly, some datasets were retrieved at different dates than others from the SENDA system.


 #mÁS DE UNA EDAD POR HASH
CONS_C1_df_dup_ENE_2020_prev4 %>% dplyr::mutate(concat_hash_edad=paste0(HASH_KEY,"_",Edad)) %>% 
  dplyr::distinct(concat_hash_edad, .keep_all = TRUE) %>% 
 #once here, n° of cases has been replaced by distinct or unique combinations of age and HASH keys.
 dplyr::filter(duplicated(HASH_KEY)) %>% dplyr::arrange(HASH_KEY) %>%  #filter cases in which there is more than one age, 
 #despite there is differents combinations of HASH and age, and then arrange age. This is possible only if a different HASH-Key contains more than one age or viceversa.
 #take distincts ages (exclude duplicated repeated IDs)
 #  dplyr::distinct(HASH_KEY) %>% nrow()
  dplyr::select(HASH_KEY) %>%
 assign("more_one_age_per_hash",., envir = .GlobalEnv)
# Differently put, take the distints HASHs per HASH-Key & ages, of the cases in which there are different combinations
# of ages and HASHs, and in each subgroup exists duplicated HASHs.

CONS_C1_df_dup_ENE_2020_prev4 %>% 
 dplyr::filter(HASH_KEY %in% as.character(as.vector(unlist(as.data.table(unlist(more_one_age_per_hash)))))) %>% # Select HASHs of cited cases
 dplyr::arrange(HASH_KEY) %>% #ordeno por ids 
dplyr::select(row, ano_bd, id_mod, fech_nac, Edad, HASH_KEY, hash_rut_completo, sexo, fech_ing, fech_egres, tipo_de_plan, SENDA)%>%
    knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
               caption="Table 12. HASHs with more than one Age",
                 align =rep('c', 101))  %>%
   kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 8) %>%
  kableExtra::scroll_box(width = "100%", height = "375px")
Table 12. HASHs with more than one Age
row ano_bd id_mod fech_nac Edad HASH_KEY hash_rut_completo sexo fech_ing fech_egres tipo_de_plan SENDA
157,456 2,019 RUVO1**111977 1977-11-12 42 00012586ea3036b7a18093c396847a87 NA Hombre 2019-05-03 NA PG-PAI Si
53,084 2,014 RUVO1**111977 1977-11-12 41 00012586ea3036b7a18093c396847a87 Hombre 2014-01-08 2014-11-03 PG-PR No
34,105 2,013 MITA1**121983 1983-12-05 35 002c979e254773f17812d9bff13996dc Hombre 2012-10-11 2013-01-04 PG-PAB Si
4,271 2,010 MITA1**021983 1983-02-05 36 002c979e254773f17812d9bff13996dc Hombre 2010-03-18 2010-05-31 PG-PAI Si
146,010 2,019 JOAG1**021984 1984-02-14 35 005504027f80dbaeb0fa63522b984839 NA Hombre 2017-07-05 2019-04-08 PG-PAI Si
86,734 2,016 JOAG1**021982 1982-02-14 37 005504027f80dbaeb0fa63522b984839 Hombre 2015-03-25 2016-07-29 PG-PAI Si
105,606 2,017 MARA1**031951 1951-03-22 68 009b5ccb6950cb7f0ae6c8161bbbf14a NA Hombre 2015-04-01 2017-01-30 PG-PAI Si
20,748 2,012 MARA1**111951 1951-11-22 67 009b5ccb6950cb7f0ae6c8161bbbf14a Hombre 2009-12-07 2012-02-14 PG-PAB Si
77,817 2,015 PARA2**111974 1974-11-18 44 00a8e1377935f1639a28faa9c11ee03a Mujer 2015-06-23 2015-07-30 M-PAI Si
24,166 2,012 PARA2**101974 1974-10-18 45 00a8e1377935f1639a28faa9c11ee03a Mujer 2012-01-13 2012-07-25 M-PAI Si
19,108 2,011 PARA2**101974 1974-10-18 45 00a8e1377935f1639a28faa9c11ee03a Mujer 2011-10-17 2012-01-11 M-PR Si
116,880 2,017 DACA1**121991 1991-12-15 27 00df6f1071220f378b5532eaa7e072c8 NA Hombre 2017-05-02 2017-08-01 PG-PAI Si
104,112 2,016 DACA1**091991 1991-09-15 28 00df6f1071220f378b5532eaa7e072c8 Hombre 2016-11-23 2016-12-06 PG-PR Si
77,987 2,015 DACA1**101991 1991-10-24 28 00df6f1071220f378b5532eaa7e072c8 Hombre 2015-06-25 2015-09-07 PG-PR Si
70,651 2,015 DACA1**121991 1991-12-15 27 00df6f1071220f378b5532eaa7e072c8 Hombre 2014-12-01 2015-03-02 PG-PAI Si
113,769 2,017 HISE2**081981 1981-08-08 38 013d623e058e9ac946f2f21be239d9e4 NA Mujer 2017-02-01 2017-08-31 PG-PAI Si
105,162 2,016 HISE2**111981 1981-11-08 37 013d623e058e9ac946f2f21be239d9e4 Mujer 2016-12-01 2016-12-30 PG-PAI Si
47,620 2,013 SACA1**111983 1983-11-28 35 0163b15923259894c581346449f6303d Hombre 2013-12-18 2014-02-18 PG-PAI Si
17,428 2,011 SACA1**071983 1983-07-28 36 0163b15923259894c581346449f6303d Hombre 2011-07-08 2011-07-25 PG-PR Si
15,032 2,011 SACA1**111983 1983-11-28 35 0163b15923259894c581346449f6303d Hombre 2011-04-12 2011-06-01 PG-PAI No
6,402 2,010 SACA1**111983 1983-11-28 35 0163b15923259894c581346449f6303d Hombre 2010-07-14 2010-10-04 PG-PAI No
2,201 2,010 SACA1**111983 1983-11-28 35 0163b15923259894c581346449f6303d Hombre 2009-11-16 2010-01-11 PG-PR Si
6,996 2,010 MAMO1**111971 1971-11-08 47 0163b15923259894c581346449f6303d Hombre 2008-10-20 2010-10-18 PG-PAB No
121,268 2,017 GEMA1**061999 1999-06-30 20 016ffdf18efeffe5f0c9c78d547dc392 NA Hombre 2017-08-30 2017-09-01 PG-PR Si
59,896 2,014 GEMA1**061996 1996-06-30 23 016ffdf18efeffe5f0c9c78d547dc392 Hombre 2014-06-13 2015-03-31 PG-PAI Si
96,959 2,016 ROBU1**091983 1983-09-20 36 019e248f8d71486257ef01868492422f Hombre 2016-05-02 2016-09-23 PG-PAI Si
55,794 2,014 ROBU1**091982 1982-09-13 37 019e248f8d71486257ef01868492422f Hombre 2014-02-13 2014-06-20 PG-PAB Si
143,208 2,018 GUMA1**011981 1981-01-01 38 01aaeacb1401ea220fc636b0aa180f70 NA Hombre 2018-10-04 2019-02-01 PG-PAI Si
7,465 2,010 GUMA1**011991 1991-01-01 28 01aaeacb1401ea220fc636b0aa180f70 Hombre 2010-07-29 2010-10-29 PG-PAB Si
120,797 2,017 AL-D1**021995 1995-02-03 24 01b63123704cfd4510042c7131fcd2c8 NA Hombre 2017-08-14 2017-08-26 PG-PR No
85,449 2,016 ALDE1**021994 1994-02-03 25 01b63123704cfd4510042c7131fcd2c8 Hombre 2013-08-01 2016-03-01 PG-PAI Si
32,459 2,013 ALDE1**021975 1975-02-03 44 01b63123704cfd4510042c7131fcd2c8 Hombre 2012-01-11 2013-05-20 PG-PAB Si
69,703 2,015 RIJA1**101972 1972-10-01 47 021637f379fd9c6ada0be1c400525da3 Hombre 2014-10-20 2015-01-29 PG-PAI Si
38,916 2,013 RIJA1**101971 1971-10-01 48 021637f379fd9c6ada0be1c400525da3 Hombre 2013-04-05 2013-07-12 PG-PAB Si
136,868 2,018 GESA2**071997 1997-07-24 22 0219164d3ed6440d9ef04e72b07fbc77 NA Mujer 2018-04-23 2018-07-31 PG-PAI Si
111,381 2,017 GESA2**071996 1996-07-24 23 0219164d3ed6440d9ef04e72b07fbc77 NA Mujer 2016-12-16 2017-11-02 M-PAI Si
99,387 2,016 GESA2**071996 1996-07-18 23 0219164d3ed6440d9ef04e72b07fbc77 Mujer 2016-07-01 2016-11-14 M-PAI Si
15,262 2,011 CRIN1**051969 1969-05-17 50 021eb103a12001a6989026f4f3e78c47 Hombre 2011-02-23 2011-05-09 PG-PR Si
3,413 2,010 CRIN1**051989 1989-05-17 30 021eb103a12001a6989026f4f3e78c47 Hombre 2010-01-11 2010-08-03 PG-PR Si
139,681 2,018 FAGO1**051994 1994-05-27 25 026b50711b32927ca46bbb223a4e1c66 NA Hombre 2018-07-13 2018-11-05 PG-PAI Si
47,972 2,014 FAGO1**051993 1993-05-27 26 026b50711b32927ca46bbb223a4e1c66 Hombre 2012-08-16 2014-02-06 PG-PAI Si
58,682 2,014 PECA2**021994 1994-02-22 25 0278b423c68cb673a95672f75904e20f Mujer 2014-06-02 2014-08-18 M-PR Si
30,152 2,012 MAPE2**021993 1993-02-22 26 0278b423c68cb673a95672f75904e20f Mujer 2012-09-05 2012-10-03 M-PR Si
29,147 2,012 PECA2**021994 1994-02-22 25 0278b423c68cb673a95672f75904e20f Mujer 2012-07-09 2012-08-31 M-PAI Si
115,063 2,017 CACA2**031988 1988-03-06 31 028958a1e1737e818020ad8235410a55 NA Mujer 2017-03-10 2017-03-16 M-PAI Si
93,973 2,016 CACA2**031988 1988-03-06 31 028958a1e1737e818020ad8235410a55 Mujer 2016-02-01 2016-09-30 M-PR Si
79,234 2,015 CACA2**031981 1981-03-06 38 028958a1e1737e818020ad8235410a55 Mujer 2015-07-15 2015-10-10 M-PR Si
110,829 2,017 FE-A1**071956 1956-07-23 63 02c26e5bf61ac23fdc00214d3033dc08 NA Hombre 2016-11-23 2017-07-06 PG-PR Si
89,807 2,016 FEAR1**071953 1953-07-23 66 02c26e5bf61ac23fdc00214d3033dc08 Hombre 2015-10-05 2016-03-31 PG-PR Si
106,295 2,017 VIGA1**111989 1989-11-12 29 02dd43a5bbbff53406807fe544642eeb NA Hombre 2016-01-07 2017-03-06 PG-PAI Si
22,287 2,012 VIGA2**011989 1989-01-12 30 02dd43a5bbbff53406807fe544642eeb Mujer 2011-09-22 2012-02-20 PG-PAI Si
112,712 2,017 ALGA2**101982 1982-10-06 37 02e12d2d59289616b507ac77829281ac NA Mujer 2017-01-18 2017-06-28 M-PAI Si
100,864 2,016 ALGA2**011983 1983-01-06 36 02e12d2d59289616b507ac77829281ac Mujer 2016-08-25 2016-12-09 M-PR Si
88,851 2,016 ALGA2**011983 1983-01-06 36 02e12d2d59289616b507ac77829281ac Mujer 2015-08-21 2016-06-08 M-PAI Si
133,879 2,018 ISRU1**121991 1991-12-27 27 02eb5a07cd60c9f762c1c95adb2100cd NA Hombre 2018-02-20 2018-06-29 PG-PR Si
24,467 2,012 ISRU1**121992 1992-12-27 26 02eb5a07cd60c9f762c1c95adb2100cd Hombre 2012-01-09 2012-02-29 PG-PR Si
105,303 2,017 MAUR1**031993 1993-03-11 26 02f7df4d04fbcc4f95ccc66df7b81b94 NA Hombre 2012-03-12 2017-06-01 PG-PAI Si
27,262 2,012 MAUR1**031971 1971-03-11 48 02f7df4d04fbcc4f95ccc66df7b81b94 Hombre 2012-03-12 2012-10-10 PG-PAB Si
108,466 2,017 DAJO1**061996 1996-06-03 23 034f98db8aa3fc88f9e469ac5b9acf50 NA Hombre 2016-08-09 2017-08-03 PG-PAB Si
89,338 2,016 DAJO1**061977 1977-06-03 42 034f98db8aa3fc88f9e469ac5b9acf50 Hombre 2015-09-21 2016-08-02 PG-PAB Si
149,243 2,019 CLLU2**031985 1985-03-21 34 035a0c3997064d8e7b552ab9d9a6b40b NA Mujer 2018-08-03 2019-02-14 PG-PAB Si
135,358 2,018 CLLU2**031985 1985-03-21 34 035a0c3997064d8e7b552ab9d9a6b40b NA Mujer 2018-01-29 2018-05-10 PG-PAB Si
117,520 2,017 CLLU2**031985 1985-03-21 34 035a0c3997064d8e7b552ab9d9a6b40b NA Mujer 2017-04-13 2017-11-06 PG-PAB Si
89,278 2,016 CLLU2**031985 1985-03-21 34 035a0c3997064d8e7b552ab9d9a6b40b Mujer 2015-09-08 2016-09-01 M-PR Si
71,174 2,015 CLLU2**031985 1985-03-21 34 035a0c3997064d8e7b552ab9d9a6b40b Mujer 2015-01-12 2015-06-23 M-PR Si
36,598 2,013 CLLU2**031987 1987-03-21 32 035a0c3997064d8e7b552ab9d9a6b40b Mujer 2013-01-02 2013-06-29 PG-PAB Si
128,432 2,018 NIME2**091997 1997-09-05 22 0374864788328fb18a154cd7ae311469 NA Mujer 2017-05-31 2018-05-22 PG-PAB Si
99,101 2,016 NIME2**051996 1996-05-05 23 0374864788328fb18a154cd7ae311469 Mujer 2016-07-01 2016-09-01 PG-PAI Si
57,393 2,014 SECA1**101985 1985-10-01 34 03b682d87e73fd4e2b13bc2b7edf0b39 Hombre 2014-05-08 2014-11-20 PG-PAI Si
22,960 2,012 SECA1**101987 1987-10-01 32 03b682d87e73fd4e2b13bc2b7edf0b39 Hombre 2011-11-14 2012-03-30 PG-PAI Si
148,376 2,019 MICH1**101990 1990-10-16 29 03beca37efa677264b8da11904b75bc3 NA Hombre 2018-07-03 2019-04-01 PG-PAI Si
129,136 2,018 MICH1**111990 1990-11-16 28 03beca37efa677264b8da11904b75bc3 NA Hombre 2017-07-28 2018-04-27 PG-PAI Si
40,936 2,013 OMOP1**011982 1982-01-29 37 0446a8d38e84ee506da1b35a935cda9c Hombre 2013-05-22 2013-07-01 PG-PR Si
39,522 2,013 OMOR1**011994 1994-01-29 25 0446a8d38e84ee506da1b35a935cda9c Hombre 2013-05-02 2013-05-20 PG-PAI Si
29,646 2,012 OMOP1**011982 1982-01-29 37 0446a8d38e84ee506da1b35a935cda9c Hombre 2012-08-06 2013-01-03 PG-PAI Si
18,230 2,011 OMOP1**011982 1982-01-28 37 0446a8d38e84ee506da1b35a935cda9c Hombre 2011-07-28 2011-12-05 PG-PAI Si
113,407 2,017 CRBA1**071987 1987-07-21 32 0449529027dabf57df1b778808beaade NA Hombre 2017-01-24 2017-11-03 PG-PAI No
86,710 2,016 CRBA1**061985 1985-06-21 34 0449529027dabf57df1b778808beaade Hombre 2015-03-12 2016-04-29 PG-PR Si
54,207 2,014 CRBA1**071985 1985-07-21 34 0449529027dabf57df1b778808beaade Hombre 2014-02-06 2014-12-05 PG-PR Si
51,412 2,014 CRBA1**071985 1985-07-21 34 0449529027dabf57df1b778808beaade Hombre 2013-10-28 2014-02-03 PG-PAI Si
130,345 2,018 DAPI1**111987 1987-11-17 31 04c9c55fb0396922dacfe931ad6ba983 NA Hombre 2017-10-16 2018-01-31 M-PAI Si
117,803 2,017 DAPI2**111985 1985-11-17 33 04c9c55fb0396922dacfe931ad6ba983 NA Mujer 2017-04-24 2017-10-13 M-PR Si
101,984 2,016 DAPI2**111987 1987-11-07 31 04c9c55fb0396922dacfe931ad6ba983 Mujer 2016-08-23 2017-02-01 M-PAI Si
154,271 2,019 FRGO1**111991 1991-11-08 28 052e6e0b1fc7eac089310e43f19b118b NA Hombre 2019-03-07 2019-04-01 PG-PAB Si
144,949 2,018 FRGO1**111991 1991-11-08 27 052e6e0b1fc7eac089310e43f19b118b NA Hombre 2018-12-07 2019-01-01 PG-PAB Si
153,511 2,019 COPO2**011993 1993-01-27 26 054e654ee747d1fcf609a4825173502e NA Mujer 2019-02-01 2019-04-10 PG-PAI Si
146,309 2,019 COPO2**011993 1993-01-27 26 054e654ee747d1fcf609a4825173502e NA Mujer 2017-11-27 2019-01-15 M-PR Si
117,455 2,017 COPO2**011993 1993-01-27 26 054e654ee747d1fcf609a4825173502e NA Mujer 2017-05-18 2017-06-15 PG-PAI No
97,399 2,016 COPO2**011996 1996-01-27 23 054e654ee747d1fcf609a4825173502e Mujer 2016-05-23 2016-07-29 M-PAI Si
107,149 2,017 DIMA1**111988 1988-11-10 30 0558d3788b3da9c75cf540ea9babb885 NA Hombre 2016-05-10 2017-04-26 PG-PR Si
55,669 2,014 DIMA1**111998 1998-11-10 20 0558d3788b3da9c75cf540ea9babb885 Hombre 2014-03-17 2015-02-06 PG-PAB Si
43,472 2,013 ESVI1**111977 1977-11-13 41 059e769c77187ec7898098f37115583e Hombre 2013-08-12 2013-11-20 PG-PAI Si
8,697 2,010 ESVI1**111975 1975-11-13 43 059e769c77187ec7898098f37115583e Hombre 2010-09-03 2011-01-14 PG-PAI Si
139,219 2,018 PAPA1**101993 1993-10-15 26 05da1766a5667ec04d5cefd67dedf06c NA Hombre 2018-06-18 2018-08-30 PG-PAI Si
131,638 2,018 PAPA1**101983 1983-10-15 36 05da1766a5667ec04d5cefd67dedf06c NA Hombre 2017-11-29 2018-02-09 PG-PAI Si
135,893 2,018 EDBU1**101989 1989-10-20 30 0637f754d4ac3d615acea93092f7b0d1 NA Hombre 2017-11-15 2018-07-01 PG-PAI Si
108,994 2,017 EDBU1**101981 1981-10-20 38 0637f754d4ac3d615acea93092f7b0d1 NA Hombre 2016-08-31 2017-02-08 PG-PAI Si
90,211 2,016 EDBU1**101989 1989-10-20 30 0637f754d4ac3d615acea93092f7b0d1 Hombre 2015-09-03 2016-04-21 PG-PAI Si
90,403 2,016 GRLI1**021996 1996-02-05 23 0649ae7cff1d044637aa0a2d83936d0f Hombre 2015-10-23 2016-07-01 PG-PAI Si
24,398 2,012 GRLI1**021986 1986-02-05 33 0649ae7cff1d044637aa0a2d83936d0f Hombre 2011-12-27 2012-05-01 PG-PR Si
126,765 2,018 ARJE1**051984 1984-05-23 35 06746fb773eff6839a851c46a80be5a3 NA Hombre 2017-02-08 2018-03-19 PG-PAI Si
41,810 2,013 ARJE1**071985 1985-07-01 34 06746fb773eff6839a851c46a80be5a3 Hombre 2013-05-08 2013-10-14 PG-PAI Si
77,735 2,015 FRZA1**121986 1986-12-13 32 06d464e1236a8abfca4ec93ed2688162 Hombre 2015-06-17 2015-08-18 PG-PAI Si
53,008 2,014 FRZA1**121987 1987-12-03 31 06d464e1236a8abfca4ec93ed2688162 Hombre 2014-01-14 2014-03-29 PG-PAI Si
65,104 2,014 ANHO1**121980 1980-12-13 38 07453d52b64fa11e97385772fa031836 Hombre 2014-12-16 2015-01-01 PG-PAI Si
39,359 2,013 ANHO1**121990 1990-12-13 28 07453d52b64fa11e97385772fa031836 Hombre 2013-05-14 2013-11-29 PG-PAB Si
67,276 2,015 JIZA1**041971 1971-04-30 48 075bb6aa81d329b96472fc8de58293ce Hombre 2014-05-22 2015-07-03 PG-PAI Si
54,444 2,014 JIZA1**041971 1971-04-30 48 075bb6aa81d329b96472fc8de58293ce Hombre 2014-02-05 2014-04-07 PG-PAI Si
25,298 2,012 JIZA1**041979 1979-04-30 40 075bb6aa81d329b96472fc8de58293ce Hombre 2012-03-01 2012-10-02 PG-PAI Si
37,371 2,013 JOVE1**111982 1982-11-15 36 07d3a40d65e1f8fc95031942a274127a Hombre 2013-01-24 2015-05-25 PG-PAB Si
5,539 2,010 JEVE1**011982 1982-01-15 37 07d3a40d65e1f8fc95031942a274127a Hombre 2010-05-10 2011-03-01 PG-PAB Si
10,626 2,011 LAGO2**031959 1959-03-28 60 07d98b31a646c8852ebad4bb0f039a18 Mujer 2010-06-01 2011-09-30 PG-PAI Si
4,234 2,010 LAGO2**031979 1979-03-26 40 07d98b31a646c8852ebad4bb0f039a18 Mujer 2010-03-08 2010-06-01 PG-PAB Si
4,116 2,010 KAFA2**021978 1978-02-10 41 080d9edf7898d119e8e284f887ace23a Mujer 2010-03-22 2010-09-24 PG-PAI Si
1,161 2,010 KAFA2**121978 1978-12-10 40 080d9edf7898d119e8e284f887ace23a Mujer 2009-11-18 2010-04-19 M-PR Si
92,384 2,016 JOOS1**051977 1977-05-25 42 081b7760a1b1136aad4bebd92a001b39 Hombre 2016-01-18 2016-11-16 PG-PR Si
72,822 2,015 JOOS1**051976 1976-05-25 43 081b7760a1b1136aad4bebd92a001b39 Hombre 2015-02-24 2015-06-25 PG-PAI Si
66,187 2,015 JOOS1**051976 1976-05-25 43 081b7760a1b1136aad4bebd92a001b39 Hombre 2014-01-07 2015-02-06 PG-PR Si
46,972 2,013 JOOS1**051976 1976-05-25 43 081b7760a1b1136aad4bebd92a001b39 Hombre 2013-11-28 2014-01-07 PG-PAB No
72,545 2,015 ALMA1**121979 1979-12-23 39 082d9436d34086c12354134795e86926 Hombre 2015-02-18 2015-09-25 PG-PAB Si
66,451 2,015 ALMA1**121969 1969-12-23 49 082d9436d34086c12354134795e86926 Hombre 2014-02-19 2015-01-28 PG-PAI Si
45,904 2,013 CATO1**061992 1992-06-06 27 0888677b57dc04eb76fc92c341b9c6f3 Hombre 2013-10-01 2013-10-16 PG-PR Si
41,507 2,013 CATO1**071991 1991-07-06 28 0888677b57dc04eb76fc92c341b9c6f3 Hombre 2013-06-18 2013-10-16 PG-PR Si
11,710 2,011 CATO1**071991 1991-07-06 28 0888677b57dc04eb76fc92c341b9c6f3 Hombre 2010-10-05 2011-07-20 PG-PR Si
27,727 2,012 LUBA1**091980 1980-09-23 39 08c3ea919030b5eae1a64823894ae4a6 Hombre 2012-04-16 2012-10-30 PG-PAI Si
22,480 2,012 LUBA1**091980 1980-09-23 39 08c3ea919030b5eae1a64823894ae4a6 Hombre 2011-09-22 2012-04-05 PG-PR Si
11,324 2,011 CAGO2**041977 1977-04-22 42 08c3ea919030b5eae1a64823894ae4a6 Mujer 2010-09-27 2011-03-21 PG-PAI Si
40,267 2,013 LUCO1**051977 1977-05-10 42 08cfc58484f86eebd09aa9031e9065a8 Hombre 2013-05-13 2013-05-31 PG-PAI Si
26,452 2,012 LUCO1**011972 1972-01-18 47 08cfc58484f86eebd09aa9031e9065a8 Hombre 2012-04-02 2012-12-31 PG-PAI Si
24,717 2,012 LUCO1**011972 1972-01-18 47 08cfc58484f86eebd09aa9031e9065a8 Hombre 2012-02-17 2012-03-20 PG-PAB Si
33,562 2,013 HEAL1**101984 1984-10-29 35 08d306308770760ac301264e2d5da1bf Hombre 2012-08-14 2013-02-19 PG-PR Si
1,034 2,010 HEAL1**101989 1989-10-29 30 08d306308770760ac301264e2d5da1bf Hombre 2009-08-25 2010-08-20 PG-PR Si
150,214 2,019 ROFU1**111975 1975-11-12 44 0993c46c430b41447a992aef15e3e852 NA Hombre 2018-10-02 NA PG-PAI Si
131,682 2,018 ROFU1**111975 1975-11-12 43 0993c46c430b41447a992aef15e3e852 NA Hombre 2017-12-01 2018-08-31 PG-PAB Si
50,491 2,014 ROFU1**111975 1975-11-11 43 0993c46c430b41447a992aef15e3e852 Hombre 2013-08-07 2014-08-01 PG-PAB Si
39,406 2,013 ROFU1**111975 1975-11-12 43 0993c46c430b41447a992aef15e3e852 Hombre 2013-05-06 2013-06-30 PG-PR Si
2,957 2,010 ROFU1**111975 1975-11-12 43 0993c46c430b41447a992aef15e3e852 Hombre 2009-09-23 2010-10-01 PG-PAB Si
111,525 2,017 MITO1**011996 1996-01-19 23 09c84edcf3150ee01bb47842f2226606 NA Hombre 2016-03-30 2017-03-01 PG-PAI No
88,733 2,016 MITO1**011971 1971-01-19 48 09c84edcf3150ee01bb47842f2226606 Hombre 2015-07-08 2016-01-22 PG-PAI Si
80,703 2,015 RIQU1**071995 1995-07-28 24 09d5ae47a3553a90702362b3498feba8 Hombre 2015-08-27 2015-12-21 PG-PAB Si
72,819 2,015 RIQU1**071994 1994-07-28 25 09d5ae47a3553a90702362b3498feba8 Hombre 2015-02-06 2015-08-07 PG-PR Si
70,526 2,015 RIQU1**071994 1994-07-28 25 09d5ae47a3553a90702362b3498feba8 Hombre 2014-11-20 2015-02-05 PG-PAB Si
161,867 2,019 LUBR1**081985 1985-08-27 34 09d9d1b29d493e416ce42a2202a6bc43 NA Hombre 2019-09-02 NA PG-PAI Si
65,949 2,015 LUBR1**121985 1985-12-30 33 09d9d1b29d493e416ce42a2202a6bc43 Hombre 2013-10-02 2015-04-30 PG-PAI Si
148,694 2,019 ROAN1**061980 1980-06-15 39 0a36a632748c09dcf24fdc962bde1f1a NA Hombre 2018-08-01 2019-03-08 PG-PAI Si
118,299 2,017 ROAN1**061999 1999-06-15 20 0a36a632748c09dcf24fdc962bde1f1a NA Hombre 2017-05-09 2017-12-06 PG-PAB Si
83,582 2,015 ROAN1**101980 1980-10-15 39 0a36a632748c09dcf24fdc962bde1f1a Hombre 2015-10-22 2015-12-01 PG-PAI No
74,377 2,015 ROAN1**061980 1980-06-15 39 0a36a632748c09dcf24fdc962bde1f1a Hombre 2015-03-26 2015-10-01 PG-PR Si
74,151 2,015 ROAN1**051980 1980-05-16 39 0a36a632748c09dcf24fdc962bde1f1a Hombre 2015-03-02 2015-03-25 PG-PAI Si
64,283 2,014 ROAN1**061980 1980-06-15 39 0a36a632748c09dcf24fdc962bde1f1a Hombre 2014-11-10 2014-12-23 PG-PAI Si
38,055 2,013 ROAN1**061980 1980-06-06 39 0a36a632748c09dcf24fdc962bde1f1a Hombre 2013-03-11 2013-06-04 PG-PAI Si
27,822 2,012 ROAN1**061980 1980-06-15 39 0a36a632748c09dcf24fdc962bde1f1a Hombre 2012-05-30 2012-11-05 PG-PAB Si
17,971 2,011 ROAN1**061980 1980-06-15 39 0a36a632748c09dcf24fdc962bde1f1a Hombre 2011-08-12 2011-10-27 PG-PAB Si
6,103 2,010 ROAN1**061980 1980-06-15 39 0a36a632748c09dcf24fdc962bde1f1a Hombre 2010-05-27 2011-01-26 PG-PAB Si
3,595 2,010 ROAN1**061980 1980-06-15 39 0a36a632748c09dcf24fdc962bde1f1a Hombre 2009-06-02 2010-04-30 PG-PAB Si
71,487 2,015 JAMO1**051962 1962-05-28 57 0a52110ee54eb0133dafa9fadcb96b5c Hombre 2015-01-06 2015-08-14 PG-PR Si
24,278 2,012 JAMO1**051963 1963-05-26 56 0a52110ee54eb0133dafa9fadcb96b5c Hombre 2012-01-13 2012-10-25 PG-PR Si
133,079 2,018 ROEN1**011982 1982-01-20 37 0a5b1783d4ec45c7df2c6efcd0ef4629 NA Hombre 2018-01-10 2018-03-30 PG-PAI Si
119,314 2,017 ROEN1**011981 1981-01-20 38 0a5b1783d4ec45c7df2c6efcd0ef4629 NA Hombre 2017-07-10 2017-10-26 PG-PAB Si
131,615 2,018 MIPE1**011982 1982-01-16 37 0a6740b61a23dbc0980dede23ec52a2a NA Hombre 2017-11-29 2018-03-01 PG-PAI Si
88,883 2,016 MIPE1**011982 1982-01-16 37 0a6740b61a23dbc0980dede23ec52a2a Hombre 2015-08-26 2016-03-01 PG-PR Si
57,373 2,014 MIPE1**011982 1982-01-16 37 0a6740b61a23dbc0980dede23ec52a2a Hombre 2014-05-06 2014-08-14 PG-PAI Si
24,641 2,012 MIPE1**011984 1984-01-16 35 0a6740b61a23dbc0980dede23ec52a2a Hombre 2012-02-06 2012-04-06 PG-PAI Si
51,099 2,014 JAAM1**041986 1986-04-19 33 0a82fbe4270a24f6e2a6cb99f6b003b2 Hombre 2013-10-04 2014-01-20 PG-PAI Si
29,339 2,012 JAAM1**041993 1993-04-14 26 0a82fbe4270a24f6e2a6cb99f6b003b2 Hombre 2012-08-29 2012-12-17 PG-PAI Si
64,545 2,014 NIFE1**121992 1992-12-21 26 0ad9090b99f6add47d0ed80878410d7b Hombre 2014-11-26 2014-11-27 CALLE Si
62,328 2,014 NIFE1**121992 1992-12-21 26 0ad9090b99f6add47d0ed80878410d7b Hombre 2014-09-02 2014-09-06 PG-PR Si
15,986 2,011 NIFE1**121991 1991-12-21 27 0ad9090b99f6add47d0ed80878410d7b Hombre 2011-05-10 NA PG-PR Si
131,817 2,018 MAGA2**071991 1991-07-04 28 0af1ce02c91d233099c5e985bbcb680a NA Mujer 2017-12-13 2018-08-21 PG-PAI Si
112,256 2,017 MAGA2**071991 1991-07-04 28 0af1ce02c91d233099c5e985bbcb680a NA Mujer 2017-01-31 2017-08-04 M-PR Si
108,131 2,017 MAGA2**071989 1989-07-04 30 0af1ce02c91d233099c5e985bbcb680a NA Mujer 2016-07-28 2017-01-30 PG-PAI Si
41,168 2,013 PAGO2**031972 1972-03-22 47 0b2f3f8d9f07c5855979e3c768672541 Mujer 2013-06-24 2013-12-20 PG-PAI Si
28,509 2,012 PAGO2**051978 1978-05-22 41 0b2f3f8d9f07c5855979e3c768672541 Mujer 2012-07-03 2012-08-08 M-PR Si
149,696 2,019 JAGA1**111983 1983-11-10 36 0b3a0f6f652f28220edf0e629f994fc4 NA Hombre 2018-09-28 2019-03-22 PG-PR Si
77,881 2,015 JAGA1**111983 1983-11-10 35 0b3a0f6f652f28220edf0e629f994fc4 Hombre 2015-06-17 2015-10-28 PG-PAI Si
93,643 2,016 CARE1**021996 1996-02-10 23 0b734e0104a0662130170e1f5a053bde Hombre 2016-02-17 2016-10-01 PG-PAI Si
80,349 2,015 CARE1**061988 1988-06-10 31 0b734e0104a0662130170e1f5a053bde Hombre 2015-08-24 2015-09-04 PG-PAI Si
74,084 2,015 REAT1**061988 1988-06-10 31 0b734e0104a0662130170e1f5a053bde Hombre 2015-03-24 2015-04-30 PG-PAI Si
38,887 2,013 CARE1**061988 1988-06-10 31 0b734e0104a0662130170e1f5a053bde Hombre 2013-03-18 2013-07-01 PG-PAB Si
112,908 2,017 PAVE2**051996 1996-05-14 23 0ba0e0e8daeac85e4d4ee88331d58d34 NA Mujer 2017-01-01 2017-02-20 M-PR Si
99,131 2,016 PAVE2**051986 1986-05-14 33 0ba0e0e8daeac85e4d4ee88331d58d34 Mujer 2016-07-04 2016-12-22 M-PR Si
150,003 2,019 JEMA2**111990 1990-11-12 29 0bb05e2c981175169582c8f56c5a2f26 NA Mujer 2018-09-27 2019-04-30 PG-PAB Si
100,462 2,016 JEMA2**111990 1990-11-12 28 0bb05e2c981175169582c8f56c5a2f26 Mujer 2016-08-05 2016-12-01 M-PR Si
86,918 2,016 KASE2**051983 1983-05-14 36 0bfd1b87c34eafc58ec8a15915c7c189 Mujer 2015-03-25 2016-06-01 PG-PAI Si
61,020 2,014 KASE2**051982 1982-05-14 37 0bfd1b87c34eafc58ec8a15915c7c189 Mujer 2014-08-20 2014-09-09 M-PR Si
130,336 2,018 ANTO1**081994 1994-08-29 25 0c07639f9bf9a1e1d74e7ec64f6b2066 NA Hombre 2017-10-23 2018-01-26 PG-PR Si
110,197 2,017 JATO1**081994 1994-08-29 25 0c07639f9bf9a1e1d74e7ec64f6b2066 NA Hombre 2016-11-03 2017-01-26 PG-PR Si
70,823 2,015 JATO1**091999 1999-09-29 20 0c07639f9bf9a1e1d74e7ec64f6b2066 Hombre 2014-12-18 2015-04-01 PG-PAI Si
128,749 2,018 HUOP1**111955 1955-11-06 63 0c1f700770c5e9f0834be27a85cbad61 NA Hombre 2017-08-08 2018-02-13 PG-PAB Si
65,536 2,015 HUOP1**111965 1965-11-13 53 0c1f700770c5e9f0834be27a85cbad61 Hombre 2013-03-18 2015-02-02 PG-PAB Si
73,514 2,015 VEHE2**061984 1984-06-07 35 0c3c8426e2d1a0fd497bea74afde0688 Mujer 2015-03-06 2015-03-16 M-PR Si
32,394 2,013 VEHE2**071981 1981-07-07 38 0c3c8426e2d1a0fd497bea74afde0688 Mujer 2011-09-26 2013-10-11 M-PR Si
155,398 2,019 JECA2**101976 1976-10-15 43 0cb473217468910f4f7dee26dcdafd2a NA Mujer 2019-04-01 NA PG-PAB Si
138,932 2,018 JECA2**101976 1976-10-15 43 0cb473217468910f4f7dee26dcdafd2a NA Mujer 2018-06-18 2018-11-07 M-PAI Si
120,915 2,017 JECA2**101977 1977-10-15 42 0cb473217468910f4f7dee26dcdafd2a NA Mujer 2017-08-21 2018-01-24 PG-PAB Si
111,807 2,017 MAFR2**011993 1993-01-02 26 0cb6122c9f03d5c1d4de382dbb49cde2 NA Mujer 2016-12-19 2017-04-03 M-PAI Si
102,084 2,016 MAAR2**121993 1993-12-02 25 0cb6122c9f03d5c1d4de382dbb49cde2 Mujer 2016-09-07 2016-12-05 M-PAI Si
155,602 2,019 JACE2**111981 1981-11-07 38 0cd0b036b64393f92c7342e3fa02f850 NA Mujer 2019-04-11 NA PG-PAB Si
141,447 2,018 JACE2**111981 1981-11-07 37 0cd0b036b64393f92c7342e3fa02f850 NA Mujer 2018-08-01 2018-12-18 M-PR Si
104,388 2,016 ISFE2**091995 1995-09-11 24 0cd95b9d871beefc3bf68a94b9c50e28 Mujer 2016-11-01 2016-12-19 PG-PAB Si
86,890 2,016 ISFE2**091965 1965-09-11 54 0cd95b9d871beefc3bf68a94b9c50e28 Mujer 2015-03-30 2016-05-23 M-PR Si
73,274 2,015 ISFE2**091965 1965-09-11 54 0cd95b9d871beefc3bf68a94b9c50e28 Mujer 2015-01-15 2015-03-31 PG-PAI Si
52,131 2,014 ISFE2**091965 1965-09-11 54 0cd95b9d871beefc3bf68a94b9c50e28 Mujer 2013-11-06 2014-11-25 PG-PAI Si
120,400 2,017 RODI1**121986 1986-12-15 32 0d0317f51c2cf1d9fe8427fcaefbd0b1 NA Hombre 2017-08-07 2017-08-25 PG-PAI Si
114,594 2,017 RODI1**121988 1988-12-15 30 0d0317f51c2cf1d9fe8427fcaefbd0b1 NA Hombre 2017-03-16 2017-06-01 PG-PAI Si
117,591 2,017 MALI1**021975 1975-02-01 44 0d0e5c4975d419ec5f9c7ff8ba417ec6 NA Hombre 2017-05-23 2017-10-26 PG-PAI Si
92,054 2,016 MALI1**121975 1975-12-01 43 0d0e5c4975d419ec5f9c7ff8ba417ec6 Hombre 2015-12-28 2016-03-15 PG-PAI Si
74,554 2,015 JUAR1**011982 1982-01-09 37 0d40c418841cc2c71d9f0f5027cc6b62 Hombre 2015-03-25 2015-08-10 PG-PR Si
70,933 2,015 JUAR1**011981 1981-01-09 38 0d40c418841cc2c71d9f0f5027cc6b62 Hombre 2015-01-22 2015-03-24 PG-PAB No
22,404 2,012 JUAR1**091982 1982-09-01 37 0d40c418841cc2c71d9f0f5027cc6b62 Hombre 2011-09-13 2012-02-29 PG-PAB Si
160,470 2,019 OSCA1**081982 1982-08-02 37 0d5d91c1107f2dd97d904b82961113f3 NA Hombre 2019-08-22 NA PG-PR Si
154,181 2,019 OSCA1**081980 1980-08-29 39 0d5d91c1107f2dd97d904b82961113f3 NA Hombre 2019-02-12 2019-03-21 PG-PR Si
149,746 2,019 OSCA1**081980 1980-08-29 39 0d5d91c1107f2dd97d904b82961113f3 NA Hombre 2018-10-01 2019-02-11 PG-PAI Si
91,250 2,016 OSCA1**081980 1980-08-29 39 0d5d91c1107f2dd97d904b82961113f3 Hombre 2015-11-30 2016-03-01 PG-PR Si
80,602 2,015 OSCA1**081980 1980-08-29 39 0d5d91c1107f2dd97d904b82961113f3 Hombre 2015-08-07 2015-10-02 PG-PR Si
76,470 2,015 OSCA1**081980 1980-08-29 39 0d5d91c1107f2dd97d904b82961113f3 Hombre 2015-05-05 2015-07-07 PG-PR Si
69,449 2,015 OSCA1**081980 1980-08-29 39 0d5d91c1107f2dd97d904b82961113f3 Hombre 2014-10-23 2015-02-04 PG-PR Si
161,534 2,019 CAOR2**091994 1994-09-16 25 0dcbb293a249dcc46e0c58dcd098f09e NA Mujer 2019-09-03 NA M-PAI Si
132,323 2,018 CAOR2**091995 1995-09-16 24 0dcbb293a249dcc46e0c58dcd098f09e NA Mujer 2018-01-04 2018-08-28 M-PAI Si
88,646 2,016 DAAC1**121973 1973-12-28 45 0e0654dd8a8193c33e7d1b0e1ad69051 Hombre 2015-08-06 2016-01-19 PG-PR Si
76,047 2,015 DAAC1**121973 1973-12-28 45 0e0654dd8a8193c33e7d1b0e1ad69051 Hombre 2015-04-16 2015-08-13 PG-PAI Si
33,908 2,013 DAAC1**121973 1973-12-28 45 0e0654dd8a8193c33e7d1b0e1ad69051 Hombre 2012-09-10 2013-12-20 PG-PAI Si
22,434 2,012 DAAC1**121972 1972-12-29 46 0e0654dd8a8193c33e7d1b0e1ad69051 Hombre 2011-05-31 2012-03-27 PG-PAB Si
12,119 2,011 DAAC1**121972 1972-12-29 46 0e0654dd8a8193c33e7d1b0e1ad69051 Hombre 2010-11-24 2011-05-26 PG-PAB Si
49,224 2,014 PARU2**011985 1985-01-14 34 0e0c9e7cec37653d4a4735d05c93443c Mujer 2013-05-27 2014-12-22 M-PAI Si
38,875 2,013 PARU2**011985 1985-01-14 34 0e0c9e7cec37653d4a4735d05c93443c Mujer 2013-04-24 2013-05-24 M-PR Si
35,736 2,013 PARU2**011983 1983-01-14 36 0e0c9e7cec37653d4a4735d05c93443c Mujer 2013-01-07 2013-04-23 M-PAI Si
153,481 2,019 CLCA1**111972 1972-11-11 47 0e0d0d117b5afa1ae4a23aa9b18dbdc9 NA Hombre 2019-02-19 2019-04-02 PG-PAI Si
22,700 2,012 CLCA1**111972 1972-11-11 46 0e0d0d117b5afa1ae4a23aa9b18dbdc9 Hombre 2011-10-04 2012-12-19 PG-PAI Si
3,425 2,010 CLCA1**111972 1972-11-11 46 0e0d0d117b5afa1ae4a23aa9b18dbdc9 Hombre 2010-01-18 2010-05-04 PG-PAB Si
100,900 2,016 SOGU2**071985 1985-07-12 34 0e1895f82c4b9871e7c022ae97d6baec Mujer 2016-08-04 2016-09-09 M-PR Si
81,259 2,015 SOGU2**071983 1983-07-12 36 0e1895f82c4b9871e7c022ae97d6baec Mujer 2015-09-07 2015-10-02 M-PR Si
54,358 2,014 SOGU2**071985 1985-07-12 34 0e1895f82c4b9871e7c022ae97d6baec Mujer 2014-02-17 2014-04-16 PG-PAB Si
88,294 2,016 MAPE1**111989 1989-11-30 29 0e76d782a342f05b7369e7cd7986ea89 Hombre 2015-07-15 2016-03-01 PG-PAI Si
69,098 2,015 MAPE1**121990 1990-12-30 28 0e76d782a342f05b7369e7cd7986ea89 Hombre 2014-10-20 2015-05-18 PG-PAI Si
40,650 2,013 JOJI2**121990 1990-12-11 28 0e9ffcb8684f33f1502e835f7e3d7ffb Mujer 2013-06-11 2014-01-15 PG-PAI Si
14,279 2,011 JOJI1**091990 1990-09-11 29 0e9ffcb8684f33f1502e835f7e3d7ffb Hombre 2011-03-08 2011-09-01 PG-PAB Si
149,931 2,019 PACA1**111971 1971-11-07 48 0ef9a2c60c56ccb5d888be5310f3020c NA Hombre 2018-09-24 2019-05-15 PG-PAI Si
133,755 2,018 PACA1**111971 1971-11-07 47 0ef9a2c60c56ccb5d888be5310f3020c NA Hombre 2018-02-08 2018-07-27 PG-PR Si
50,842 2,014 PACA1**111971 1971-11-07 47 0ef9a2c60c56ccb5d888be5310f3020c Hombre 2013-09-26 2015-01-02 PG-PAI Si
116,178 2,017 ALPA1**051986 1986-05-02 33 0f4aa2f78fa5da961404e6e5389ad76c NA Hombre 2017-04-10 2017-06-01 PG-PAI Si
116,001 2,017 ALPA1**051986 1986-05-02 33 0f4aa2f78fa5da961404e6e5389ad76c NA Hombre 2017-04-03 2017-04-08 PG-PR Si
115,060 2,017 ALPA1**051986 1986-05-02 33 0f4aa2f78fa5da961404e6e5389ad76c NA Hombre 2017-01-31 2017-03-29 PG-PAI Si
97,874 2,016 ALPA1**051986 1986-05-02 33 0f4aa2f78fa5da961404e6e5389ad76c Hombre 2016-05-27 2016-08-12 PG-PR Si
90,359 2,016 ALPA1**051996 1996-05-02 23 0f4aa2f78fa5da961404e6e5389ad76c Hombre 2015-10-19 2016-05-23 PG-PAI Si
78,870 2,015 ALPA1**051986 1986-05-02 33 0f4aa2f78fa5da961404e6e5389ad76c Hombre 2015-07-14 2015-10-16 PG-PR Si
59,848 2,014 ALPA1**051986 1986-05-02 33 0f4aa2f78fa5da961404e6e5389ad76c Hombre 2014-07-23 2014-08-11 PG-PR Si
59,582 2,014 ALPA1**051986 1986-05-02 33 0f4aa2f78fa5da961404e6e5389ad76c Hombre 2014-07-08 2014-07-21 PG-PAI Si
59,197 2,014 ALPA1**051986 1986-05-02 33 0f4aa2f78fa5da961404e6e5389ad76c Hombre 2014-06-05 2014-07-01 PG-PAI Si
51,832 2,014 ALPA1**051986 1986-05-02 33 0f4aa2f78fa5da961404e6e5389ad76c Hombre 2013-11-04 2014-06-07 PG-PAB Si
30,017 2,012 ALPA1**051986 1986-05-02 33 0f4aa2f78fa5da961404e6e5389ad76c Hombre 2012-09-03 2013-01-21 PG-PAB Si
23,019 2,012 ALPA1**051986 1986-05-02 33 0f4aa2f78fa5da961404e6e5389ad76c Hombre 2011-11-04 2012-03-30 PG-PAB No
71,812 2,015 VIOS1**101981 1981-10-31 38 0f5e116fd2302ef1e0079ed7fb6c43d1 Hombre 2015-01-08 2015-08-01 PG-PAI Si
38,215 2,013 VIOS1**081980 1980-08-13 39 0f5e116fd2302ef1e0079ed7fb6c43d1 Hombre 2013-03-12 2013-06-04 PG-PAB Si
131,329 2,018 TECA2**031965 1965-03-23 54 0f9d0e5935d8899c35255ce5f236d58a NA Mujer 2017-11-22 2018-07-20 PG-PR Si
109,261 2,017 TECA2**031965 1965-03-23 54 0f9d0e5935d8899c35255ce5f236d58a NA Mujer 2016-09-01 2017-04-26 PG-PAB Si
93,893 2,016 TECA2**031966 1966-03-12 53 0f9d0e5935d8899c35255ce5f236d58a Mujer 2015-12-29 2016-03-17 PG-PAB Si
152,431 2,019 DAPI1**011985 1985-01-06 34 1014fb4b1388e064f36ba0a6c62bf6a9 NA Hombre 2019-01-25 NA PG-PR Si
141,821 2,018 DAPI1**011985 1985-01-06 34 1014fb4b1388e064f36ba0a6c62bf6a9 NA Hombre 2018-09-03 2018-10-01 PG-PAI Si
4,977 2,010 DAPI1**011985 1985-01-06 34 1014fb4b1388e064f36ba0a6c62bf6a9 Hombre 2010-04-15 2010-06-15 PG-PAI Si
76 2,010 DAPI1**011995 1995-01-06 24 1014fb4b1388e064f36ba0a6c62bf6a9 Hombre 2009-07-17 2010-04-30 PG-PR Si
137,042 2,018 MAHE1**111982 1982-11-14 36 10259c2bfd6e35456c0bee485923b988 NA Hombre 2018-04-23 2018-11-30 PG-PAB Si
122,139 2,017 MAHE1**051965 1965-05-11 54 10259c2bfd6e35456c0bee485923b988 NA Hombre 2017-09-28 2017-11-01 PG-PAB Si
49,067 2,014 MAHE1**051965 1965-05-11 54 10259c2bfd6e35456c0bee485923b988 Hombre 2013-05-16 2014-02-03 PG-PAI Si
22,944 2,012 JOUB1**071972 1972-07-27 47 1097c28c660153ac5ffec23eff64c6da Hombre 2011-11-01 2012-04-29 PG-PAI Si
9,988 2,011 JOUB1**071980 1980-07-19 39 1097c28c660153ac5ffec23eff64c6da Hombre 2008-11-03 2011-04-29 PG-PAI Si
123,683 2,017 YEVA2**081999 1999-08-04 20 10daef09cde7cb54835558e8254d7846 NA Mujer 2017-10-27 2018-01-15 M-PR Si
123,666 2,017 YEVA2**081999 1999-08-04 20 10daef09cde7cb54835558e8254d7846 NA Mujer 2017-10-20 2017-10-26 M-PAI Si
117,067 2,017 YEVA2**081990 1990-08-04 29 10daef09cde7cb54835558e8254d7846 NA Mujer 2017-05-18 2017-05-31 M-PAI Si
108,880 2,017 YEVA2**081990 1990-08-04 29 10daef09cde7cb54835558e8254d7846 NA Mujer 2016-08-03 2017-03-31 M-PAI Si
97,054 2,016 YEVA2**081990 1990-08-04 29 10daef09cde7cb54835558e8254d7846 Mujer 2016-05-10 2016-07-01 PG-PAI Si
72,730 2,015 FACR1**121993 1993-12-28 25 11069ab3c29e95014fb376a5b0b36a5e Hombre 2014-12-19 2015-09-17 PG-PAI Si
55,296 2,014 FACR1**121993 1993-12-28 25 11069ab3c29e95014fb376a5b0b36a5e Hombre 2014-03-12 2014-05-30 PG-PAB Si
35,134 2,013 FACR1**121992 1992-12-28 26 11069ab3c29e95014fb376a5b0b36a5e Hombre 2012-11-05 2013-12-18 PG-PAI Si
27,631 2,012 FACR1**121992 1992-12-28 26 11069ab3c29e95014fb376a5b0b36a5e Hombre 2012-06-18 2012-12-01 PG-PAI Si
111,125 2,017 MISO1**101985 1985-10-07 34 112b39c8214e7c0283e8150305011c57 NA Hombre 2016-12-12 2017-11-30 PG-PAI Si
29,025 2,012 MISO1**111985 1985-11-07 33 112b39c8214e7c0283e8150305011c57 Hombre 2012-08-01 2012-10-31 PG-PAI Si
13,832 2,011 MISO1**101985 1985-10-07 34 112b39c8214e7c0283e8150305011c57 Hombre 2011-02-04 2011-09-30 PG-PAI Si
143,144 2,018 CLBE2**091976 1976-09-03 43 1173f19959cadd5542a584ab94ca87b7 NA Mujer 2018-10-10 2019-01-01 M-PAI Si
130,980 2,018 CLBE2**091976 1976-09-03 43 1173f19959cadd5542a584ab94ca87b7 NA Mujer 2017-11-22 2018-05-08 M-PR Si
122,842 2,017 CLBE2**101973 1973-10-03 46 1173f19959cadd5542a584ab94ca87b7 NA Mujer 2017-07-10 2017-11-21 PG-PAI Si
85,788 2,016 CLBE2**091976 1976-09-05 43 1173f19959cadd5542a584ab94ca87b7 Mujer 2014-07-07 2016-04-13 M-PAI Si
58,200 2,014 CLBE2**091976 1976-09-03 43 1173f19959cadd5542a584ab94ca87b7 Mujer 2014-04-04 2014-07-31 PG-PAI Si
39,002 2,013 CLBE2**091976 1976-09-03 43 1173f19959cadd5542a584ab94ca87b7 Mujer 2013-04-26 2013-08-01 M-PR Si
36,165 2,013 CLBE2**091976 1976-09-03 43 1173f19959cadd5542a584ab94ca87b7 Mujer 2013-01-23 2013-04-01 PG-PAI Si
26,165 2,012 CLBE2**091976 1976-09-03 43 1173f19959cadd5542a584ab94ca87b7 Mujer 2012-04-02 2013-01-21 M-PAI Si
25,006 2,012 CLBE2**091976 1976-09-03 43 1173f19959cadd5542a584ab94ca87b7 Mujer 2012-02-15 2012-04-12 M-PR Si
22,505 2,012 CLBE2**091976 1976-09-03 43 1173f19959cadd5542a584ab94ca87b7 Mujer 2011-09-22 2012-02-13 M-PAI Si
12,741 2,011 CLBE2**091976 1976-09-03 43 1173f19959cadd5542a584ab94ca87b7 Mujer 2011-01-17 2011-06-23 PG-PAB Si
138,088 2,018 JOAC1**081985 1985-08-05 34 118d2e60b4cec15c4c08d7fae1dd08a4 NA Hombre 2018-05-08 2018-07-20 PG-PR No
97,136 2,016 JOAC1**081987 1987-08-05 32 118d2e60b4cec15c4c08d7fae1dd08a4 Hombre 2016-05-02 2016-06-01 PG-PAB Si
130,228 2,018 DIMO1**051987 1987-05-06 32 12226c569c52e1809ae6632a504fe459 NA Hombre 2017-10-24 2018-02-01 PG-PR Si
115,433 2,017 DIMO1**031999 1999-03-22 20 12226c569c52e1809ae6632a504fe459 NA Hombre 2017-04-03 2017-06-14 PG-PR Si
49,658 2,014 DIMO1**051987 1987-05-06 32 12226c569c52e1809ae6632a504fe459 Hombre 2013-07-01 2014-05-09 PG-PAI Si
70,481 2,015 BARO2**071998 1998-07-14 21 12343ee952e906e4aa9b6477bfcb58c8 Mujer 2014-08-14 2015-11-30 PG-PAB Si
63,088 2,014 BARO2**071988 1988-07-14 31 12343ee952e906e4aa9b6477bfcb58c8 Mujer 2014-10-01 2014-11-18 M-PAI Si
57,755 2,014 MASA1**111989 1989-11-18 29 123bce0633eee749a557413c980dead1 Hombre 2014-05-13 2014-07-01 PG-PR Si
54,276 2,014 MASA1**111989 1989-11-03 30 123bce0633eee749a557413c980dead1 Hombre 2014-02-03 2014-05-01 PG-PAI Si
137,696 2,018 LUAR1**081985 1985-08-12 34 123ec952e595d167ea434c5bd3d09564 NA Hombre 2018-05-23 2018-07-02 PG-PAB No
101,664 2,016 LUAR1**081986 1986-08-12 33 123ec952e595d167ea434c5bd3d09564 Hombre 2016-09-09 2016-11-14 PG-PAI Si
121,076 2,017 CLRA1**041977 1977-04-19 42 12535edefc7d9d90edf23c8825b2073b NA Hombre 2017-07-26 2017-10-11 PG-PAB Si
93,978 2,016 CLRA1**041977 1977-04-19 42 12535edefc7d9d90edf23c8825b2073b Hombre 2016-02-19 2016-11-03 PG-PR Si
70,232 2,015 CLRA1**041977 1977-04-19 42 12535edefc7d9d90edf23c8825b2073b Hombre 2014-11-03 2015-04-06 PG-PAB Si
49,940 2,014 CLRA1**041977 1977-04-19 42 12535edefc7d9d90edf23c8825b2073b Hombre 2013-07-22 2014-04-14 PG-PR Si
39,446 2,013 CLRA1**041977 1977-04-19 42 12535edefc7d9d90edf23c8825b2073b Hombre 2013-05-10 2013-07-22 PG-PAI Si
26,756 2,012 CLRA1**041977 1977-04-19 42 12535edefc7d9d90edf23c8825b2073b Hombre 2012-05-15 2012-05-26 PG-PR Si
26,555 2,012 CLRA1**041993 1993-04-19 26 12535edefc7d9d90edf23c8825b2073b Hombre 2012-04-23 2012-05-15 PG-PAI Si
15,312 2,011 CLRA1**041977 1977-04-19 42 12535edefc7d9d90edf23c8825b2073b Hombre 2011-04-04 2011-08-22 PG-PAI Si
91,624 2,016 ERHI1**111965 1965-11-06 53 125b26442466e0f3852d807bbbb89463 Hombre 2015-12-14 2016-11-09 PG-PR Si
76,696 2,015 ERHI1**111965 1965-11-06 53 125b26442466e0f3852d807bbbb89463 Hombre 2015-05-04 2015-07-30 PG-PAI Si
66,677 2,015 ERHI1**111965 1965-11-06 53 125b26442466e0f3852d807bbbb89463 Hombre 2014-03-27 2015-03-29 PG-PR Si
49,646 2,014 ERHI1**121966 1966-12-06 52 125b26442466e0f3852d807bbbb89463 Hombre 2013-05-22 2014-02-28 PG-PAB Si
96,027 2,016 PANE1**121979 1979-12-30 39 12701a589f60e59d41bc68d17be2fa03 Hombre 2016-04-06 2016-08-31 PG-PAI Si
71,939 2,015 PANE1**101979 1979-10-30 40 12701a589f60e59d41bc68d17be2fa03 Hombre 2015-01-05 2015-10-26 PG-PAI Si
42,883 2,013 PANE1**101979 1979-10-30 40 12701a589f60e59d41bc68d17be2fa03 Hombre 2013-07-11 2013-10-10 PG-PAI Si
42,868 2,013 PANE1**101979 1979-10-30 40 12701a589f60e59d41bc68d17be2fa03 Hombre 2013-07-09 2013-07-09 PG-PAI No
10,462 2,011 PANE1**101979 1979-10-30 40 12701a589f60e59d41bc68d17be2fa03 Hombre 2009-11-09 2011-01-28 PG-PAI Si
139,567 2,018 JURI1**061967 1967-06-27 52 12831c3b982de6dda6de919ff0f4140f NA Hombre 2018-07-03 2018-10-10 PG-PR Si
137,404 2,018 JURI1**061967 1967-06-27 52 12831c3b982de6dda6de919ff0f4140f NA Hombre 2018-05-17 2018-05-30 PG-PR Si
46,749 2,013 JURI1**061967 1967-06-27 52 12831c3b982de6dda6de919ff0f4140f Hombre 2013-10-25 2013-11-15 PG-PAI Si
45,150 2,013 JURI1**061977 1977-06-27 42 12831c3b982de6dda6de919ff0f4140f Hombre 2013-10-21 2013-10-23 PG-PR Si
126,709 2,018 ALAN2**041974 1974-04-28 45 12a8b05f2411b588f7711cd461ae71e8 NA Mujer 2017-01-09 2018-02-28 PG-PAB Si
69,662 2,015 ALAN2**121974 1974-12-05 44 12a8b05f2411b588f7711cd461ae71e8 Mujer 2014-11-07 2015-08-03 PG-PAB Si
110,930 2,017 PERI1**111951 1951-11-24 67 12d12a8b9378b80aa1dfc6a611d99eda NA Hombre 2016-11-30 2017-03-01 PG-PAI Si
50,115 2,014 PERI1**111954 1954-11-24 64 12d12a8b9378b80aa1dfc6a611d99eda Hombre 2013-07-30 2014-04-28 PG-PAI Si
30,007 2,012 PERI1**111951 1951-11-24 67 12d12a8b9378b80aa1dfc6a611d99eda Hombre 2012-07-20 2012-12-18 PG-PAB Si
15,855 2,011 PERI1**111951 1951-11-24 67 12d12a8b9378b80aa1dfc6a611d99eda Hombre 2011-05-03 2011-08-05 PG-PAB No
37,513 2,013 INCO2**051980 1980-05-26 39 1311b0ff6ab1367a00c354007d209d59 Mujer 2013-03-04 2013-07-08 PG-PAB Si
2,604 2,010 INCO2**051990 1990-05-26 29 1311b0ff6ab1367a00c354007d209d59 Mujer 2009-11-16 2010-07-22 PG-PAB Si
65,674 2,015 FRCA1**071985 1985-07-24 34 137e8525aa3f79235fa8ad90913fdcbe Hombre 2013-06-24 NA PG-PAB Si
49,659 2,014 FAMU2**011975 1975-01-16 44 137e8525aa3f79235fa8ad90913fdcbe Mujer 2013-07-03 2014-06-01 PG-PAI No
21,464 2,012 FRCA1**071985 1985-07-24 34 137e8525aa3f79235fa8ad90913fdcbe Hombre 2010-10-26 2012-04-02 PG-PAB Si
26,486 2,012 CRNA1**091981 1981-09-08 38 1381abe25524f710a2e3f61f60e22071 Hombre 2012-01-05 2012-10-30 PG-PAB Si
14,454 2,011 CRNA1**091981 1981-09-08 38 1381abe25524f710a2e3f61f60e22071 Hombre 2011-03-25 2011-06-02 PG-PAI Si
3,897 2,010 CRNA1**091990 1990-09-08 29 1381abe25524f710a2e3f61f60e22071 Hombre 2010-01-25 2010-07-29 PG-PAI Si
70,975 2,015 SUFU2**061969 1969-06-25 50 1386ef17c8ce067e2007c46845600f70 Mujer 2014-12-11 2015-11-17 M-PAI Si
56,774 2,014 SUFU2**061968 1968-06-25 51 1386ef17c8ce067e2007c46845600f70 Mujer 2014-04-23 2014-06-19 PG-PAI Si
75,746 2,015 HUMU1**101975 1975-10-05 44 138ad9fee2f93caf2b3800833e54449b Hombre 2015-04-20 2015-10-14 PG-PAB Si
56,078 2,014 HUMU1**101974 1974-10-05 45 138ad9fee2f93caf2b3800833e54449b Hombre 2014-02-06 2014-10-30 PG-PAB Si
153,704 2,019 SESO1**121993 1993-12-02 25 138cb5144cbc497bcfef4b9459c5d5ec NA Hombre 2018-12-02 NA PG-PAB Si
25,198 2,012 SESO1**011993 1993-01-02 26 138cb5144cbc497bcfef4b9459c5d5ec Hombre 2012-02-14 2012-06-22 PG-PR Si
131,652 2,018 PAVA2**031982 1982-03-26 37 141aa6b3a261095f4cb5b2a839cbf4ad NA Mujer 2017-12-01 2018-12-03 M-PAI Si
96,604 2,016 PAVA2**031996 1996-03-26 23 141aa6b3a261095f4cb5b2a839cbf4ad Mujer 2016-04-22 2016-09-26 M-PAI Si
88,456 2,016 PAVA2**031982 1982-03-26 37 141aa6b3a261095f4cb5b2a839cbf4ad Mujer 2015-07-20 2016-02-01 M-PAI Si
49,393 2,014 BECA2**051994 1994-05-31 25 142088e42b9fd7ad9037a16789b98438 Mujer 2013-06-05 2014-05-22 PG-PAB Si
34,465 2,013 BECA2**051975 1975-05-31 44 142088e42b9fd7ad9037a16789b98438 Mujer 2012-11-06 2013-02-28 M-PAI Si
24,754 2,012 BECA2**051975 1975-05-31 44 142088e42b9fd7ad9037a16789b98438 Mujer 2012-02-01 2012-06-04 M-PAI Si
16,775 2,011 BECA2**051975 1975-05-31 44 142088e42b9fd7ad9037a16789b98438 Mujer 2011-05-30 2011-08-06 PG-PAB Si
49,524 2,014 PACO1**121982 1982-12-30 36 142370736c6b61809104d0593d6309ef Hombre 2013-06-28 2014-11-14 PG-PR Si
23,040 2,012 PACO1**121981 1981-12-30 37 142370736c6b61809104d0593d6309ef Hombre 2011-11-09 2012-10-08 PG-PR Si
68,908 2,015 ALFL1**071976 1976-07-20 43 143dd47ab81411b1f4250613a31206de Hombre 2014-10-01 2015-03-31 PG-PAB Si
1,059 2,010 ALFL1**071986 1986-07-20 33 143dd47ab81411b1f4250613a31206de Hombre 2009-10-30 2010-05-31 PG-PAB Si
150,279 2,019 ALMU1**111986 1986-11-02 33 143e489e004ed5834abf9392f843af12 NA Hombre 2018-10-29 2019-01-11 PG-PAI Si
131,423 2,018 ALMU1**111999 1999-11-02 20 143e489e004ed5834abf9392f843af12 NA Hombre 2017-10-25 2018-01-29 PG-PAI Si
146,492 2,019 ROBE1**081993 1993-08-08 26 1442afec4ea457ce01a43c816e702ce0 NA Hombre 2018-01-25 2019-01-29 PG-PAI Si
125,831 2,018 ROBE1**081983 1983-08-08 36 1442afec4ea457ce01a43c816e702ce0 NA Hombre 2015-04-14 2018-01-24 PG-PAB Si
49,889 2,014 LUAL1**051968 1968-05-30 51 1461b64ba2e619fcb85e4b199b4b9587 Hombre 2013-02-25 2014-03-31 PG-PAB No
38,480 2,013 LUAL1**051961 1961-05-30 58 1461b64ba2e619fcb85e4b199b4b9587 Hombre 2013-04-08 2013-07-01 PG-PAB Si
60,852 2,014 JOCI1**121990 1990-12-05 28 146fe6f08b9a90535e819dc7be85f80f Hombre 2014-08-19 2014-11-03 PG-PAI Si
40,757 2,013 JOCI1**121989 1989-12-05 29 146fe6f08b9a90535e819dc7be85f80f Hombre 2013-05-29 2013-08-22 PG-PAI Si
144,272 2,018 ELMI2**081983 1983-08-05 36 14d5828aa7f49e48d11b4bb1112241bd NA Mujer 2018-11-22 2018-12-07 M-PR Si
136,123 2,018 ELMI2**081983 1983-08-05 36 14d5828aa7f49e48d11b4bb1112241bd NA Mujer 2018-04-10 2018-07-06 M-PR Si
125,836 2,018 ELMI2**081983 1983-08-05 36 14d5828aa7f49e48d11b4bb1112241bd NA Mujer 2015-04-02 2018-04-09 M-PAI Si
60,069 2,014 ELMI2**081985 1985-08-25 34 14d5828aa7f49e48d11b4bb1112241bd Mujer 2014-05-29 2015-03-31 PG-PAB No
133,509 2,018 ADMA2**011966 1966-01-17 53 151064751238f572fa656dde63058738 NA Mujer 2018-01-24 2018-04-01 PG-PAI Si
115,316 2,017 ADMA2**011966 1966-01-17 53 151064751238f572fa656dde63058738 NA Mujer 2017-04-03 2017-10-30 PG-PAI Si
49,559 2,014 ADMA1**011976 1976-01-17 43 151064751238f572fa656dde63058738 Hombre 2013-06-28 2014-08-14 PG-PAB Si
148,142 2,019 ANSA2**111972 1972-11-13 47 154956b945b8647e2796211aaff6cda6 NA Mujer 2018-07-10 2019-04-30 M-PR Si
116,607 2,017 ANSA2**111972 1972-11-13 46 154956b945b8647e2796211aaff6cda6 NA Mujer 2017-05-15 2017-07-18 M-PR Si
147,103 2,019 MABA2**071966 1966-07-29 53 15573f6bc49fe5c5f0df74d3aa90b3c2 NA Mujer 2018-04-06 2019-04-25 M-PR Si
131,546 2,018 MABA1**111999 1999-11-23 19 15573f6bc49fe5c5f0df74d3aa90b3c2 NA Hombre 2017-11-23 2018-04-05 PG-PAI Si
27,843 2,012 JOSU1**051967 1967-05-27 52 1605910e46654123883db040fe5886c8 Hombre 2012-06-29 2012-11-30 PG-PAI Si
25,455 2,012 JOSU1**031993 1993-03-01 26 1605910e46654123883db040fe5886c8 Hombre 2012-03-01 2012-06-20 PG-PAI No
14,327 2,011 JOSU1**031967 1967-03-27 52 1605910e46654123883db040fe5886c8 Hombre 2011-03-25 2011-10-11 PG-PAI Si
12,159 2,011 JOSU1**051967 1967-05-27 52 1605910e46654123883db040fe5886c8 Hombre 2010-10-29 2011-03-24 PG-PAB Si
101,394 2,016 CALO1**101989 1989-10-21 30 160d4031da8bc68db9fd15780362fab0 Hombre 2016-08-16 2016-10-15 PG-PR No
79,802 2,015 CALO1**111986 1986-11-14 32 160d4031da8bc68db9fd15780362fab0 Hombre 2015-07-09 2015-08-28 PG-PAB Si
125,041 2,017 JOCA2**101983 1983-10-01 36 161811a74262bb8e591e8eef7de4915a NA Mujer 2017-12-06 2018-01-17 PG-PAB Si
113,599 2,017 YOCA2**101993 1993-10-01 26 161811a74262bb8e591e8eef7de4915a NA Mujer 2017-02-23 2017-07-24 M-PAI Si
154,525 2,019 LURU1**081995 1995-08-04 24 1640241e34924a4648b727eaa0daae48 NA Hombre 2019-03-18 2019-03-23 PG-PR Si
152,169 2,019 LURU1**052000 2000-05-04 19 1640241e34924a4648b727eaa0daae48 NA Hombre 2018-11-13 2019-03-15 PG-PAI Si
43,252 2,013 PABA2**021994 1994-02-01 25 1668a8f6cbacc175ac90a0d3fd01cef8 Mujer 2013-07-27 2013-10-17 PG-PAI Si
23,644 2,012 PABA2**021971 1971-02-01 48 1668a8f6cbacc175ac90a0d3fd01cef8 Mujer 2012-01-03 2012-10-24 PG-PAB Si
15,173 2,011 PABA2**021971 1971-02-01 48 1668a8f6cbacc175ac90a0d3fd01cef8 Mujer 2011-03-23 2011-10-04 PG-PAB Si
100,429 2,016 IVCA2**061996 1996-06-25 23 1674f542e61902342830611652857cc2 Mujer 2016-05-09 2016-11-01 M-PAI Si
9,799 2,011 IVCA2**061980 1980-06-25 39 1674f542e61902342830611652857cc2 Mujer 2008-06-30 2011-05-06 PG-PAI Si
141,417 2,018 FEMA2**061992 1992-06-14 27 168c84a3e2e2f6f7bfb61bcaf3f6af03 NA Mujer 2018-05-07 2018-11-21 PG-PAI Si
132,149 2,018 FEMA2**061999 1999-06-14 20 168c84a3e2e2f6f7bfb61bcaf3f6af03 NA Mujer 2017-12-15 2018-05-01 M-PR Si
118,752 2,017 FEMA2**061992 1992-06-14 27 168c84a3e2e2f6f7bfb61bcaf3f6af03 NA Mujer 2017-06-13 2017-12-11 PG-PAI Si
93,836 2,016 FEMA2**061992 1992-06-14 27 168c84a3e2e2f6f7bfb61bcaf3f6af03 Mujer 2016-02-24 2016-04-14 PG-PAI Si
162,227 2,019 JOES1**111982 1982-11-11 37 16a3aa978349637444a560debb100cca NA Hombre 2019-09-25 NA PG-PR Si
160,592 2,019 JOES1**111982 1982-11-11 37 16a3aa978349637444a560debb100cca NA Hombre 2019-08-01 2019-09-24 PG-PAI Si
134,341 2,018 JOES1**111982 1982-11-11 36 16a3aa978349637444a560debb100cca NA Hombre 2018-02-07 2018-05-01 PG-PAI Si
93,166 2,016 JOES1**111982 1982-11-11 36 16a3aa978349637444a560debb100cca Hombre 2016-01-05 2016-05-23 PG-PAI Si
8,620 2,010 ALBI2**061991 1991-06-28 28 16aa754a0cccf76646d3dc91a635aaff Mujer 2010-10-01 2011-01-28 M-PAI Si
4,573 2,010 ALBI2**061990 1990-06-28 29 16aa754a0cccf76646d3dc91a635aaff Mujer 2010-03-25 2010-09-23 M-PAI Si
1,022 2,010 ALBI2**061990 1990-06-28 29 16aa754a0cccf76646d3dc91a635aaff Mujer 2009-12-28 2010-03-25 M-PR Si
160,435 2,019 VAHE2**021993 1993-02-02 26 16d2bbdf9ea4d7effc86e4958143fe94 NA Mujer 2019-08-21 NA M-PR Si
126,559 2,018 VAHE2**011999 1999-01-05 20 16d2bbdf9ea4d7effc86e4958143fe94 NA Mujer 2017-01-10 2018-11-27 PG-PAB No
135,681 2,018 HEME1**021957 1957-02-27 62 170d9e644ae26eb91187177a1fb03090 NA Hombre 2018-03-12 2018-12-31 PG-PAB Si
21,014 2,012 HEME1**021959 1959-02-27 60 170d9e644ae26eb91187177a1fb03090 Hombre 2011-02-09 2012-02-08 PG-PR Si
513 2,010 HEME1**021957 1957-02-27 62 170d9e644ae26eb91187177a1fb03090 Hombre 2009-03-09 2010-11-03 PG-PAB Si
105,294 2,017 PAPE1**101985 1985-10-21 34 1712e95471064610044ed3a94c562a4e NA Hombre 2012-08-13 2017-04-03 PG-PAI Si
25,406 2,012 JOBA1**031980 1980-03-04 39 1712e95471064610044ed3a94c562a4e Hombre 2012-03-02 2012-04-12 PG-PR Si
131,243 2,018 PEDE1**081999 1999-08-23 20 171c115471227457e96da1ea7c4ac577 NA Hombre 2017-11-01 2018-06-01 PG-PR No
115,568 2,017 PEDE1**081967 1967-08-23 52 171c115471227457e96da1ea7c4ac577 NA Hombre 2017-04-13 2017-10-19 PG-PAI Si
112,761 2,017 PEDE1**081967 1967-08-28 52 171c115471227457e96da1ea7c4ac577 NA Hombre 2017-01-31 2017-04-12 PG-PAB Si
36,551 2,013 ANPA1**121988 1988-12-04 30 171fb2fa4a896b3d41368983274b77af Hombre 2012-12-20 2013-03-29 PG-PAI Si
23,919 2,012 ANPA1**021988 1988-02-04 31 171fb2fa4a896b3d41368983274b77af Hombre 2011-12-13 2012-03-30 PG-PAI Si
78,110 2,015 PAPO1**081987 1987-08-13 32 179778d416305f502c3d4d7fd513e38e Hombre 2015-06-25 2015-08-25 PG-PAB Si
48,926 2,014 PAPO1**081978 1978-08-13 41 179778d416305f502c3d4d7fd513e38e Hombre 2013-05-02 2014-07-11 PG-PAI Si
23,696 2,012 PAPO1**081987 1987-08-13 32 179778d416305f502c3d4d7fd513e38e Hombre 2011-12-19 2012-04-02 PG-PAB Si
152,327 2,019 LORE2**031974 1974-03-24 45 179c6c20c71e8adbc42e6362c9d168ea NA Mujer 2019-01-03 NA M-PR Si
132,049 2,018 LORE2**031973 1973-03-24 46 179c6c20c71e8adbc42e6362c9d168ea NA Mujer 2017-11-28 2018-07-04 PG-PAI Si
42,195 2,013 LORE2**031974 1974-03-24 45 179c6c20c71e8adbc42e6362c9d168ea Mujer 2013-07-24 2013-11-29 PG-PAB Si
98,360 2,016 GOTO1**121981 1981-12-25 37 17b6f9ea6fe3b31cac059ffade9432a3 Hombre 2016-06-08 2016-10-18 PG-PAI Si
55,664 2,014 GOTO1**101981 1981-10-25 38 17b6f9ea6fe3b31cac059ffade9432a3 Hombre 2014-03-04 2014-05-23 PG-PAB No
77,954 2,015 GUPE1**041991 1991-04-16 28 17cd25d0ae3c19d334d39f8f1ac76746 Hombre 2015-06-16 2015-12-02 PG-PR Si
68,665 2,015 GUPE1**041991 1991-04-16 28 17cd25d0ae3c19d334d39f8f1ac76746 Hombre 2014-09-15 2015-01-28 PG-PR Si
60,054 2,014 GUPE1**041991 1991-04-16 28 17cd25d0ae3c19d334d39f8f1ac76746 Hombre 2014-07-08 2014-09-12 PG-PAI Si
54,831 2,014 GUPE1**041981 1981-04-16 38 17cd25d0ae3c19d334d39f8f1ac76746 Hombre 2014-02-26 2014-03-18 PG-PAI Si
150,412 2,019 CAUR2**031989 1989-03-29 30 18333d1ff753fabf72eda913299e1715 NA Mujer 2018-10-01 NA PG-PAI Si
128,857 2,018 CAUR2**031983 1983-03-29 36 18333d1ff753fabf72eda913299e1715 NA Mujer 2017-08-07 2018-01-11 M-PR Si
42,666 2,013 CAUR2**031989 1989-03-29 30 18333d1ff753fabf72eda913299e1715 Mujer 2013-07-31 2014-01-02 PG-PAI Si
79,715 2,015 KAVE2**091979 1979-09-06 40 1841bf8ef08d4a970ee496ccc5b5fd79 Mujer 2015-07-29 2015-08-26 PG-PAI Si
32,452 2,013 KAVE2**091976 1976-09-06 43 1841bf8ef08d4a970ee496ccc5b5fd79 Mujer 2012-01-02 2013-02-22 PG-PAI Si
15,913 2,011 KAVE2**091976 1976-09-06 43 1841bf8ef08d4a970ee496ccc5b5fd79 Mujer 2011-05-09 2011-12-19 PG-PAI Si
11,136 2,011 KAVE2**091979 1979-09-06 40 1841bf8ef08d4a970ee496ccc5b5fd79 Mujer 2010-08-05 2011-04-29 M-PR Si
94,802 2,016 VASI2**081984 1984-08-18 35 1854e7e9a4b17f2c6124ccc1a0cfad0c Mujer 2016-03-04 2016-08-31 M-PR Si
91,818 2,016 VHSI2**081984 1984-08-18 35 1854e7e9a4b17f2c6124ccc1a0cfad0c Mujer 2015-12-14 2016-02-08 M-PR Si
82,929 2,015 VHSI2**081985 1985-08-18 34 1854e7e9a4b17f2c6124ccc1a0cfad0c Mujer 2015-10-26 2015-12-11 PG-PAI Si
153,870 2,019 ENES1**051985 1985-05-18 34 18576d4354398a09dfaaff7368984ea5 NA Hombre 2018-11-15 2019-05-16 PG-PAI Si
136,907 2,018 ENES1**051985 1985-05-18 34 18576d4354398a09dfaaff7368984ea5 NA Hombre 2018-03-21 2018-10-01 PG-PAI Si
94,769 2,016 ENES1**051985 1985-05-18 34 18576d4354398a09dfaaff7368984ea5 Hombre 2016-02-26 2016-04-11 PG-PAI Si
83,838 2,015 ENES1**051985 1985-05-18 34 18576d4354398a09dfaaff7368984ea5 Hombre 2015-10-30 2016-01-04 PG-PAI Si
74,176 2,015 ENES1**051995 1995-05-18 24 18576d4354398a09dfaaff7368984ea5 Hombre 2015-03-11 2015-09-04 PG-PR Si
71,471 2,015 ENES1**051985 1985-05-18 34 18576d4354398a09dfaaff7368984ea5 Hombre 2014-11-26 2015-03-20 PG-PAB Si
85,389 2,016 CENA2**011964 1964-01-19 55 186f10e20a7009fd8aede63ef46468ab Mujer 2013-05-06 2016-03-04 PG-PAB Si
15,303 2,011 CEEL2**011974 1974-01-19 45 186f10e20a7009fd8aede63ef46468ab Mujer 2011-04-18 2011-07-04 M-PAB Si
3,135 2,010 CENA2**011979 1979-01-19 40 186f10e20a7009fd8aede63ef46468ab Mujer 2009-08-24 2010-03-31 M-PAB Si
75,684 2,015 MAME1**011977 1977-01-18 42 1892a4e37b73923f99b92e72845a7e23 Hombre 2015-04-20 2015-07-27 Otro No
46,675 2,013 MAME1**111977 1977-11-18 41 1892a4e37b73923f99b92e72845a7e23 Hombre 2013-11-21 2014-04-04 PG-PAB Si
39,555 2,013 MAME1**011977 1977-01-18 42 1892a4e37b73923f99b92e72845a7e23 Hombre 2013-05-20 2013-09-13 PG-PAB Si
70,619 2,015 CLMO1**121971 1971-12-18 47 1892eceef01e80ee17816254777aefe6 Hombre 2014-12-01 2015-05-28 PG-PAB Si
48,222 2,014 CLMO1**121972 1972-12-18 46 1892eceef01e80ee17816254777aefe6 Hombre 2013-01-28 2014-03-21 PG-PR Si
69,340 2,015 ERLE1**061990 1990-06-24 29 18b66895564d34d31ac9d67d27a65e6c Hombre 2014-10-16 2015-04-01 PG-PAI No
51,445 2,014 ESLE1**061992 1992-06-24 27 18b66895564d34d31ac9d67d27a65e6c Hombre 2013-10-03 2014-03-19 PG-PAI Si
16,930 2,011 ERLE1**061992 1992-06-24 27 18b66895564d34d31ac9d67d27a65e6c Hombre 2011-06-02 2011-11-09 PG-PAB Si
161,095 2,019 FAZA2**111969 1969-11-10 50 18e60c425918fcb7f265ebdc8602e894 NA Mujer 2019-08-01 NA M-PAI Si
89,715 2,016 FAZA2**111969 1969-11-10 49 18e60c425918fcb7f265ebdc8602e894 Mujer 2015-09-07 2016-01-20 M-PAI Si
18,029 2,011 FAZA2**071992 1992-07-07 27 18e60c425918fcb7f265ebdc8602e894 Mujer 2011-07-07 2011-11-28 M-PAI Si
147,459 2,019 ALVA1**111967 1967-11-10 52 1928f9cb2b469eb85cef5e2e5108b96a NA Hombre 2018-04-02 2019-03-29 PG-PAB Si
44,591 2,013 ALVA1**111967 1967-11-10 51 1928f9cb2b469eb85cef5e2e5108b96a Hombre 2013-09-02 2014-01-31 PG-PAB Si
157,115 2,019 VIRO1**111980 1980-11-02 39 1932d5044fd3514c8ddafd2d6d860b2c NA Hombre 2019-05-27 2019-06-17 PG-PR Si
146,424 2,019 VIRO1**051983 1983-05-10 36 1932d5044fd3514c8ddafd2d6d860b2c NA Hombre 2017-12-14 2019-01-07 PG-PR Si
72,209 2,015 VIRO1**111980 1980-11-02 39 1932d5044fd3514c8ddafd2d6d860b2c Hombre 2014-12-19 2015-05-04 PG-PAI Si
51,532 2,014 JORA1**071981 1981-07-02 38 19353a32380a16308633e1acfed8c5d7 Hombre 2013-10-21 2014-04-07 PG-PR Si
43,166 2,013 JORI1**071981 1981-07-02 38 19353a32380a16308633e1acfed8c5d7 Hombre 2013-08-06 2013-10-18 PG-PAI No
40,796 2,013 JORI1**071987 1987-07-02 32 19353a32380a16308633e1acfed8c5d7 Hombre 2013-06-06 2013-07-29 PG-PR Si
143,326 2,018 SATA2**091980 1980-09-30 39 194ede637725cb3bde3c34d6723cb24d NA Mujer 2018-10-01 2018-11-01 M-PR No
140,793 2,018 SATA2**091980 1980-09-30 39 194ede637725cb3bde3c34d6723cb24d NA Mujer 2018-08-10 2018-10-08 M-PR No
138,798 2,018 SATA2**091980 1980-09-30 39 194ede637725cb3bde3c34d6723cb24d NA Mujer 2018-06-01 2018-08-10 PG-PAI Si
134,030 2,018 SATA2**091980 1980-09-30 39 194ede637725cb3bde3c34d6723cb24d NA Mujer 2018-02-23 2018-02-28 M-PR Si
81,589 2,015 SATA2**091980 1980-09-30 39 194ede637725cb3bde3c34d6723cb24d Mujer 2015-08-25 2015-11-02 M-PR Si
53,083 2,014 SATA2**091980 1980-09-30 39 194ede637725cb3bde3c34d6723cb24d Mujer 2014-01-13 2014-05-07 M-PR Si
37,849 2,013 SATA2**091980 1980-09-30 39 194ede637725cb3bde3c34d6723cb24d Mujer 2013-02-28 2013-03-15 M-PR Si
18,039 2,011 SATA2**091980 1980-09-30 39 194ede637725cb3bde3c34d6723cb24d Mujer 2011-08-01 2012-06-01 PG-PAI Si
17,204 2,011 SATA2**091980 1980-09-30 39 194ede637725cb3bde3c34d6723cb24d Mujer 2011-07-12 2011-08-01 M-PR Si
16,885 2,011 SATA2**071981 1981-07-08 38 194ede637725cb3bde3c34d6723cb24d Mujer 2011-06-03 2011-07-12 PG-PAI Si
33,474 2,013 KARO2**091987 1987-09-12 32 197c2d0dfff5ee73358cdffe541524cb Mujer 2012-07-02 2013-05-08 PG-PAB Si
576 2,010 KALE2**071982 1982-07-06 37 197c2d0dfff5ee73358cdffe541524cb Mujer 2010-01-20 2010-02-25 PG-PAB Si
113,992 2,017 ROGA1**091995 1995-09-29 24 1994c7cd806a0ccf1f2457e81c2593cd NA Hombre 2017-02-16 2017-07-01 PG-PAB Si
68,274 2,015 ROGA1**091975 1975-09-29 44 1994c7cd806a0ccf1f2457e81c2593cd Hombre 2014-08-25 2015-03-31 PG-PR Si
70,672 2,015 VIBR1**101989 1989-10-07 30 19cdcec84063ed53c367aa9753e0f0a1 Hombre 2014-11-18 2015-08-31 PG-PR Si
58,207 2,014 VIBR1**101988 1988-10-07 31 19cdcec84063ed53c367aa9753e0f0a1 Hombre 2014-05-29 2014-11-14 PG-PAB Si
44,039 2,013 VIBR1**101989 1989-10-07 30 19cdcec84063ed53c367aa9753e0f0a1 Hombre 2013-09-05 2013-11-04 PG-PR No
39,190 2,013 VIBR1**101989 1989-10-07 30 19cdcec84063ed53c367aa9753e0f0a1 Hombre 2013-04-18 2013-08-06 PG-PR Si
23,835 2,012 VIBR1**101989 1989-10-07 30 19cdcec84063ed53c367aa9753e0f0a1 Hombre 2012-01-26 2012-05-30 PG-PR Si
2,993 2,010 VIBR1**101989 1989-10-07 30 19cdcec84063ed53c367aa9753e0f0a1 Hombre 2010-01-21 2010-03-01 PG-PR Si
40,325 2,013 CAPE2**021974 1974-02-12 45 19d3c983541ed4ae6974cb2d0cd49b60 Mujer 2013-04-13 2014-01-29 PG-PAI Si
14,871 2,011 CAPE2**121974 1974-12-02 44 19d3c983541ed4ae6974cb2d0cd49b60 Mujer 2011-03-14 2011-06-30 M-PAI Si
122,571 2,017 RIOL1**021991 1991-02-26 28 19dc4aa15226f6f338a15804a8277d73 NA Hombre 2017-09-22 2017-11-28 PG-PAI Si
114,855 2,017 RIOL1**111991 1991-11-26 27 19dc4aa15226f6f338a15804a8277d73 NA Hombre 2017-03-07 2017-09-04 PG-PR Si
92,803 2,016 MAVA2**011996 1996-01-20 23 1a69f8e5d979a33458be113c163f21c6 Mujer 2016-01-20 2016-03-03 PG-PAB Si
88,228 2,016 MAVA2**071984 1984-07-07 35 1a69f8e5d979a33458be113c163f21c6 Mujer 2015-07-15 2016-01-15 M-PR Si
70,151 2,015 MAVA2**071984 1984-07-07 35 1a69f8e5d979a33458be113c163f21c6 Mujer 2014-11-10 2015-04-02 M-PR Si
57,763 2,014 MAVA2**071984 1984-07-07 35 1a69f8e5d979a33458be113c163f21c6 Mujer 2014-03-28 2014-11-14 PG-PAI Si
40,172 2,013 MAVA2**071985 1985-07-07 34 1a69f8e5d979a33458be113c163f21c6 Mujer 2013-05-08 2013-08-23 PG-PAI Si
119,000 2,017 ROAL1**081979 1979-08-12 40 1a779229bebf03c974f4166a53e95ad2 NA Hombre 2017-06-20 2018-01-02 PG-PAB Si
107,417 2,017 ROAL1**081978 1978-08-12 41 1a779229bebf03c974f4166a53e95ad2 NA Hombre 2016-05-24 2017-02-01 PG-PAB Si
90,503 2,016 ROAL1**081979 1979-08-12 40 1a779229bebf03c974f4166a53e95ad2 Hombre 2015-10-26 2016-04-29 PG-PAB Si
152,883 2,019 MAES1**111971 1971-11-06 48 1a87fff38e00f68f33deb06f0ba220d4 NA Hombre 2019-01-23 2019-09-24 PG-PR Si
113,216 2,017 MAES1**111971 1971-11-06 47 1a87fff38e00f68f33deb06f0ba220d4 NA Hombre 2017-01-19 2017-04-03 PG-PAB Si
111,327 2,017 MAES1**111971 1971-11-06 47 1a87fff38e00f68f33deb06f0ba220d4 NA Hombre 2016-12-19 2017-01-06 PG-PR Si
48,022 2,014 MAES1**111971 1971-11-06 47 1a87fff38e00f68f33deb06f0ba220d4 Hombre 2011-01-04 2014-09-15 PG-PAB Si
22,228 2,012 MAES1**111971 1971-11-06 47 1a87fff38e00f68f33deb06f0ba220d4 Hombre 2011-01-04 2012-07-11 PG-PAI Si
150,792 2,019 MIVE1**111985 1985-11-13 34 1ab34b3471f8aa4b90b9fea68f925f22 NA Hombre 2018-11-01 NA PG-PAI Si
119,890 2,017 MIVE1**111985 1985-11-13 33 1ab34b3471f8aa4b90b9fea68f925f22 NA Hombre 2017-07-14 2017-08-31 PG-PAB Si
73,622 2,015 MACA1**071979 1979-07-16 40 1ad6609a1db2453b497ba639653f575e Hombre 2015-03-10 2015-06-30 PG-PAI Si
68,602 2,015 NISO1**041987 1987-04-03 32 1ad6609a1db2453b497ba639653f575e Hombre 2014-09-11 2015-02-03 PG-PR Si
41,145 2,013 CACH1**051967 1967-05-25 52 1b4da502287d8852e18d26573e308b0e Hombre 2013-06-10 2013-08-21 PG-PAB Si
34,688 2,013 CACH1**111967 1967-11-13 51 1b4da502287d8852e18d26573e308b0e Hombre 2012-11-13 2013-03-13 PG-PAB Si
13,983 2,011 JASA2**051976 1976-05-03 43 1b59e62ebd06769d773df3bfaaa76820 Mujer 2011-02-24 2011-06-07 M-PAB Si
10,331 2,011 JASA2**051973 1973-05-03 46 1b59e62ebd06769d773df3bfaaa76820 Mujer 2010-03-29 2011-03-02 M-PR No
1,281 2,010 YASA2**071976 1976-07-10 43 1b59e62ebd06769d773df3bfaaa76820 Mujer 2009-12-23 2010-05-03 PG-PAB Si
159,103 2,019 LURO1**091967 1967-09-15 52 1b5a6a6195d162fcc5ed1a9f57ba4fee NA Hombre 2019-02-18 NA PG-PR Si
147,644 2,019 LURO1**091967 1967-09-15 52 1b5a6a6195d162fcc5ed1a9f57ba4fee NA Hombre 2018-05-16 2019-01-25 PG-PAB Si
77,402 2,015 LURO1**101968 1968-10-16 51 1b5a6a6195d162fcc5ed1a9f57ba4fee Hombre 2015-06-01 2015-09-01 PG-PAI Si
113,629 2,017 LEDE1**091982 1982-09-17 37 1b98300863c94cc61ed0371257e23dbf NA Hombre 2017-01-25 2017-09-29 PG-PAI Si
57,819 2,014 LEDE1**091983 1983-09-17 36 1b98300863c94cc61ed0371257e23dbf Hombre 2014-05-20 2014-08-01 PG-PR Si
53,566 2,014 LEDE1**091982 1982-09-17 37 1b98300863c94cc61ed0371257e23dbf Hombre 2014-01-15 2014-05-27 PG-PAI Si
95,193 2,016 ALVA1**041986 1986-04-04 33 1c01fcec01dedc3cc3537df2b21065a6 Hombre 2016-03-14 2016-05-23 PG-PR Si
78,715 2,015 ALVA1**041983 1983-04-13 36 1c01fcec01dedc3cc3537df2b21065a6 Hombre 2015-07-07 2015-10-29 PG-PR Si
73,734 2,015 ALVA1**041986 1986-04-13 33 1c01fcec01dedc3cc3537df2b21065a6 Hombre 2015-03-02 2015-05-29 PG-PAI Si
25,859 2,012 ALVA1**041986 1986-04-13 33 1c01fcec01dedc3cc3537df2b21065a6 Hombre 2012-03-05 2012-09-27 PG-PAI Si
140,187 2,018 PAHE2**021986 1986-02-16 33 1c19a27d205a7e8c8eca6460dd7f907e NA Mujer 2018-07-19 2018-12-03 M-PAI Si
100,058 2,016 PAHE2**021986 1986-02-19 33 1c19a27d205a7e8c8eca6460dd7f907e Mujer 2016-07-21 2016-12-02 PG-PAI Si
69,999 2,015 PAHE2**021996 1996-02-16 23 1c19a27d205a7e8c8eca6460dd7f907e Mujer 2014-11-03 2015-04-29 PG-PAI Si
161,553 2,019 JAAR1**051967 1967-05-22 52 1c1fc871340054bcdc73e3e6041571f7 NA Hombre 2019-09-02 NA PG-PAB Si
128,008 2,018 JAAR1**051966 1966-05-22 53 1c1fc871340054bcdc73e3e6041571f7 NA Hombre 2017-06-14 2018-03-20 PG-PAB Si
89,939 2,016 JAAR1**051967 1967-05-22 52 1c1fc871340054bcdc73e3e6041571f7 Hombre 2015-10-07 2016-08-01 PG-PAB Si
153,301 2,019 MALA1**121973 1973-12-19 45 1c6bfb0dbed7ee743be110463fd00c52 NA Hombre 2019-02-01 2019-02-25 PG-PR Si
111,413 2,017 MALA1**121976 1976-12-19 42 1c6bfb0dbed7ee743be110463fd00c52 NA Hombre 2016-12-20 2017-04-14 PG-PR Si
139,322 2,018 ALSA1**121993 1993-12-13 25 1c88adc113cf12e6cf375fdce85fa925 NA Hombre 2018-04-13 2018-08-02 PG-PR Si
26,543 2,012 ALSA1**121992 1992-12-13 26 1c88adc113cf12e6cf375fdce85fa925 Hombre 2012-02-08 2013-01-31 PG-PAB Si
98,831 2,016 MAME2**061975 1975-06-03 44 1ca6c5d4f199ff060002b7c80b6f8c5e Mujer 2016-06-01 2016-12-31 M-PAI Si
87,125 2,016 MAME2**061975 1975-06-03 44 1ca6c5d4f199ff060002b7c80b6f8c5e Mujer 2015-04-28 2016-05-31 M-PR Si
53,496 2,014 MAME2**081966 1966-08-13 53 1ca6c5d4f199ff060002b7c80b6f8c5e Mujer 2014-01-28 2014-11-10 PG-PAB Si
40,205 2,013 MAME2**061975 1975-06-03 44 1ca6c5d4f199ff060002b7c80b6f8c5e Mujer 2013-05-24 2013-12-13 M-PR Si
35,003 2,013 MAME2**061975 1975-06-03 44 1ca6c5d4f199ff060002b7c80b6f8c5e Mujer 2012-11-20 2013-05-29 PG-PAB Si
28,755 2,012 MAME2**061975 1975-06-03 44 1ca6c5d4f199ff060002b7c80b6f8c5e Mujer 2012-07-18 2012-11-20 PG-PAB Si
21,526 2,012 MANE2**061975 1975-06-03 44 1ca6c5d4f199ff060002b7c80b6f8c5e Mujer 2011-06-16 2012-04-02 PG-PAB Si
58,365 2,014 MAHU1**021978 1978-02-20 41 1d052439f8a938a1059e8fbe9dc6462f Hombre 2014-05-20 2014-09-01 PG-PAI Si
45,967 2,013 MAHU1**121978 1978-12-20 40 1d052439f8a938a1059e8fbe9dc6462f Hombre 2013-10-24 2013-11-29 PG-PAI Si
27,639 2,012 MAPO1**111972 1972-11-10 46 1d18ddb50249650212bb09174386d5e7 Hombre 2012-06-11 2012-11-15 PG-PAI Si
16,000 2,011 MAPO1**101972 1972-10-11 47 1d18ddb50249650212bb09174386d5e7 Hombre 2011-05-19 2011-12-30 PG-PAI Si
146,160 2,019 JOMI1**071973 1973-07-06 46 1d4e54104a0617ec025902e8916c6179 NA Hombre 2017-09-12 2019-03-01 PG-PAI Si
21,922 2,012 JOMI1**081974 1974-08-21 45 1d4e54104a0617ec025902e8916c6179 Hombre 2011-04-15 2012-07-27 PG-PAB Si
51,146 2,014 MYQU2**071982 1982-07-06 37 1d5329981a16782c78c4edaf86631a4b Mujer 2013-09-09 2015-01-29 PG-PAB Si
35,207 2,013 MYQU2**071993 1993-07-06 26 1d5329981a16782c78c4edaf86631a4b Mujer 2012-10-30 2013-05-30 M-PAI Si
26,995 2,012 MYQU2**071982 1982-07-06 37 1d5329981a16782c78c4edaf86631a4b Mujer 2012-04-30 2012-11-05 M-PAI Si
3,057 2,010 MYQU2**071982 1982-07-06 37 1d5329981a16782c78c4edaf86631a4b Mujer 2009-07-06 2010-02-01 M-PAI Si
29,037 2,012 12G10**61993 1993-06-03 26 1d53b9a82ab4fbc0e6cfa109d664eb51 Hombre 2012-08-20 2013-01-15 Otro No
25,303 2,012 RAPO1**031941 1941-03-06 78 1d53b9a82ab4fbc0e6cfa109d664eb51 Hombre 2012-03-19 NA PG-PAI No
161,305 2,019 ALMO1**111974 1974-11-10 45 1d6cb2242c2dc406d1c373698e6f7ecc NA Hombre 2019-08-05 NA PG-PAI Si
16,796 2,011 ALMO1**111974 1974-11-10 44 1d6cb2242c2dc406d1c373698e6f7ecc Hombre 2011-05-27 2011-09-09 PG-PAB Si
134,863 2,018 JHOR1**121968 1968-12-24 50 1dec5ae709d7bafb0c31156034fde37c NA Hombre 2018-03-05 2018-12-11 PG-PR Si
110,663 2,017 JOOR1**101968 1968-10-24 51 1dec5ae709d7bafb0c31156034fde37c NA Hombre 2016-11-25 2017-11-14 PG-PR Si
158,423 2,019 OMVA1**111974 1974-11-08 45 1e0a560eb027e3841528cbcf901b47a6 NA Hombre 2019-06-10 NA PG-PAI Si
149,322 2,019 OMVA1**111974 1974-11-08 45 1e0a560eb027e3841528cbcf901b47a6 NA Hombre 2018-08-31 2019-01-28 PG-PAI Si
130,306 2,018 OMVA1**111974 1974-11-08 44 1e0a560eb027e3841528cbcf901b47a6 NA Hombre 2017-10-20 2018-07-30 PG-PAI Si
158,003 2,019 JEEC1**111992 1992-11-09 27 1e26815e8872fc9df6572ccdd5162823 NA Hombre 2019-06-03 2019-08-21 PG-PAI Si
110,112 2,017 JEEC1**111992 1992-11-09 26 1e26815e8872fc9df6572ccdd5162823 NA Hombre 2016-10-29 2017-01-31 PG-PAI Si
101,677 2,016 JEEC1**111992 1992-11-09 26 1e26815e8872fc9df6572ccdd5162823 Hombre 2015-11-19 2016-10-28 PG-PAI No
44,188 2,013 JEEC1**111992 1992-11-20 26 1e26815e8872fc9df6572ccdd5162823 Hombre 2013-09-24 2014-05-20 PG-PAI Si
91,893 2,016 RONA1**051975 1975-05-22 44 1e2990d8ded5194b5cd5818e803da688 Hombre 2015-12-16 2016-04-13 PG-PR Si
79,350 2,015 RONA1**051973 1973-05-22 46 1e2990d8ded5194b5cd5818e803da688 Hombre 2015-06-23 2015-12-16 PG-PAI Si
111,787 2,017 JAYA1**101968 1968-10-08 51 1e301586e8fbd2534c2ef598f5a6398e NA Hombre 2017-01-25 2017-10-10 PG-PR Si
71,909 2,015 JAYA1**101968 1968-10-08 51 1e301586e8fbd2534c2ef598f5a6398e Hombre 2014-12-26 2015-06-09 PG-PR Si
21,230 2,012 JAYA1**101991 1991-10-08 28 1e301586e8fbd2534c2ef598f5a6398e Hombre 2011-04-26 2012-05-03 PG-PR Si
152,202 2,019 JOGA1**041996 1996-04-02 23 1e48a21972404efc7c2d5ffc6bc3b709 NA Hombre 2019-01-03 2019-03-21 PG-PR No
129,338 2,018 JOGA1**041995 1995-04-02 24 1e48a21972404efc7c2d5ffc6bc3b709 NA Hombre 2017-09-10 2018-03-06 PG-PR No
33,365 2,013 RILA1**071993 1993-07-19 26 1e59e121badc527adfd661a635970464 Hombre 2012-07-17 2013-07-24 PG-PAB Si
10,851 2,011 RILA1**061966 1966-06-19 53 1e59e121badc527adfd661a635970464 Hombre 2010-07-07 2011-11-29 PG-PAB Si
150,903 2,019 FLFA2**111963 1963-11-09 56 1e748fa975e8b6e3d5f9995509b7f54b NA Mujer 2018-11-14 2019-09-30 PG-PAI Si
134,399 2,018 FLFA2**111966 1966-11-09 52 1e748fa975e8b6e3d5f9995509b7f54b NA Mujer 2018-02-27 2018-10-11 M-PR Si
130,247 2,018 FLFA2**111966 1966-11-09 52 1e748fa975e8b6e3d5f9995509b7f54b NA Mujer 2017-10-02 2018-02-26 M-PAI Si
32,212 2,013 FLFA2**111966 1966-11-09 52 1e748fa975e8b6e3d5f9995509b7f54b Mujer 2011-07-01 2013-01-14 M-PAB Si
10,720 2,011 FLFA2**111966 1966-11-09 52 1e748fa975e8b6e3d5f9995509b7f54b Mujer 2010-06-16 2011-06-30 M-PAI Si
89,595 2,016 YUSA2**071981 1981-07-30 38 1e85af6efee9c32f54ce6963bf1b406f Mujer 2015-09-10 2016-03-31 M-PAI Si
78,605 2,015 YUSA2**061977 1977-06-18 42 1e85af6efee9c32f54ce6963bf1b406f Mujer 2015-06-02 2015-08-31 M-PR Si
112,255 2,017 CRNA1**081982 1982-08-29 37 1eaf0e03d7b0b8180279ba9130fe2228 NA Hombre 2017-01-16 2017-07-20 PG-PR Si
90,026 2,016 CRNA1**081982 1982-08-29 37 1eaf0e03d7b0b8180279ba9130fe2228 Hombre 2015-10-23 2016-04-04 PG-PAB Si
37,455 2,013 CRNA1**081981 1981-08-29 38 1eaf0e03d7b0b8180279ba9130fe2228 Hombre 2013-03-05 2013-10-11 PG-PAI Si
129,827 2,018 JOPE2**111995 1995-11-30 23 1f079cb96e5d1ab782a8eefd2a9189c6 NA Mujer 2017-09-21 2018-03-01 PG-PAI Si
119,312 2,017 JOPE2**101995 1995-10-30 24 1f079cb96e5d1ab782a8eefd2a9189c6 NA Mujer 2017-07-10 2017-09-20 PG-PAB Si
138,180 2,018 MAZU1**031986 1986-03-02 33 1f5525960385e3bd4c3c5bc3df758b54 NA Hombre 2018-05-08 2018-10-01 PG-PAI Si
134,445 2,018 MAZU1**031986 1986-03-02 33 1f5525960385e3bd4c3c5bc3df758b54 NA Hombre 2018-02-15 2018-05-05 PG-PR Si
131,796 2,018 MAZU1**031987 1987-03-02 32 1f5525960385e3bd4c3c5bc3df758b54 NA Hombre 2017-11-28 2018-02-14 PG-PAI Si
106,095 2,017 SAAR2**111972 1972-11-06 46 1fffc8b4ec8bff31c76f13ed1c1064d4 NA Mujer 2015-11-12 2017-06-01 M-PAI Si
16,425 2,011 SAAR2**061972 1972-06-06 47 1fffc8b4ec8bff31c76f13ed1c1064d4 Mujer 2011-05-10 2011-10-28 PG-PAB Si
17,496 2,011 EURA1**051992 1992-05-01 27 20d838c2390d0ee14fa186048b106ee9 Hombre 2011-07-01 2011-09-30 PG-PAB Si
3,537 2,010 EURA1**051956 1956-05-01 63 20d838c2390d0ee14fa186048b106ee9 Hombre 2009-08-20 2010-10-15 PG-PAI Si
4,838 2,010 ALCO1**031961 1961-03-21 58 20da5159a9482b4f2b91fdc7c486c6e7 Hombre 2009-12-02 2010-04-09 PG-PAI Si
654 2,010 ALCO1**031967 1967-03-21 52 20da5159a9482b4f2b91fdc7c486c6e7 Hombre 2009-12-01 2010-04-09 PG-PAI Si
154,980 2,019 INMA2**011988 1988-01-05 31 2119e252ca5a211df4695592816f84f8 NA Mujer 2019-03-15 NA PG-PAB Si
145,855 2,019 INMA2**011999 1999-01-05 20 2119e252ca5a211df4695592816f84f8 NA Mujer 2017-03-09 2019-02-28 PG-PAI Si
109,812 2,017 JAMA1**081969 1969-08-03 50 211bfd71f14d17d6d6fd842383c4525d NA Hombre 2016-10-21 2017-02-01 PG-PAI Si
1,425 2,010 JAMA1**081963 1963-08-03 56 211bfd71f14d17d6d6fd842383c4525d Hombre 2009-11-05 2010-01-18 PG-PAI Si
156,233 2,019 JOAL1**031967 1967-03-12 52 2159404d11101f9023b25954413d8ac8 NA Hombre 2019-04-18 2019-05-13 PG-PAB Si
137,359 2,018 JOAL1**031967 1967-03-12 52 2159404d11101f9023b25954413d8ac8 NA Hombre 2018-05-04 2018-07-13 PG-PAB Si
73,153 2,015 JOAL1**031966 1966-03-12 53 2159404d11101f9023b25954413d8ac8 Hombre 2015-02-06 2015-04-29 PG-PAB Si
61,524 2,014 JOAL1**031967 1967-03-12 52 2159404d11101f9023b25954413d8ac8 Hombre 2014-08-04 2014-10-21 PG-PAB Si
141,461 2,018 ROVE1**121974 1974-12-05 44 2174b5058b56e4471af11248a73f215b NA Hombre 2018-08-16 2018-10-16 PG-PR Si
132,807 2,018 ROVE1**121999 1999-12-05 19 2174b5058b56e4471af11248a73f215b NA Hombre 2018-01-22 2018-07-31 PG-PAI Si
116,002 2,017 OSMO1**011999 1999-01-24 20 21cfcf5fcf203ce6ebd0cde916f6b479 NA Hombre 2017-03-29 2017-07-31 PG-PAI Si
67,594 2,015 OSMO1**041988 1988-04-24 31 21cfcf5fcf203ce6ebd0cde916f6b479 Hombre 2014-06-06 2015-06-30 PG-PAI Si
27,916 2,012 CAAL2**061993 1993-06-10 26 21d1ae7b219086a978ad590d717f35e4 Mujer 2012-06-11 2012-08-09 M-PR Si
4,750 2,010 CAAL2**091985 1985-09-18 34 21d1ae7b219086a978ad590d717f35e4 Mujer 2010-04-14 2010-08-10 M-PR Si
91,332 2,016 CLSA1**051986 1986-05-17 33 225fbaea2d95b65b9de69dd43f8367d0 Hombre 2015-10-05 2016-06-01 PG-PAI Si
38,612 2,013 CLSA1**051984 1984-05-17 35 225fbaea2d95b65b9de69dd43f8367d0 Hombre 2013-04-08 2014-01-29 PG-PAI Si
26,230 2,012 CLSA1**051984 1984-05-17 35 225fbaea2d95b65b9de69dd43f8367d0 Hombre 2012-04-17 2012-10-30 PG-PAB Si
54,710 2,014 FRLO1**081980 1980-08-14 39 228a5578498fd45e49ee67b3e741699d Hombre 2014-02-11 2014-09-01 PG-PAI Si
39,323 2,013 FRLO1**081986 1986-08-14 33 228a5578498fd45e49ee67b3e741699d Hombre 2013-04-17 2013-07-25 PG-PAI Si
27,209 2,012 SESA1**051993 1993-05-26 26 2290f206a4773165e609231217a890c5 Hombre 2012-05-22 2012-09-03 PG-PR Si
24,895 2,012 SESA1**061992 1992-06-26 27 2290f206a4773165e609231217a890c5 Hombre 2012-02-16 2012-03-02 PG-PR Si
23,730 2,012 SESA1**061992 1992-06-26 27 2290f206a4773165e609231217a890c5 Hombre 2012-01-12 2012-02-08 PG-PR Si
19,196 2,011 SESA1**061992 1992-06-26 27 2290f206a4773165e609231217a890c5 Hombre 2011-10-20 2011-12-16 PG-PR Si
150,535 2,019 GUNA1**021969 1969-02-28 50 229f83b011f305cf2fd441189a3c9fc0 NA Hombre 2018-11-12 2019-05-16 PG-PAB Si
119,479 2,017 GUNA1**021999 1999-02-28 20 229f83b011f305cf2fd441189a3c9fc0 NA Hombre 2017-07-21 2017-11-29 PG-PAI Si
88,046 2,016 GUNA1**021969 1969-02-28 50 229f83b011f305cf2fd441189a3c9fc0 Hombre 2015-06-26 2016-11-11 PG-PAI Si
67,151 2,015 GUNA1**021969 1969-02-28 50 229f83b011f305cf2fd441189a3c9fc0 Hombre 2014-05-15 2015-05-29 PG-PAB Si
28,550 2,012 FAOR1**061983 1983-06-29 36 22ad1c09805a1de614fe7be8b1d064b9 Hombre 2012-01-11 2012-10-31 PG-PAB Si
6,891 2,010 FAOR1**071991 1991-07-29 28 22ad1c09805a1de614fe7be8b1d064b9 Hombre 2008-05-16 2011-08-01 PG-PAB Si
6,331 2,010 FAOR1**061983 1983-06-29 36 22ad1c09805a1de614fe7be8b1d064b9 Hombre 2008-05-16 2010-06-30 PG-PAI Si
70,681 2,015 YORA2**111987 1987-11-18 31 22daa0fd67a031e632910676f7c029be Mujer 2014-12-10 2015-04-01 PG-PAI Si
58,728 2,014 YORA2**111987 1987-11-18 31 22daa0fd67a031e632910676f7c029be Mujer 2014-06-16 2014-09-10 M-PR Si
42,911 2,013 YORA2**111987 1987-11-18 31 22daa0fd67a031e632910676f7c029be Mujer 2013-07-31 2013-08-27 M-PR Si
40,878 2,013 YORA2**101987 1987-10-18 32 22daa0fd67a031e632910676f7c029be Mujer 2013-06-03 2013-08-01 M-PR Si
3,725 2,010 JORA2**111987 1987-11-18 31 22daa0fd67a031e632910676f7c029be Mujer 2010-02-26 2010-07-31 M-PR Si
108,842 2,017 PASA1**041974 1974-04-19 45 22dad5b4cd5d7d05d022c2cb98eba5d7 NA Hombre 2016-08-10 2017-03-01 PG-PR No
92,226 2,016 PASA1**041975 1975-04-19 44 22dad5b4cd5d7d05d022c2cb98eba5d7 Hombre 2015-01-29 2016-06-30 PG-PAB Si
111,541 2,017 FLGO2**031960 1960-03-02 59 22fee6765335dec5863a8fc2a150ba08 NA Mujer 2016-12-28 2017-08-10 PG-PAI Si
92,479 2,016 FLGO2**031961 1961-03-02 58 22fee6765335dec5863a8fc2a150ba08 Mujer 2015-12-28 2016-11-30 PG-PAB Si
97,869 2,016 ENBO1**041996 1996-04-25 23 232a7f0974a2770d32eef0e11f186887 Hombre 2016-05-02 2016-12-05 PG-PR Si
76,969 2,015 ENBO1**091984 1984-09-19 35 232a7f0974a2770d32eef0e11f186887 Hombre 2015-05-28 2015-10-29 PG-PAI Si
75,926 2,015 ENBO1**091984 1984-09-19 35 232a7f0974a2770d32eef0e11f186887 Hombre 2015-04-28 2015-05-17 PG-PR Si
140,950 2,018 RISE1**011979 1979-01-25 40 237ad17f83dadb1f49ff9122eba47d68 NA Hombre 2018-08-20 2019-01-02 PG-PAI Si
65,869 2,015 RISE1**011978 1978-01-25 41 237ad17f83dadb1f49ff9122eba47d68 Hombre 2013-09-27 2016-03-04 PG-PAB Si
156,887 2,019 JOLA1**111959 1959-11-07 60 238dc550576f2708c993c3ac7ce86bd9 NA Hombre 2019-05-17 NA PG-PAI Si
50,839 2,014 JOLA1**111959 1959-11-07 59 238dc550576f2708c993c3ac7ce86bd9 Hombre 2013-09-03 2014-02-11 PG-PAB Si
21,886 2,012 JOLA1**111959 1959-11-07 59 238dc550576f2708c993c3ac7ce86bd9 Hombre 2011-07-19 2012-04-24 PG-PAB Si
16,419 2,011 JOLA1**111959 1959-11-07 59 238dc550576f2708c993c3ac7ce86bd9 Hombre 2011-05-23 2011-07-01 PG-PAI Si
150,604 2,019 MOMO2**081976 1976-08-02 43 23dc8f6c16e5160d336189a58af3b449 NA Mujer 2018-11-20 2019-08-30 M-PAI Si
140,172 2,018 MOMO2**081976 1976-08-02 43 23dc8f6c16e5160d336189a58af3b449 NA Mujer 2018-07-12 2018-11-19 M-PR Si
138,987 2,018 MOMO2**081976 1976-08-02 43 23dc8f6c16e5160d336189a58af3b449 NA Mujer 2018-06-04 2018-07-11 PG-PAI Si
80,196 2,015 MOMO2**081980 1980-08-02 39 23dc8f6c16e5160d336189a58af3b449 Mujer 2015-08-19 2015-11-24 PG-PAB Si
153,240 2,019 EUPO1**041990 1990-04-21 29 23ebb49f82c6d734fbc97b5f591c07fb NA Hombre 2019-02-04 NA PG-PAB Si
150,216 2,019 EUPO1**041989 1989-04-21 30 23ebb49f82c6d734fbc97b5f591c07fb NA Hombre 2018-10-08 2019-01-31 PG-PAI Si
143,069 2,018 GAFI1**011970 1970-01-09 49 24118dbff81807b7289005be78444b72 NA Hombre 2018-10-08 2018-12-31 PG-PAB Si
77,095 2,015 GAFI1**011960 1960-01-09 59 24118dbff81807b7289005be78444b72 Hombre 2015-05-06 2015-10-01 PG-PAI Si
16,829 2,011 GAFI1**011970 1970-01-09 49 24118dbff81807b7289005be78444b72 Hombre 2011-05-31 2011-11-29 PG-PAB Si
28,974 2,012 VETA2**091971 1971-09-06 48 245112d5008dd3901d96148e45b64acb Mujer 2012-08-01 2012-08-01 Otro No
27,216 2,012 VETA2**091973 1973-09-06 46 245112d5008dd3901d96148e45b64acb Mujer 2012-05-26 2012-07-18 M-PR Si
12,743 2,011 VETA2**091972 1972-09-06 47 245112d5008dd3901d96148e45b64acb Mujer 2011-01-11 2011-09-17 PG-PAB Si
26,252 2,012 JURO1**091979 1979-09-24 40 245ce3d17c6c5b12e07b7576c637b864 Hombre 2012-04-04 2012-08-10 PG-PAI No
17,903 2,011 JORO1**081985 1985-08-19 34 245ce3d17c6c5b12e07b7576c637b864 Hombre 2011-06-22 2011-11-02 PG-PAI Si
150,373 2,019 RIIS1**081981 1981-08-22 38 2461c8278449b2021078fc3a79eab1b5 NA Hombre 2018-11-12 NA PG-PR Si
126,595 2,018 RIIS1**101982 1982-10-24 37 2461c8278449b2021078fc3a79eab1b5 NA Hombre 2016-12-23 2018-06-28 PG-PAI Si
99,813 2,016 RIIS1**081981 1981-08-22 38 2461c8278449b2021078fc3a79eab1b5 Hombre 2016-06-29 2016-11-18 PG-PAB Si
74,574 2,015 RIIS1**081981 1981-08-22 38 2461c8278449b2021078fc3a79eab1b5 Hombre 2015-02-25 2015-11-02 PG-PAI Si
99,356 2,016 FEOS1**021984 1984-02-29 35 24ed54ee3bca4b9beea57626a1f53c3e Hombre 2016-07-04 2016-09-22 PG-PAB Si
69,253 2,015 FEOS1**101994 1994-10-29 25 24ed54ee3bca4b9beea57626a1f53c3e Hombre 2014-10-01 2015-01-30 PG-PAI Si
59,007 2,014 FEOS1**101984 1984-10-29 35 24ed54ee3bca4b9beea57626a1f53c3e Hombre 2014-06-12 2014-09-22 PG-PR Si
5,408 2,010 FERO1**101984 1984-10-29 35 24ed54ee3bca4b9beea57626a1f53c3e Hombre 2010-04-26 2010-06-01 PG-PAI Si
25,324 2,012 RUFE1**031993 1993-03-12 26 24f4d8f4e247d695ddbc5d3077375634 Hombre 2012-03-12 2012-04-05 PG-PR Si
20,182 2,011 RUFE1**061986 1986-06-07 33 24f4d8f4e247d695ddbc5d3077375634 Hombre 2011-11-30 2011-12-01 PG-PR Si
44,830 2,013 LUGA1**071980 1980-07-16 39 2504a48f17368221ca83a3ac0a168ab9 Hombre 2013-09-28 2013-12-10 PG-PR Si
4,944 2,010 LUGA1**071990 1990-07-16 29 2504a48f17368221ca83a3ac0a168ab9 Hombre 2010-04-22 2010-08-13 PG-PR Si
68,829 2,015 RICE1**111981 1981-11-28 37 252f9f938640a0fb97e01c649335e6f5 Hombre 2014-09-11 2015-05-13 PG-PR Si
48,372 2,014 RICE1**111980 1980-11-28 38 252f9f938640a0fb97e01c649335e6f5 Hombre 2013-02-19 2014-04-15 PG-PR Si
29,629 2,012 RICE1**111981 1981-11-28 37 252f9f938640a0fb97e01c649335e6f5 Hombre 2012-08-29 2012-09-07 PG-PR Si
113,106 2,017 BRCO1**101996 1996-10-23 23 25356bdf7edd0cde79f211a7e891ba16 NA Hombre 2017-01-31 2017-05-31 PG-PAI Si
112,480 2,017 BRCO1**101996 1996-10-23 23 25356bdf7edd0cde79f211a7e891ba16 NA Hombre 2016-12-31 2017-01-23 PG-PR Si
101,311 2,016 BRCO1**101995 1995-10-23 24 25356bdf7edd0cde79f211a7e891ba16 Hombre 2016-08-23 2016-12-20 PG-PR Si
97,794 2,016 BRCO1**051996 1996-05-17 23 25356bdf7edd0cde79f211a7e891ba16 Hombre 2016-05-03 2016-08-22 PG-PAI Si
92,041 2,016 BRCO1**101996 1996-10-23 23 25356bdf7edd0cde79f211a7e891ba16 Hombre 2015-12-22 2016-05-02 PG-PR Si
82,882 2,015 BRCO1**101996 1996-10-23 23 25356bdf7edd0cde79f211a7e891ba16 Hombre 2015-10-27 2015-12-22 PG-PAI Si
133,915 2,018 JOCA1**111971 1971-11-30 47 254f909c18d568bcc2b7b084bd32d0e3 NA Hombre 2018-02-01 2018-06-01 PG-PAB Si
70,580 2,015 JOCA1**111971 1971-11-30 47 254f909c18d568bcc2b7b084bd32d0e3 Hombre 2014-12-17 2015-11-11 PG-PR Si
48,447 2,014 JOCA1**111971 1971-11-30 47 254f909c18d568bcc2b7b084bd32d0e3 Hombre 2013-02-26 2014-03-14 PG-PAI Si
2,010 2,010 JOCA1**101971 1971-10-30 48 254f909c18d568bcc2b7b084bd32d0e3 Hombre 2009-04-01 2010-07-22 PG-PR Si
149,240 2,019 ELVI2**111962 1962-11-22 56 25c36b6820ac514094c458ba22918452 NA Mujer 2018-09-01 2019-02-08 M-PR Si
128,968 2,018 ELVI2**111962 1962-11-22 56 25c36b6820ac514094c458ba22918452 NA Mujer 2017-08-02 2018-02-19 M-PR Si
117,470 2,017 ELVI2**111962 1962-11-22 56 25c36b6820ac514094c458ba22918452 NA Mujer 2017-05-03 2017-08-01 M-PAI Si
108,602 2,017 ELVI2**111962 1962-11-22 56 25c36b6820ac514094c458ba22918452 NA Mujer 2016-08-18 2017-04-28 M-PR Si
97,694 2,016 ELVI2**111962 1962-11-22 56 25c36b6820ac514094c458ba22918452 Mujer 2016-05-27 2016-07-19 M-PAI Si
94,527 2,016 ELVI2**111962 1962-11-22 56 25c36b6820ac514094c458ba22918452 Mujer 2016-03-04 2016-05-22 M-PR Si
92,114 2,016 ELVI2**111962 1962-11-22 56 25c36b6820ac514094c458ba22918452 Mujer 2016-01-04 2016-03-03 M-PAI Si
83,765 2,015 ELVI2**111963 1963-11-22 55 25c36b6820ac514094c458ba22918452 Mujer 2015-09-24 2015-12-31 PG-PAB Si
73,280 2,015 ELVI2**111962 1962-11-22 56 25c36b6820ac514094c458ba22918452 Mujer 2015-02-11 2015-08-21 M-PR Si
61,750 2,014 ELVI2**111962 1962-11-22 56 25c36b6820ac514094c458ba22918452 Mujer 2014-08-05 2014-11-05 M-PR Si
34,403 2,013 ELVI2**111962 1962-11-22 56 25c36b6820ac514094c458ba22918452 Mujer 2012-10-04 2013-05-03 M-PR Si
14,097 2,011 ELVI2**111962 1962-11-22 56 25c36b6820ac514094c458ba22918452 Mujer 2011-01-31 2011-12-30 M-PAI Si
8,392 2,010 ELVI2**111962 1962-11-22 56 25c36b6820ac514094c458ba22918452 Mujer 2010-08-20 2010-12-22 PG-PAI Si
7,698 2,010 ELVI2**111962 1962-11-22 56 25c36b6820ac514094c458ba22918452 Mujer 2010-08-20 2010-09-30 PG-PAB Si
30,329 2,012 PASA2**101980 1980-10-20 39 262a04962523ef9c6440f6f7557ff822 Mujer 2012-10-08 2012-10-26 M-PR Si
22,900 2,012 PASA2**121980 1980-12-20 38 262a04962523ef9c6440f6f7557ff822 Mujer 2011-11-23 2012-04-17 M-PR Si
16,915 2,011 PASA2**121980 1980-12-20 38 262a04962523ef9c6440f6f7557ff822 Mujer 2011-06-16 2011-11-21 M-PAI Si
11,333 2,011 PASA2**121980 1980-12-20 38 262a04962523ef9c6440f6f7557ff822 Mujer 2010-08-31 2011-06-30 PG-PAI Si
63,202 2,014 JOPA1**081988 1988-08-13 31 26367f6027957a7e4bfc3ee40ca60165 Hombre 2014-09-04 2015-01-02 PG-PR Si
54,166 2,014 JOPA1**111988 1988-11-13 30 26367f6027957a7e4bfc3ee40ca60165 Hombre 2014-02-03 2014-10-01 PG-PAI Si
39,282 2,013 DABA2**091978 1978-09-12 41 266ecd9e9213df517edb7557e5f6686e Mujer 2013-03-12 2013-10-31 Otro No
39,151 2,013 DABA2**091970 1970-09-12 49 266ecd9e9213df517edb7557e5f6686e Mujer 2013-03-12 2013-10-01 PG-PAB Si
57,933 2,014 SUCA2**051981 1981-05-26 38 26ad3489b104ed4b639f57d0f6af16fb Mujer 2014-04-17 2014-08-29 PG-PAI Si
26,559 2,012 SUCA2**051981 1981-05-26 38 26ad3489b104ed4b639f57d0f6af16fb Mujer 2012-01-13 2012-08-13 M-PR Si
18,273 2,011 SUCA2**051987 1987-05-26 32 26ad3489b104ed4b639f57d0f6af16fb Mujer 2011-08-31 2012-01-03 PG-PAI Si
16,667 2,011 SUCA2**051987 1987-05-26 32 26ad3489b104ed4b639f57d0f6af16fb Mujer 2011-06-17 2011-08-31 PG-PAB Si
81,299 2,015 JUCU1**121974 1974-12-11 44 26d22aa88df447c9b9d5653de2851ca1 Hombre 2015-09-03 2015-12-01 PG-PAI Si
54,011 2,014 JUCU1**121974 1974-12-11 44 26d22aa88df447c9b9d5653de2851ca1 Hombre 2014-01-30 2014-08-18 PG-PAI Si
37,993 2,013 JUCU1**121974 1974-12-11 44 26d22aa88df447c9b9d5653de2851ca1 Hombre 2013-03-27 2013-06-28 PG-PAI Si
29,544 2,012 JUCU1**121974 1974-12-11 44 26d22aa88df447c9b9d5653de2851ca1 Hombre 2012-08-27 2013-02-01 PG-PAB No
13,657 2,011 JUCU1**111975 1975-11-10 43 26d22aa88df447c9b9d5653de2851ca1 Hombre 2011-01-12 2011-07-30 PG-PAB Si
127,244 2,018 SIMA2**031965 1965-03-31 54 26e9c04d9ab328ed3fdd8da9c1488678 NA Mujer 2017-04-06 2018-11-30 M-PR Si
88,215 2,016 SIMA2**031965 1965-03-31 54 26e9c04d9ab328ed3fdd8da9c1488678 Mujer 2015-07-01 2016-03-31 M-PAI Si
74,858 2,015 SIMA2**031965 1965-03-31 54 26e9c04d9ab328ed3fdd8da9c1488678 Mujer 2015-04-07 2015-06-30 M-PR Si
72,158 2,015 SIMA2**031965 1965-03-31 54 26e9c04d9ab328ed3fdd8da9c1488678 Mujer 2015-01-27 2015-03-31 M-PAI Si
27,799 2,012 SIMA2**031966 1966-03-31 53 26e9c04d9ab328ed3fdd8da9c1488678 e710e5c41257621c28ceca325bbb6af8 Mujer 2012-06-12 2012-09-13 PG-PAI No
72,457 2,015 PEOL1**011989 1989-01-17 30 26ebae5888430e7cbb106e484faf76a0 Hombre 2015-02-09 2015-03-04 M-PR Si
72,244 2,015 PEOL1**011989 1989-01-09 30 26ebae5888430e7cbb106e484faf76a0 Hombre 2015-01-08 2015-02-07 PG-PAI Si
19,453 2,011 PEOL1**011989 1989-01-01 30 26ebae5888430e7cbb106e484faf76a0 Hombre 2011-05-25 2012-03-19 PG-PAB Si
16,189 2,011 PEOL1**011989 1989-01-09 30 26ebae5888430e7cbb106e484faf76a0 Hombre 2011-05-25 2011-08-15 PG-PAB No
13,087 2,011 PEOL1**011989 1989-01-09 30 26ebae5888430e7cbb106e484faf76a0 Hombre 2010-12-28 2011-07-08 PG-PR Si
9,212 2,010 PEOL1**011989 1989-01-09 30 26ebae5888430e7cbb106e484faf76a0 Hombre 2010-11-25 2010-12-09 PG-PAB No
7,430 2,010 PEOL1**121989 1989-12-09 29 26ebae5888430e7cbb106e484faf76a0 Hombre 2010-08-10 2010-11-30 PG-PR Si
68,619 2,015 ROAL1**051976 1976-05-16 43 26fea033289100aa202eae6635298369 Hombre 2014-09-22 2015-04-01 PG-PAB Si
6,501 2,010 ROAL1**051977 1977-05-16 42 26fea033289100aa202eae6635298369 Hombre 2010-07-19 2010-10-15 PG-PAI Si
155,288 2,019 NACE2**011983 1983-01-22 36 27031e5d587a8e5264f01b19b4f731a8 NA Mujer 2019-02-14 2019-05-14 M-PAI Si
127,182 2,018 NACE2**011983 1983-01-22 36 27031e5d587a8e5264f01b19b4f731a8 NA Mujer 2017-04-06 2018-03-22 M-PR Si
112,601 2,017 NACE2**011983 1983-01-22 36 27031e5d587a8e5264f01b19b4f731a8 NA Mujer 2016-12-15 2017-04-05 M-PAI Si
98,123 2,016 NACE2**011983 1983-01-22 36 27031e5d587a8e5264f01b19b4f731a8 Mujer 2016-06-08 2016-11-24 M-PR Si
67,788 2,015 NACE2**011983 1983-01-22 36 27031e5d587a8e5264f01b19b4f731a8 Mujer 2014-07-24 2015-03-25 M-PR Si
53,251 2,014 NACE2**011983 1983-01-22 36 27031e5d587a8e5264f01b19b4f731a8 Mujer 2014-01-16 2014-04-11 M-PAI Si
36,441 2,013 NACE2**051982 1982-05-05 37 27031e5d587a8e5264f01b19b4f731a8 Mujer 2013-01-28 2013-07-31 PG-PAI Si
29,959 2,012 NACE2**011983 1983-01-22 36 27031e5d587a8e5264f01b19b4f731a8 Mujer 2012-09-03 2012-10-31 M-PAI Si
52,919 2,014 ROUR1**111981 1981-11-16 37 270fa29f42b96e95a531adb0bf831e4f Hombre 2013-12-20 2014-04-27 PG-PR Si
35,842 2,013 ROUR1**111981 1981-11-16 37 270fa29f42b96e95a531adb0bf831e4f Hombre 2013-01-16 2013-06-24 PG-PR Si
24,557 2,012 ROUR1**111981 1981-11-16 37 270fa29f42b96e95a531adb0bf831e4f Hombre 2012-01-03 2012-04-27 PG-PAB Si
19,681 2,011 ROUR1**111984 1984-11-16 34 270fa29f42b96e95a531adb0bf831e4f Hombre 2011-09-26 2011-12-01 PG-PR Si
17,806 2,011 ROUR1**111981 1981-11-16 37 270fa29f42b96e95a531adb0bf831e4f Hombre 2011-08-08 2011-10-28 PG-PAB Si
11,594 2,011 CAPA1**071982 1982-07-10 37 270fa29f42b96e95a531adb0bf831e4f Hombre 2010-10-18 2011-05-26 PG-PAB Si
2,023 2,010 ROUR1**111981 1981-11-16 37 270fa29f42b96e95a531adb0bf831e4f Hombre 2010-01-21 2010-04-26 PG-PAI Si
113,440 2,017 BEGO1**091978 1978-09-10 41 274af43f6d1f63c36c065e6e1bebfcd9 NA Hombre 2017-02-23 2017-11-29 PG-PR Si
100,840 2,016 BEGO1**091968 1968-09-10 51 274af43f6d1f63c36c065e6e1bebfcd9 Hombre 2016-08-08 2017-02-01 PG-PAI Si
156,950 2,019 CRBR1**071977 1977-07-29 42 27b39d5b3fa879340213428b53e501fe NA Hombre 2019-05-23 NA PG-PAB Si
74,082 2,015 CRBR1**071976 1976-07-29 43 27b39d5b3fa879340213428b53e501fe Hombre 2015-02-16 2015-06-19 PG-PAI Si
122,740 2,017 JORO1**121981 1981-12-21 37 27ee472d4602aa31420048d085c0e60b NA Hombre 2017-10-04 2018-02-01 PG-PAB Si
21,611 2,012 JORO1**121988 1988-12-21 30 27ee472d4602aa31420048d085c0e60b Hombre 2011-05-04 2012-07-10 PG-PAB Si
66,127 2,015 PAPA2**041998 1998-04-15 21 282b26469a3946baa5cff1993b2b6a06 Mujer 2013-12-17 2015-03-16 PG-PAB Si
262 2,010 PAPA2**041988 1988-04-15 31 282b26469a3946baa5cff1993b2b6a06 Mujer 2009-10-07 2010-03-31 PG-PAB Si
146,468 2,019 PAZA2**111974 1974-11-09 45 2839b336e51c79ed6cfbe5f10e5f1c08 NA Mujer 2017-10-18 2019-06-18 M-PAI Si
2,760 2,010 PAZA2**111974 1974-11-09 44 2839b336e51c79ed6cfbe5f10e5f1c08 Mujer 2009-12-11 2010-08-26 PG-PAI Si
63,351 2,014 JERE1**041985 1985-04-05 34 2840d2b81ea757168184be08748d1268 Hombre 2014-10-27 2014-10-28 PG-PAI Si
31,745 2,012 JERE1**121985 1985-12-05 33 2840d2b81ea757168184be08748d1268 Hombre 2012-12-05 2012-12-08 PG-PR Si
25,218 2,012 JERE1**041985 1985-04-05 34 2840d2b81ea757168184be08748d1268 Hombre 2012-03-05 2012-04-24 PG-PAI Si
160,793 2,019 ESAR1**071983 1983-07-09 36 2862b749e90ae949420bc0f1958f7f0f NA Hombre 2019-08-20 NA PG-PAI Si
23,216 2,012 ESAR1**071982 1982-07-09 37 2862b749e90ae949420bc0f1958f7f0f Hombre 2011-11-23 2012-01-25 PG-PAI Si
150,000 2,019 BRVI1**111993 1993-11-06 26 2873367f9b42d0ca5790a2601c4edd46 NA Hombre 2018-10-29 2019-06-21 PG-PR Si
118,189 2,017 BRVI1**111993 1993-11-06 25 2873367f9b42d0ca5790a2601c4edd46 NA Hombre 2017-06-14 2017-07-07 PG-PAI Si
126,133 2,018 ALNU1**081968 1968-08-02 51 28a75475d0e926e083395dc4a58fb295 NA Hombre 2016-03-08 2018-06-15 PG-PAB Si
20,742 2,012 ALNU1**081967 1967-08-02 52 28a75475d0e926e083395dc4a58fb295 Hombre 2010-09-13 2012-06-05 PG-PAB Si
25,638 2,012 MACU2**061978 1978-06-28 41 28b49a99ec43fae5cd60e3ba6df2740a Mujer 2012-03-27 2012-08-01 M-PR Si
24,571 2,012 MACU2**021987 1987-02-08 32 28b49a99ec43fae5cd60e3ba6df2740a Mujer 2012-01-03 2012-03-08 M-PR Si
17,914 2,011 MACU2**061978 1978-06-28 41 28b49a99ec43fae5cd60e3ba6df2740a Mujer 2011-08-22 2011-12-31 M-PR Si
22,159 2,012 MAIR2**091992 1992-09-15 27 28f5de2a8924a3c628803d682b45965b Mujer 2011-09-01 2012-01-31 M-PAI Si
16,707 2,011 MAIR2**071985 1985-07-15 34 28f5de2a8924a3c628803d682b45965b Mujer 2011-06-10 2011-08-31 PG-PAI Si
12,246 2,011 MAIR2**071985 1985-07-15 34 28f5de2a8924a3c628803d682b45965b Mujer 2010-11-15 2011-01-31 PG-PAI Si
33,713 2,013 GEVA1**011970 1970-01-01 49 2916feee8d33b62e85f2eb148e66825e Hombre 2012-08-02 2013-05-29 PG-PAI Si
29,396 2,012 GEVA1**011970 1970-01-01 49 2916feee8d33b62e85f2eb148e66825e Hombre 2011-07-22 2012-08-01 PG-PAB Si
18,651 2,011 GEVA1**121970 1970-12-03 48 2916feee8d33b62e85f2eb148e66825e Hombre 2011-07-22 2012-01-31 PG-PAI Si
150,478 2,019 GARU1**111981 1981-11-10 38 29518c4931e51f54417697904bfaf632 NA Hombre 2018-11-15 2019-08-30 PG-PAB Si
127,253 2,018 GARU1**111981 1981-11-10 37 29518c4931e51f54417697904bfaf632 NA Hombre 2017-04-03 2018-02-28 PG-PAB Si
155,349 2,019 HEGO2**041997 1997-04-14 22 299314cdf3affd71dd0a785bc5cc580a NA Mujer 2019-04-01 NA PG-PAB Si
120,765 2,017 HEGO2**041999 1999-04-14 20 299314cdf3affd71dd0a785bc5cc580a NA Mujer 2017-08-01 2017-10-05 PG-PAI Si
92,252 2,016 JEAN2**061990 1990-06-02 29 29a62121c8bf218d0c1c0855d370e76b Mujer 2015-12-22 2016-11-04 M-PAI Si
46,931 2,013 JEAN2**061980 1980-06-02 39 29a62121c8bf218d0c1c0855d370e76b Mujer 2013-11-01 2013-12-02 M-PR Si
100,292 2,016 HELI2**111978 1978-11-11 40 29fd04cca3dbe28e09b10c493da66f13 Mujer 2016-07-30 2016-08-22 M-PR Si
95,741 2,016 HELI2**031977 1977-03-15 42 29fd04cca3dbe28e09b10c493da66f13 Mujer 2016-03-30 2016-07-29 PG-PAB Si
132,820 2,018 EDCA1**031990 1990-03-16 29 29fd7a17208d4fe2180d72a07cf2ecc4 NA Hombre 2018-01-04 2018-05-01 PG-PR Si
108,740 2,017 EDCA1**081996 1996-08-16 23 29fd7a17208d4fe2180d72a07cf2ecc4 NA Hombre 2016-08-16 2017-02-20 PG-PR Si
153,661 2,019 COBA2**111990 1990-11-13 29 29feebdd80b416b2cb9c21ed62c68d4a NA Mujer 2019-02-11 2019-03-31 M-PR Si
95,972 2,016 COBA2**111990 1990-11-13 28 29feebdd80b416b2cb9c21ed62c68d4a Mujer 2016-04-22 2016-07-15 M-PAI Si
35,366 2,013 BRUR1**031991 1991-03-30 28 2a46b11a41cb0fd6979ea9653d7a5d53 Hombre 2013-01-02 2013-01-11 PG-PAB Si
10,087 2,011 BRUR1**031990 1990-03-30 29 2a46b11a41cb0fd6979ea9653d7a5d53 Hombre 2010-02-16 2011-01-22 PG-PAB Si
55,458 2,014 ROSO1**021972 1972-02-01 47 2a7ce53917ca1f56652d93bf9252c36c Hombre 2013-11-25 2014-08-04 PG-PAI Si
52,207 2,014 ROSO1**021971 1971-02-01 48 2a7ce53917ca1f56652d93bf9252c36c Hombre 2013-11-25 2014-03-03 PG-PAB Si
80,275 2,015 FIRI1**091967 1967-09-29 52 2ab254f24d11142a1e9b9960afde0c74 Hombre 2015-07-13 2015-10-05 PG-PAI Si
27,025 2,012 FIRI1**111987 1987-11-29 31 2ab254f24d11142a1e9b9960afde0c74 Hombre 2012-05-24 2012-08-20 PG-PAI Si
31,581 2,012 AGOP2**111993 1993-11-05 26 2aebae35e1b580d81d5cc1186b5a6ede Mujer 2012-05-14 2013-01-31 PG-PAB Si
24,573 2,012 AGOP2**021979 1979-02-05 40 2aebae35e1b580d81d5cc1186b5a6ede Mujer 2012-01-03 2012-04-17 M-PR Si
19,761 2,011 AGOP2**021979 1979-02-05 40 2aebae35e1b580d81d5cc1186b5a6ede Mujer 2011-11-17 2011-12-31 M-PR Si
54,779 2,014 RORU2**091958 1958-09-06 61 2afa7ab08b1f822e7c9ffd4a70939e20 Mujer 2014-02-04 2014-07-30 PG-PAI Si
37,133 2,013 RORU2**021994 1994-02-21 25 2afa7ab08b1f822e7c9ffd4a70939e20 Mujer 2013-02-21 2013-12-20 PG-PR Si
157,811 2,019 VIMO1**111982 1982-11-06 37 2aff6a7506991628e4eb4e884c546b62 NA Hombre 2019-05-31 NA PG-PAI Si
93,437 2,016 VIMO1**111982 1982-11-06 36 2aff6a7506991628e4eb4e884c546b62 Hombre 2016-02-09 2016-07-18 PG-PAI Si
44,179 2,013 BEVE1**101970 1970-10-12 49 2b5f7eec9a00b51c732b1576ffc8516f Hombre 2013-08-29 2013-12-12 PG-PAB Si
38,750 2,013 BEVE1**101970 1970-10-12 49 2b5f7eec9a00b51c732b1576ffc8516f Hombre 2013-04-09 2013-07-29 PG-PAI Si
23,661 2,012 BEVE1**121970 1970-12-10 48 2b5f7eec9a00b51c732b1576ffc8516f Hombre 2012-01-09 2012-03-01 PG-PAI Si
71,396 2,015 JAAL1**111986 1986-11-16 32 2b88906b6d3006ebafe9fd91d3ac4a56 Hombre 2015-01-29 2015-05-29 PG-PAI Si
58,215 2,014 JAAL1**101986 1986-10-16 33 2b88906b6d3006ebafe9fd91d3ac4a56 Hombre 2014-05-06 2015-01-06 PG-PAB Si
24,410 2,012 JAAL1**101986 1986-10-16 33 2b88906b6d3006ebafe9fd91d3ac4a56 Hombre 2012-01-12 2012-04-03 PG-PAB Si
33,483 2,013 HEHU1**011993 1993-01-26 26 2b9dfaa0ff3c3e24610b0b7de051db26 Hombre 2012-07-23 2013-07-01 PG-PAB Si
22,735 2,012 HEHU1**011986 1986-01-26 33 2b9dfaa0ff3c3e24610b0b7de051db26 Hombre 2011-10-06 2012-02-29 PG-PAB No
158,062 2,019 PAUR1**091986 1986-09-22 33 2bf742985774ff45c50e23fb03d3feda NA Hombre 2019-06-14 NA PG-PR Si
35,247 2,013 PAUR1**091968 1968-09-21 51 2bf742985774ff45c50e23fb03d3feda Hombre 2012-11-19 2013-02-28 PG-PAB Si
17,438 2,011 ANME1**021956 1956-02-01 63 2c20be17800d7de50f4ac0a5843a39ca Hombre 2011-07-11 2012-01-02 PG-PAI Si
6,847 2,010 ANME1**021966 1966-02-01 53 2c20be17800d7de50f4ac0a5843a39ca Hombre 2010-06-25 2010-10-01 PG-PAB Si
160,343 2,019 DAQU1**011986 1986-01-13 33 2c2dd8697f5a995d24b927b4958aa37c NA Hombre 2019-08-05 NA PG-PAI Si
125,142 2,017 DAQU1**031999 1999-03-13 20 2c2dd8697f5a995d24b927b4958aa37c NA Hombre 2017-11-23 2018-02-01 PG-PAB Si
106,016 2,017 DAQU1**011986 1986-01-13 33 2c2dd8697f5a995d24b927b4958aa37c NA Hombre 2015-10-05 2017-07-01 PG-PAI Si
109,157 2,017 MACA1**041968 1968-04-19 51 2c427ad8b4dd66ebd39dc4f59e0dd89f NA Hombre 2016-09-09 2017-03-31 PG-PR Si
37,921 2,013 MACA1**041967 1967-04-19 52 2c427ad8b4dd66ebd39dc4f59e0dd89f Hombre 2013-03-07 2013-06-28 PG-PAI Si
17,770 2,011 CABA1**041967 1967-04-19 52 2c427ad8b4dd66ebd39dc4f59e0dd89f Hombre 2011-08-12 2011-11-29 PG-PAB Si
67,090 2,015 AUDI2**041980 1980-04-07 39 2c4be0f7cd09325a7527fe31de884578 Mujer 2014-05-05 2015-08-03 M-PAI Si
43,368 2,013 AUDI2**041980 1980-04-07 39 2c4be0f7cd09325a7527fe31de884578 Mujer 2013-08-05 2013-12-02 M-PAI Si
35,006 2,013 AUDI2**041982 1982-04-07 37 2c4be0f7cd09325a7527fe31de884578 Mujer 2012-12-03 2013-01-01 M-PR No
25,680 2,012 AUDI2**041980 1980-04-07 39 2c4be0f7cd09325a7527fe31de884578 Mujer 2012-02-02 2012-12-01 PG-PAI Si
22,303 2,012 VALO2**111991 1991-11-20 27 2cac60e21760c9261ac32ce1268b6b56 Mujer 2011-09-27 2012-09-06 M-PAI Si
12,829 2,011 VALO2**111985 1985-11-20 33 2cac60e21760c9261ac32ce1268b6b56 Mujer 2011-01-19 2011-02-11 PG-PAI Si
3,463 2,010 VALO2**111985 1985-11-20 33 2cac60e21760c9261ac32ce1268b6b56 Mujer 2010-02-18 2010-06-21 PG-PAI Si
2,420 2,010 VALO2**111985 1985-11-29 33 2cac60e21760c9261ac32ce1268b6b56 Mujer 2009-08-10 2010-01-12 M-PR Si
76,333 2,015 ANTO2**111972 1972-11-25 46 2d02986c297a447347afc450cc783f27 Mujer 2015-05-04 2015-07-24 PG-PAB No
32,688 2,013 ANTO2**101972 1972-10-25 47 2d02986c297a447347afc450cc783f27 Mujer 2012-03-28 2013-06-11 PG-PAB Si
147,864 2,019 CRES1**111981 1981-11-10 38 2d63489f8778a02db0464340d7217ce6 NA Hombre 2018-06-01 2019-05-10 PG-PAB Si
101,030 2,016 CRES1**111981 1981-11-10 37 2d63489f8778a02db0464340d7217ce6 Hombre 2016-08-29 2016-11-25 PG-PAB Si
21,015 2,012 CAPE1**051966 1966-05-18 53 2dfcae02f0c63ff22137221388cc3efc Hombre 2011-02-21 2012-02-22 PG-PR Si
10,972 2,011 CAPE1**081991 1991-08-16 28 2dfcae02f0c63ff22137221388cc3efc Hombre 2010-08-16 2011-02-20 PG-PAI Si
11,864 2,011 CACO1**061957 1957-06-15 62 2e52e0b13eb61711806fc416be9ee382 Hombre 2010-11-03 2011-04-01 PG-PAB Si
6,050 2,010 CACO1**061991 1991-06-15 61 2e52e0b13eb61711806fc416be9ee382 Hombre 2010-06-09 2010-11-02 PG-PAI Si
46,603 2,013 CRGU1**051992 1992-05-17 27 2e60a4e730f8aab12a4478c45e98b241 Hombre 2013-11-04 2013-12-10 PG-PAI Si
16,825 2,011 CRGU1**061992 1992-06-17 27 2e60a4e730f8aab12a4478c45e98b241 Hombre 2011-05-25 2012-01-02 PG-PAI Si
387 2,010 CRGU1**051982 1982-05-17 37 2e60a4e730f8aab12a4478c45e98b241 Hombre 2009-06-22 2010-02-08 PG-PAI Si
87,849 2,016 ROBU2**041993 1993-04-25 26 2e6ce23916c8f8800f9fb020b5739563 Mujer 2015-06-05 2016-01-04 M-PAI Si
23,381 2,012 ROBU2**041983 1983-04-25 36 2e6ce23916c8f8800f9fb020b5739563 Mujer 2011-12-12 2012-01-20 M-PAI Si
115,145 2,017 HILA2**121990 1990-12-17 28 2e7fdc6ecfda7b79654aed21cabe2e7e NA Mujer 2017-03-27 2017-06-30 PG-PAI Si
72,025 2,015 HILA2**121991 1991-12-17 27 2e7fdc6ecfda7b79654aed21cabe2e7e Mujer 2015-01-22 2015-11-13 PG-PAI Si
92,536 2,016 JOVE1**011996 1996-01-25 23 2ee1eff9f1445f8433ce40a129e3742c Hombre 2016-01-19 2016-09-05 PG-PAI Si
76,275 2,015 JOVE1**011988 1988-01-25 31 2ee1eff9f1445f8433ce40a129e3742c Hombre 2015-05-15 2015-07-02 PG-PAB Si
155,906 2,019 ROCA1**111973 1973-11-23 45 2eeef044925780f741842057fa200955 NA Hombre 2019-04-01 NA PG-PAI Si
130,635 2,018 ROCA1**111973 1973-11-23 45 2eeef044925780f741842057fa200955 NA Hombre 2017-10-02 2018-04-05 PG-PAI Si
82,324 2,015 ROCA1**091973 1973-09-23 46 2eeef044925780f741842057fa200955 Hombre 2015-09-30 2015-11-30 PG-PAB Si
111,337 2,017 EDRO1**111971 1971-11-28 47 2f2cbbc15cf4212e93762f827e0637be NA Hombre 2016-11-23 2017-02-06 PG-PAI Si
68,336 2,015 EDRO1**111971 1971-11-26 47 2f2cbbc15cf4212e93762f827e0637be Hombre 2014-08-27 2015-07-01 PG-PR No
56,099 2,014 EDRO1**111979 1979-11-26 39 2f2cbbc15cf4212e93762f827e0637be Hombre 2014-02-10 2014-08-26 PG-PAI Si
25,589 2,012 EDRO1**111971 1971-11-26 47 2f2cbbc15cf4212e93762f827e0637be Hombre 2012-02-17 2012-05-30 PG-PAI Si
17,023 2,011 EDRO1**111971 1971-11-26 47 2f2cbbc15cf4212e93762f827e0637be Hombre 2011-01-31 2011-10-27 PG-PAB Si
53,968 2,014 NAES2**071978 1978-07-17 41 2f73b94b085b1275b84a5ca630629049 Mujer 2014-01-03 2014-05-06 M-PAI Si
27,366 2,012 NAES2**071979 1979-07-17 40 2f73b94b085b1275b84a5ca630629049 Mujer 2012-05-28 2012-07-31 PG-PAI Si
23,447 2,012 NAES2**071979 1979-07-17 40 2f73b94b085b1275b84a5ca630629049 Mujer 2011-12-05 2012-03-21 M-PAI Si
114,118 2,017 LUSE1**071976 1976-07-07 43 2f88a2b2c6c45b2780c65834e2399372 NA Hombre 2017-03-09 2017-03-26 PG-PR Si
113,982 2,017 LUSE1**071976 1976-07-07 43 2f88a2b2c6c45b2780c65834e2399372 NA Hombre 2017-02-14 2017-02-26 PG-PR Si
112,541 2,017 LUSE1**071976 1976-07-07 43 2f88a2b2c6c45b2780c65834e2399372 NA Hombre 2016-12-20 2017-02-13 PG-PAI Si
48,821 2,014 LUSE1**041994 1994-04-07 25 2f88a2b2c6c45b2780c65834e2399372 Hombre 2013-04-01 2014-05-05 PG-PAI Si
30,817 2,012 LUSE1**071976 1976-07-07 43 2f88a2b2c6c45b2780c65834e2399372 Hombre 2012-10-26 2013-01-02 PG-PAI Si
23,254 2,012 LUSE1**071976 1976-07-07 43 2f88a2b2c6c45b2780c65834e2399372 Hombre 2011-12-12 2012-02-10 PG-PR Si
16,673 2,011 LUSE1**071976 1976-07-07 43 2f88a2b2c6c45b2780c65834e2399372 Hombre 2011-05-11 2011-11-30 PG-PAI Si
131,516 2,018 CRMU1**051972 1972-05-12 47 2f9788191c5271884742419e12be4fab NA Hombre 2017-11-20 2018-05-01 PG-PAB Si
111,642 2,017 CHMU1**051971 1971-05-12 48 2f9788191c5271884742419e12be4fab NA Hombre 2017-01-11 2017-05-01 PG-PAB Si
126,178 2,018 XIHE2**021958 1958-02-22 61 2fa9150fd871fe63859e79ef922ff437 NA Mujer 2016-08-17 2018-03-01 PG-PAB No
94,733 2,016 XIHE2**021958 1958-02-22 61 2fa9150fd871fe63859e79ef922ff437 Mujer 2016-03-22 2016-08-01 M-PR Si
85,447 2,016 XIHE2**021994 1994-02-22 25 2fa9150fd871fe63859e79ef922ff437 Mujer 2013-06-25 2016-03-21 PG-PAB Si
154,408 2,019 MAHE1**012001 2001-01-09 18 2fc7b501dcfb9cefb8f1d5b32dadf764 NA Hombre 2019-03-14 NA PG-PR Si
149,737 2,019 MAHE1**011994 1994-01-19 25 2fc7b501dcfb9cefb8f1d5b32dadf764 NA Hombre 2018-10-01 2019-03-13 PG-PAI Si
155,784 2,019 JOMO1**111992 1992-11-08 27 2fd524b6bc9b8d410d52005a8d47e5c5 NA Hombre 2019-04-10 2019-07-01 PG-PAI Si
137,744 2,018 JOMO1**111992 1992-11-08 26 2fd524b6bc9b8d410d52005a8d47e5c5 NA Hombre 2018-05-14 2018-07-31 PG-PAI Si
125,674 2,017 JOMO1**111992 1992-11-08 26 2fd524b6bc9b8d410d52005a8d47e5c5 NA Hombre 2017-11-07 2018-01-01 PG-PAI Si
65,465 2,015 CLRO2**081968 1968-08-12 51 301c7c75528a1f0510919e8c917de631 Mujer 2013-01-07 2013-01-31 M-PAI Si
57,974 2,014 CLCA1**081969 1969-08-12 50 301c7c75528a1f0510919e8c917de631 Hombre 2014-05-01 2014-07-22 M-PR No
12,889 2,011 CLRO2**081968 1968-08-12 51 301c7c75528a1f0510919e8c917de631 Mujer 2011-01-18 2011-08-26 M-PAI Si
140,225 2,018 MIPE1**041983 1983-04-18 36 3034db6809750d90f9358c6530acaada NA Hombre 2018-07-12 2018-08-31 PG-PAB Si
130,355 2,018 MIPE1**041984 1984-04-18 35 3034db6809750d90f9358c6530acaada NA Hombre 2017-10-16 2018-06-28 PG-PR Si
93,616 2,016 VITA1**111989 1989-11-16 29 307929a530a5299b55dbf6dfd5a3ca19 Hombre 2016-02-03 2016-09-01 PG-PR Si
58,138 2,014 VITA1**111989 1989-11-16 29 307929a530a5299b55dbf6dfd5a3ca19 Hombre 2014-05-19 2014-10-01 PG-PAI Si
27,405 2,012 VITA1**111989 1989-11-16 29 307929a530a5299b55dbf6dfd5a3ca19 Hombre 2012-05-25 2012-09-26 PG-PAI Si
24,542 2,012 VITA1**111989 1989-11-16 29 307929a530a5299b55dbf6dfd5a3ca19 Hombre 2012-01-19 2012-06-01 PG-PR Si
21,720 2,012 VITA1**101989 1989-10-16 30 307929a530a5299b55dbf6dfd5a3ca19 Hombre 2011-06-21 2012-01-13 PG-PAI Si
69,613 2,015 PAMU2**081984 1984-08-09 35 30e6e26dba324663a6f912ffaef46167 Mujer 2014-11-01 2015-06-04 PG-PAI Si
56,531 2,014 PAMU2**081985 1985-08-09 34 30e6e26dba324663a6f912ffaef46167 Mujer 2014-04-01 2014-11-01 PG-PR Si
53,092 2,014 PAMU2**081984 1984-08-09 35 30e6e26dba324663a6f912ffaef46167 Mujer 2014-01-02 2014-03-31 PG-PAI Si
37,443 2,013 PAMU2**081984 1984-08-09 35 30e6e26dba324663a6f912ffaef46167 Mujer 2013-03-01 2013-05-06 PG-PAI Si
106,126 2,017 JOHE1**111943 1943-11-03 76 30f7579163e2352c825f0f263833207c NA Hombre 2015-11-11 2017-01-05 PG-PAB Si
66,429 2,015 JOHE1**111943 1943-11-10 75 30f7579163e2352c825f0f263833207c Hombre 2014-02-05 2015-03-27 Otro No
66,785 2,015 CLTO2**101979 1979-10-17 40 3128223a53c6fd5073cc754afacf3082 Mujer 2014-02-22 2015-03-06 M-PR Si
54,953 2,014 CLTO2**101979 1979-10-17 40 3128223a53c6fd5073cc754afacf3082 Mujer 2014-02-22 2014-02-28 M-PR Si
41,016 2,013 CLTO2**101979 1979-10-17 40 3128223a53c6fd5073cc754afacf3082 Mujer 2013-06-05 2013-11-29 PG-PAB Si
14,675 2,011 CLTO2**101979 1979-10-17 40 3128223a53c6fd5073cc754afacf3082 Mujer 2010-12-21 2011-10-28 PG-PAB Si
6,403 2,010 CLTO2**071991 1991-07-17 28 3128223a53c6fd5073cc754afacf3082 Mujer 2010-06-24 2010-12-16 M-PR Si
5,255 2,010 CLTO2**101979 1979-10-17 40 3128223a53c6fd5073cc754afacf3082 Mujer 2010-05-10 2010-06-23 PG-PAB Si
87,561 2,016 CLPA2**091976 1976-09-30 43 31ad06c62fe9fb2787a74b26b7d52c69 Mujer 2015-01-07 2017-01-01 PG-PAI Si
63,489 2,014 CLPA2**091996 1996-09-30 23 31ad06c62fe9fb2787a74b26b7d52c69 Mujer 2014-10-30 2014-12-19 M-PR Si
53,980 2,014 CLPA2**091976 1976-09-30 43 31ad06c62fe9fb2787a74b26b7d52c69 Mujer 2014-01-13 2014-10-30 PG-PAI Si
151,534 2,019 PAES2**111960 1960-11-10 59 31bb867ce29d4100bcc5643d2fdcb541 NA Mujer 2018-12-06 2019-07-25 PG-PAI No
23,385 2,012 PAES2**111960 1960-11-10 58 31bb867ce29d4100bcc5643d2fdcb541 Mujer 2011-10-26 2012-02-27 PG-PAI Si
97,448 2,016 RAPE1**051979 1979-05-14 40 31dcb30ebde5c1145e2adf2029dc4212 Hombre 2016-05-23 2017-01-20 PG-PAI Si
67,747 2,015 RAPE1**051975 1975-05-14 44 31dcb30ebde5c1145e2adf2029dc4212 Hombre 2014-05-23 2015-01-28 PG-PAI Si
58,055 2,014 RAPE1**051979 1979-05-14 40 31dcb30ebde5c1145e2adf2029dc4212 Hombre 2014-05-23 2014-06-30 PG-PAB Si
154,386 2,019 FRON1**111960 1960-11-07 59 31e0db96e65c3a0d39bf234c933d6b74 NA Hombre 2019-03-07 2019-09-03 PG-PR Si
152,188 2,019 FRON1**111960 1960-11-07 59 31e0db96e65c3a0d39bf234c933d6b74 NA Hombre 2019-01-18 2019-02-22 PG-PR Si
148,050 2,019 FRON1**111960 1960-11-07 59 31e0db96e65c3a0d39bf234c933d6b74 NA Hombre 2018-06-05 2019-01-16 PG-PAI Si
116,898 2,017 FRON1**111960 1960-11-07 58 31e0db96e65c3a0d39bf234c933d6b74 NA Hombre 2017-03-07 2018-02-01 PG-PAI Si
73,224 2,015 FRON1**111960 1960-11-07 58 31e0db96e65c3a0d39bf234c933d6b74 Hombre 2015-02-18 2016-10-31 PG-PAI Si
158,969 2,019 OLSO2**111976 1976-11-06 43 31f30063bbea90e0b11c674684bab257 NA Mujer 2019-07-01 NA PG-PAI Si
154,750 2,019 OLSO2**111976 1976-11-06 43 31f30063bbea90e0b11c674684bab257 NA Mujer 2019-03-19 2019-05-13 M-PR Si
120,369 2,017 OLSO2**111976 1976-11-06 42 31f30063bbea90e0b11c674684bab257 NA Mujer 2017-06-27 2018-01-15 PG-PAB Si
98,954 2,016 OLSO2**111976 1976-11-06 42 31f30063bbea90e0b11c674684bab257 Mujer 2016-03-23 2016-12-15 PG-PAB Si
71,349 2,015 OLSO2**111976 1976-11-06 42 31f30063bbea90e0b11c674684bab257 Mujer 2015-01-01 2015-05-18 PG-PAI Si
68,931 2,015 OLSO2**111976 1976-11-06 42 31f30063bbea90e0b11c674684bab257 Mujer 2014-09-10 2015-01-01 PG-PAB Si
78,784 2,015 LEHE1**071983 1983-07-12 36 31fd779027a5b215f896487184e18102 Hombre 2015-07-09 2015-08-20 PG-PAI Si
16,032 2,011 LEHE1**061984 1984-06-20 35 31fd779027a5b215f896487184e18102 Hombre 2011-05-02 2011-07-15 PG-PAB Si
121,045 2,017 JADE1**051973 1973-05-26 46 32299ce4851b1c8353a484ff140e7a6c NA Hombre 2017-08-01 2017-12-01 PG-PAI No
116,460 2,017 JADE1**051976 1976-05-26 43 32299ce4851b1c8353a484ff140e7a6c NA Hombre 2017-04-18 2017-07-03 PG-PAB Si
94,020 2,016 JADE1**051973 1973-05-26 46 32299ce4851b1c8353a484ff140e7a6c Hombre 2016-01-14 2016-07-13 PG-PAB Si
81,171 2,015 JADE1**051973 1973-05-26 46 32299ce4851b1c8353a484ff140e7a6c Hombre 2015-08-17 2015-12-09 PG-PR Si
65,828 2,015 JADE1**051973 1973-05-26 46 32299ce4851b1c8353a484ff140e7a6c Hombre 2013-09-03 2015-08-17 PG-PAB Si
108,217 2,017 JECE1**071986 1986-07-23 33 32522c6a2199013e31572ef57bbfca9e NA Hombre 2016-07-13 2017-03-10 PG-PR Si
67,951 2,015 JECE1**071980 1980-07-23 39 32522c6a2199013e31572ef57bbfca9e Hombre 2014-07-08 2015-06-23 PG-PAI Si
108,726 2,017 CIRE2**081988 1988-08-13 31 32626d30a9695e91b62f5014aa046324 NA Mujer 2016-08-20 2017-03-01 PG-PAI Si
73,098 2,015 CIRE2**081987 1987-08-13 32 32626d30a9695e91b62f5014aa046324 Mujer 2015-02-27 2015-09-25 PG-PAI Si
160,768 2,019 MARO2**111991 1991-11-09 28 326a98b886abf6effd6ee5f1a3ac9e02 NA Mujer 2019-08-01 NA PG-PAI Si
92,876 2,016 MARO2**111991 1991-11-09 27 326a98b886abf6effd6ee5f1a3ac9e02 Mujer 2016-01-25 2016-09-29 PG-PAI Si
151,361 2,019 JOOR1**111971 1971-11-28 47 327c56b083fd224293c1cf4df3c36216 NA Hombre 2018-12-12 2019-08-21 PG-PAI Si
27,922 2,012 JOOR1**101971 1971-10-28 48 327c56b083fd224293c1cf4df3c36216 Hombre 2012-06-18 2013-06-25 PG-PAI Si
52,661 2,014 ALVE1**111969 1969-11-07 49 32b7375ff00e9f5a61441647ed779e0e Hombre 2013-12-17 2014-11-05 PG-PAI Si
39,073 2,013 ALVE1**041994 1994-04-09 25 32b7375ff00e9f5a61441647ed779e0e Hombre 2013-04-09 2013-10-30 PG-PAB Si
131,744 2,018 ELAL2**101983 1983-10-14 36 32ce9e33e46df01192ffb761f9a1369c NA Mujer 2017-12-05 2018-03-05 M-PR Si
113,036 2,017 ELAL2**101983 1983-10-14 36 32ce9e33e46df01192ffb761f9a1369c NA Mujer 2017-02-07 2017-05-17 PG-PAI Si
48,388 2,014 ELAL2**101982 1982-10-14 37 32ce9e33e46df01192ffb761f9a1369c Mujer 2013-02-06 2014-02-03 PG-PAI Si
74,185 2,015 PESI1**101988 1988-10-29 31 32ef07a34fe819e49e279ffbdcc41d28 Hombre 2015-02-18 2015-08-28 PG-PAI Si
72,496 2,015 PESI1**101989 1989-10-29 30 32ef07a34fe819e49e279ffbdcc41d28 Hombre 2015-02-02 2015-02-20 PG-PAI Si
41,908 2,013 PESI1**101989 1989-10-29 30 32ef07a34fe819e49e279ffbdcc41d28 Hombre 2013-06-25 2013-08-30 PG-PAI Si
33,740 2,013 PESI1**101989 1989-10-29 30 32ef07a34fe819e49e279ffbdcc41d28 Hombre 2012-08-09 2013-02-01 PG-PAI Si
154,367 2,019 JUCA1**121991 1991-12-03 27 330989a8ceca7deed32f0b3f181d4052 NA Hombre 2019-03-07 NA PG-PAI Si
41,577 2,013 JUCA1**121992 1992-12-03 26 330989a8ceca7deed32f0b3f181d4052 Hombre 2013-06-21 2013-12-03 PG-PAI Si
160,151 2,019 CLTO1**041989 1989-04-20 30 3310a1613a1336735a265f2e721bfeb4 NA Hombre 2019-08-06 NA PG-PAI Si
127,193 2,018 CLTO1**041984 1984-04-20 35 3310a1613a1336735a265f2e721bfeb4 NA Hombre 2017-04-17 2018-03-31 PG-PAI Si
98,952 2,016 GEPE1**021980 1980-02-02 39 334b36946018634857b9b87ac7b418d3 Hombre 2016-06-30 2016-08-14 PG-PR Si
62,994 2,014 GEPE1**021986 1986-02-02 33 334b36946018634857b9b87ac7b418d3 Hombre 2014-10-21 2015-02-24 PG-PAI Si
6,494 2,010 GEPE1**021986 1986-02-02 33 334b36946018634857b9b87ac7b418d3 Hombre 2010-07-08 2010-11-16 PG-PAI Si
133,460 2,018 ALME1**051985 1985-05-17 34 3381562aa4abb50a1d7f5ce3c579eba3 NA Hombre 2018-02-05 2018-10-24 PG-PR Si
114,696 2,017 ALME1**051982 1982-05-17 37 3381562aa4abb50a1d7f5ce3c579eba3 NA Hombre 2017-03-02 2017-08-01 PG-PAB Si
152,534 2,019 MIDI1**111986 1986-11-09 33 33a21c3dd4acbec3f25f204a6d9e48ab NA Hombre 2019-01-01 2019-06-30 PG-PAI Si
142,242 2,018 MIDI1**111986 1986-11-09 32 33a21c3dd4acbec3f25f204a6d9e48ab NA Hombre 2018-09-26 2018-12-31 PG-PAB Si
86,470 2,016 RABU1**061981 1981-06-08 38 33dc4e1364642a5b7eb13a3ba545532c Hombre 2015-02-17 2016-05-02 PG-PAB Si
36,462 2,013 RABU1**061981 1981-06-08 38 33dc4e1364642a5b7eb13a3ba545532c Hombre 2013-01-03 2014-01-24 PG-PAB Si
24,835 2,012 RABU1**061982 1982-06-08 37 33dc4e1364642a5b7eb13a3ba545532c Hombre 2012-02-10 2013-01-22 PG-PR Si
21,729 2,012 RABU1**061981 1981-06-08 38 33dc4e1364642a5b7eb13a3ba545532c Hombre 2011-07-26 2012-02-10 PG-PAB Si
118,448 2,017 YURA2**051988 1988-05-15 31 33fb9ba7dcff4958ae21bd7946683e5d NA Mujer 2017-06-19 2017-09-04 PG-PAI Si
5,406 2,010 YURA2**051985 1985-05-15 34 33fb9ba7dcff4958ae21bd7946683e5d Mujer 2010-05-27 2010-11-04 PG-PAI Si
162,079 2,019 ANVA2**081974 1974-08-25 45 344672bbb9d769cfa05aadcb77efec0e NA Mujer 2019-09-02 NA PG-PAI Si
142,243 2,018 ANVA2**081974 1974-08-25 45 344672bbb9d769cfa05aadcb77efec0e NA Mujer 2018-09-12 2018-10-31 M-PAI Si
132,169 2,018 ANVA2**081974 1974-08-25 45 344672bbb9d769cfa05aadcb77efec0e NA Mujer 2017-12-04 2018-08-20 M-PR Si
114,067 2,017 ANVA2**081974 1974-08-25 45 344672bbb9d769cfa05aadcb77efec0e NA Mujer 2017-03-06 2017-08-31 M-PR Si
94,544 2,016 ANVA2**081964 1964-08-25 55 344672bbb9d769cfa05aadcb77efec0e Mujer 2016-03-07 2016-05-31 M-PR Si
79,095 2,015 ANVA2**081974 1974-08-25 45 344672bbb9d769cfa05aadcb77efec0e Mujer 2015-07-25 2015-07-27 Otro No
34,058 2,013 ANVA2**081974 1974-08-25 45 344672bbb9d769cfa05aadcb77efec0e Mujer 2012-09-21 2013-10-05 M-PR Si
91,839 2,016 RAPI1**081963 1963-08-14 56 34578c63f698c9eeb1b259849005f307 Hombre 2015-12-15 2016-05-27 PG-PR No
35,095 2,013 RAPI1**081993 1993-08-14 26 34578c63f698c9eeb1b259849005f307 Hombre 2012-11-21 2014-03-31 PG-PAI Si
142,884 2,018 NARI2**011973 1973-01-19 46 3482d29960bbff64737ceb997385f2eb NA Mujer 2018-08-29 2018-12-01 PG-PAI Si
92,646 2,016 NARI2**011973 1973-01-19 46 3482d29960bbff64737ceb997385f2eb Mujer 2016-01-11 2016-04-27 M-PAI Si
68,659 2,015 NARI2**011974 1974-01-19 45 3482d29960bbff64737ceb997385f2eb Mujer 2014-09-23 2015-06-01 M-PAI Si
36,930 2,013 NARI2**011973 1973-01-19 46 3482d29960bbff64737ceb997385f2eb Mujer 2013-01-03 2013-09-02 PG-PAI Si
12,422 2,011 NARI2**011991 1991-01-19 28 3482d29960bbff64737ceb997385f2eb Mujer 2010-12-16 2012-01-27 PG-PAI Si
2,439 2,010 NARI2**011973 1973-01-19 46 3482d29960bbff64737ceb997385f2eb Mujer 2009-10-20 2010-10-29 PG-PAI Si
128,961 2,018 SOMI2**091952 1952-09-25 67 348a1f8f6db20f720b48039db4fdd358 NA Mujer 2017-08-03 2018-05-01 PG-PAB Si
86,862 2,016 SOMI2**111952 1952-11-25 66 348a1f8f6db20f720b48039db4fdd358 Mujer 2015-03-24 2017-01-06 M-PAI Si
81,194 2,015 MIGA1**121984 1984-12-22 34 34ece0ad663802b1a76dbea84d6cbe26 Hombre 2015-08-03 2015-11-19 PG-PR Si
11,350 2,011 MIGA1**121985 1985-12-22 33 34ece0ad663802b1a76dbea84d6cbe26 Hombre 2010-09-01 2011-06-03 PG-PAB Si
126,153 2,018 YIES1**101978 1978-10-27 41 3506445ba7d2019a815bdcdecfa9d5f9 NA Hombre 2016-07-27 2018-03-27 PG-PAI Si
56,522 2,014 YIES1**101979 1979-10-27 40 3506445ba7d2019a815bdcdecfa9d5f9 Hombre 2014-04-03 2014-12-17 PG-PAI Si
145,947 2,019 JOCE2**031982 1982-03-21 37 3571318419a7f9b809216b30fafafee5 NA Mujer 2017-05-29 NA PG-PAI Si
109,955 2,017 JOCE2**031982 1982-03-21 37 3571318419a7f9b809216b30fafafee5 NA Mujer 2016-10-27 2017-05-09 M-PR Si
92,100 2,016 JOCE2**031981 1981-03-21 38 3571318419a7f9b809216b30fafafee5 Mujer 2016-01-11 2016-10-03 M-PAI Si
80,977 2,015 JOCE2**031982 1982-03-21 37 3571318419a7f9b809216b30fafafee5 Mujer 2015-08-26 2015-10-19 M-PR Si
68,958 2,015 JOCE2**031982 1982-03-21 37 3571318419a7f9b809216b30fafafee5 Mujer 2014-09-11 2015-07-30 PG-PAI Si
54,068 2,014 JOCE2**031982 1982-03-21 37 3571318419a7f9b809216b30fafafee5 Mujer 2014-01-27 2014-04-11 PG-PAI Si
157,672 2,019 MABA1**111969 1969-11-13 50 3656d3aefb3ed43577327834e9b37b44 NA Hombre 2019-05-02 NA PG-PAB Si
117,579 2,017 MABA1**111969 1969-11-13 49 3656d3aefb3ed43577327834e9b37b44 NA Hombre 2017-05-31 2017-09-04 PG-PAB Si
73,334 2,015 MABA1**111969 1969-11-13 49 3656d3aefb3ed43577327834e9b37b44 Hombre 2015-03-02 2015-05-04 PG-PAI Si
12,357 2,011 JUSA1**071963 1963-07-01 56 3656ff085226d53e21d98d4fcfe15eac Hombre 2010-11-16 2011-01-31 PG-PR Si
2,899 2,010 JUSA1**031969 1969-03-20 50 3656ff085226d53e21d98d4fcfe15eac Hombre 2009-10-07 2010-02-04 PG-PAI Si
148,253 2,019 RILE1**071985 1985-07-02 34 36a2ee68b246e1ea235b97d13688afb9 NA Hombre 2018-07-06 2019-06-30 PG-PAI Si
39,626 2,013 RILE1**071987 1987-07-02 32 36a2ee68b246e1ea235b97d13688afb9 Hombre 2013-05-14 2013-12-16 PG-PAI Si
21,220 2,012 RILE1**071985 1985-07-02 34 36a2ee68b246e1ea235b97d13688afb9 Hombre 2011-03-28 2012-03-05 PG-PAI Si
32,450 2,013 GLVA2**051962 1962-05-10 57 36d45e88fe205cc3b96f426cb05f261a Mujer 2012-01-02 2013-04-09 PG-PAI Si
19,087 2,011 GLVA2**051963 1963-05-11 56 36d45e88fe205cc3b96f426cb05f261a Mujer 2011-10-03 2011-12-19 PG-PAI Si
124,298 2,017 MACO1**061973 1973-06-01 46 371183372e973f1876cf3588d0980de6 NA Hombre 2017-10-24 2017-11-30 PG-PAB Si
69,048 2,015 MACA1**061976 1976-06-01 43 371183372e973f1876cf3588d0980de6 Hombre 2014-10-09 2015-10-30 PG-PAB Si
143,857 2,018 AMMA1**031988 1988-03-09 31 3734975037abaebdfdf698ca008c47c5 NA Hombre 2018-09-10 2018-12-03 PG-PAB Si
43,219 2,013 AMMA1**031980 1980-03-09 39 3734975037abaebdfdf698ca008c47c5 Hombre 2013-08-06 2013-09-30 PG-PAI Si
148,817 2,019 JOVA1**091989 1989-09-01 30 375ebe35f4a93489d3bd019c488d6891 NA Hombre 2018-08-02 2019-01-10 PG-PAB Si
116,740 2,017 JOVA1**091990 1990-09-11 29 375ebe35f4a93489d3bd019c488d6891 NA Hombre 2017-05-09 2017-07-06 PG-PAI Si
153,859 2,019 MAAG2**121986 1986-12-24 32 377273a38d5cb3227cbd2ce946bfc741 NA Mujer 2018-12-05 NA M-PAI Si
101,205 2,016 MAAG2**081996 1996-08-09 23 377273a38d5cb3227cbd2ce946bfc741 Mujer 2016-08-09 2016-09-30 M-PAI Si
23,086 2,012 RAVE1**041982 1982-04-15 37 37b7097799ebf4a405819aefa5482291 Hombre 2011-07-27 2012-09-04 PG-PAI Si
6,065 2,010 RAVE1**041983 1983-04-15 36 37b7097799ebf4a405819aefa5482291 Hombre 2010-04-05 2010-07-26 PG-PAI No
93,357 2,016 VIPA1**041980 1980-04-21 39 37c0271df633294bfeb3c6c729ff7c01 Hombre 2016-02-02 2016-06-29 PG-PAB Si
85,899 2,016 MABA1**071971 1971-07-29 48 37c0271df633294bfeb3c6c729ff7c01 Hombre 2014-09-30 2016-02-01 PG-PAB Si
12,258 2,011 MABA1**071991 1991-07-25 28 37c0271df633294bfeb3c6c729ff7c01 Hombre 2010-10-28 2011-07-19 PG-PAB Si
134,523 2,018 JEGO2**081966 1966-08-28 53 37c23bd198cb3ac54405f3416c2a0185 NA Mujer 2017-11-29 2018-09-04 M-PAI Si
49,615 2,014 JUVI2**071961 1961-07-06 58 37c23bd198cb3ac54405f3416c2a0185 Mujer 2013-06-11 2014-06-04 M-PAI Si
37,153 2,013 JUPI1**021969 1969-02-19 50 37ee83b7040a6178204f1572d86e764e Hombre 2011-02-03 2013-06-03 PG-PAI Si
22,249 2,012 JUPI1**121969 1969-12-19 49 37ee83b7040a6178204f1572d86e764e Hombre 2011-02-03 2012-08-01 PG-PAI Si
109,739 2,017 CAAL1**071989 1989-07-04 30 3804e39cc0bb5fbd848f28f1296ed8d9 NA Hombre 2016-10-24 2017-05-01 PG-PAB Si
44,662 2,013 CAAL1**071989 1989-07-04 30 3804e39cc0bb5fbd848f28f1296ed8d9 Hombre 2013-09-05 2013-11-15 PG-PAI Si
43,985 2,013 CAAL1**071994 1994-07-04 25 3804e39cc0bb5fbd848f28f1296ed8d9 Hombre 2013-08-12 2013-08-29 PG-PAB Si
147,669 2,019 EUPE1**021961 1961-02-11 58 381a2dc32fe3d36504712599d46201ba NA Hombre 2018-06-04 2019-08-01 PG-PAI Si
89,428 2,016 EUPE1**021961 1961-02-11 58 381a2dc32fe3d36504712599d46201ba Hombre 2015-09-01 2016-08-25 PG-PR Si
51,192 2,014 EUPE1**021962 1962-02-11 57 381a2dc32fe3d36504712599d46201ba Hombre 2013-06-18 2014-06-04 PG-PAI Si
24,387 2,012 MAMA1**021961 1961-02-11 58 381a2dc32fe3d36504712599d46201ba Hombre 2011-12-28 2012-05-02 PG-PR Si
15,353 2,011 EUPE1**021961 1961-02-11 58 381a2dc32fe3d36504712599d46201ba Hombre 2011-04-14 2011-09-29 PG-PR Si
118,824 2,017 ESCA1**111977 1977-11-12 41 381d79d95e5654259928452f360bac90 NA Hombre 2017-06-05 2017-11-30 PG-PAI Si
4,370 2,010 ESCA1**111976 1976-11-12 42 381d79d95e5654259928452f360bac90 Hombre 2010-03-02 2010-04-28 PG-PAI Si
73,991 2,015 EDGO1**121983 1983-12-17 35 384f486926a176ed920cb47bafc0b7a5 Hombre 2015-03-16 2015-06-26 PG-PAI Si
13,534 2,011 EDGO1**021983 1983-02-17 36 384f486926a176ed920cb47bafc0b7a5 Hombre 2011-01-27 2011-03-15 PG-PAI Si
74,935 2,015 CRRA1**011992 1992-01-29 27 386e5be4184bedd2837d2a373260afa2 Hombre 2015-04-06 2015-05-06 PG-PAI Si
12,523 2,011 CRRA1**011991 1991-01-29 28 386e5be4184bedd2837d2a373260afa2 Hombre 2010-01-05 2011-05-08 PG-PR No
53,118 2,014 JOZU1**021978 1978-02-20 41 38c8f453238f2ba9ac47c44e6cc70cf8 Hombre 2014-01-08 2014-05-01 PG-PR Si
43,883 2,013 JOZU1**021988 1988-02-20 31 38c8f453238f2ba9ac47c44e6cc70cf8 Hombre 2013-08-16 2013-10-28 PG-PAI Si
89,113 2,016 BRCA1**041989 1989-04-29 30 38de02ad4439e9db13dd15930a2af295 Hombre 2015-09-01 2016-03-03 PG-PAI Si
51,785 2,014 BRCA1**041988 1988-04-29 31 38de02ad4439e9db13dd15930a2af295 Hombre 2013-10-16 2014-02-28 PG-PAB Si
157,113 2,019 LUAR1**101957 1957-10-20 62 38e0aea6e86d22aa31c1f4581afa826e NA Hombre 2019-05-08 2019-08-30 PG-PAI Si
150,899 2,019 LUAR1**101955 1955-10-20 64 38e0aea6e86d22aa31c1f4581afa826e NA Hombre 2018-11-19 2019-01-31 PG-PAI Si
130,037 2,018 HAHA1**091990 1990-09-07 29 38ed68271f00d5bf68c00cf32597bce6 NA Hombre 2017-10-13 2018-03-28 PG-PR No
121,092 2,017 HAHA1**111990 1990-11-07 28 38ed68271f00d5bf68c00cf32597bce6 NA Hombre 2017-07-28 2017-10-12 PG-PAI Si
117,272 2,017 CLJA2**051984 1984-05-02 35 390a5418da5cfe21d0a8bc39fe865a48 NA Mujer 2017-04-04 2018-01-01 PG-PAB Si
100,027 2,016 CLJA2**031982 1982-03-03 37 390a5418da5cfe21d0a8bc39fe865a48 Mujer 2016-07-01 2016-10-03 PG-PAB Si
85,666 2,016 RAVA1**121970 1970-12-19 48 39565dcfbefb1613eee3dda85fc8f100 Hombre 2014-05-29 2016-08-17 PG-PAB Si
7,493 2,010 RAVA1**081970 1970-08-19 49 39565dcfbefb1613eee3dda85fc8f100 Hombre 2010-08-30 2010-12-08 PG-PAB Si
134,023 2,018 JOPO1**071982 1982-07-09 37 396f68c31d14ffa8d5271210e9df0aeb NA Hombre 2018-02-22 2018-02-28 PG-PR Si
95,247 2,016 JOPO1**071982 1982-07-09 37 396f68c31d14ffa8d5271210e9df0aeb Hombre 2016-03-21 2016-03-31 PG-PR Si
75,943 2,015 JOPO1**061983 1983-06-09 36 396f68c31d14ffa8d5271210e9df0aeb Hombre 2015-04-30 2015-06-17 PG-PR Si
31,622 2,012 JOPO1**071982 1982-07-09 37 396f68c31d14ffa8d5271210e9df0aeb Hombre 2012-11-27 2012-12-08 PG-PR Si
26,383 2,012 JOPO1**071982 1982-07-09 37 396f68c31d14ffa8d5271210e9df0aeb Hombre 2012-04-13 2012-05-28 PG-PR Si
23,145 2,012 JOPO1**071982 1982-07-09 37 396f68c31d14ffa8d5271210e9df0aeb Hombre 2011-11-02 2012-04-13 PG-PAI Si
115,078 2,017 ARAR1**031965 1965-03-18 54 39f02a1487a3c26128a28036c059c570 NA Hombre 2017-03-28 2017-12-01 PG-PR Si
114,190 2,017 ARAR1**031951 1951-03-08 68 39f02a1487a3c26128a28036c059c570 NA Hombre 2017-03-02 2017-03-27 PG-PAB Si
23,796 2,012 ARAR1**051965 1965-05-18 54 39f02a1487a3c26128a28036c059c570 Hombre 2012-01-13 2012-12-20 PG-PAI Si
56,104 2,014 CEAL1**031972 1972-03-14 47 3a00eb1794c091a0bc8f8d22ff9d12af Hombre 2014-03-14 2014-08-05 PG-PAB Si
7,987 2,010 CEAL1**081971 1971-08-19 48 3a00eb1794c091a0bc8f8d22ff9d12af Hombre 2010-09-16 2010-12-20 Otro No
133,612 2,018 ALVA1**091985 1985-09-08 34 3a1343cc9e7d83acbac74889ca46f1cb NA Hombre 2017-12-26 2018-06-01 PG-PAB Si
118,808 2,017 ALVA1**091985 1985-09-08 34 3a1343cc9e7d83acbac74889ca46f1cb NA Hombre 2017-06-30 2017-10-12 PG-PR Si
117,567 2,017 ALVA1**091983 1983-09-08 36 3a1343cc9e7d83acbac74889ca46f1cb NA Hombre 2017-05-16 2017-06-29 PG-PAB Si
101,173 2,016 ALVA1**091985 1985-09-08 34 3a1343cc9e7d83acbac74889ca46f1cb Hombre 2016-05-20 2016-10-01 PG-PAI Si
26,840 2,012 ANZU2**041977 1977-04-12 42 3a21306b2e2b7f2484fc69ffa09046ed Mujer 2012-05-16 2012-05-30 M-PR Si
25,884 2,012 ANZU2**041977 1977-04-12 42 3a21306b2e2b7f2484fc69ffa09046ed Mujer 2012-03-29 2012-05-18 M-PAI Si
17,375 2,011 ANZU2**041977 1977-04-12 42 3a21306b2e2b7f2484fc69ffa09046ed Mujer 2011-07-27 2012-01-31 M-PAI Si
9,273 2,010 ANZU2**041977 1977-04-12 42 3a21306b2e2b7f2484fc69ffa09046ed Mujer 2010-11-09 2010-12-17 M-PR Si
6,094 2,010 ANZU2**041991 1991-04-12 28 3a21306b2e2b7f2484fc69ffa09046ed Mujer 2010-06-07 2010-11-05 PG-PAB Si
130,567 2,018 MASA2**081983 1983-08-08 36 3a386175a587f6a502ad093c71e36de3 NA Mujer 2017-09-14 2018-08-01 PG-PAI Si
118,133 2,017 MASA2**081983 1983-08-08 36 3a386175a587f6a502ad093c71e36de3 NA Mujer 2017-06-14 2017-07-31 M-PR Si
51,297 2,014 MASA2**081983 1983-08-08 36 3a386175a587f6a502ad093c71e36de3 Mujer 2013-10-01 2014-07-29 PG-PAB Si
19,404 2,011 MASA2**101992 1992-10-03 27 3a386175a587f6a502ad093c71e36de3 Mujer 2011-10-03 2012-01-02 PG-PAI Si
38,597 2,013 MOJI2**031964 1964-03-31 55 3a39dfdc03dd3fbbbf58fa9697bd839f Mujer 2013-04-01 2013-05-07 M-PAI Si
32,530 2,013 MOJI2**031964 1964-03-31 55 3a39dfdc03dd3fbbbf58fa9697bd839f Mujer 2012-02-21 2013-03-07 M-PR Si
3,203 2,010 MOJI2**031969 1969-03-31 50 3a39dfdc03dd3fbbbf58fa9697bd839f Mujer 2009-03-13 2010-05-04 PG-PAI Si
22,105 2,012 PARI2**121978 1978-12-27 40 3a45df2c093f7047c203a08add140e1e Mujer 2011-08-01 2012-06-08 PG-PAB Si
3,988 2,010 PARI2**121988 1988-12-27 30 3a45df2c093f7047c203a08add140e1e Mujer 2010-03-08 2010-06-25 PG-PAB Si
36,121 2,013 FAPA1**111985 1985-11-14 33 3a573de0cdadf7c2500143ca37a99e36 Hombre 2013-01-29 2013-07-05 PG-PR No
33,420 2,013 FAPA1**111984 1984-11-14 34 3a573de0cdadf7c2500143ca37a99e36 Hombre 2012-07-17 2013-01-30 PG-PAI Si
25,049 2,012 FAPA1**111985 1985-11-14 33 3a573de0cdadf7c2500143ca37a99e36 Hombre 2012-02-20 2012-06-15 PG-PAI Si
85,956 2,016 KAFU2**051975 1975-05-10 44 3a7146f99ed2c8d6c275c410be1f8afc Mujer 2014-10-24 2016-12-20 PG-PAI Si
49,074 2,014 KAFU2**051994 1994-05-10 25 3a7146f99ed2c8d6c275c410be1f8afc Mujer 2013-05-08 2014-03-31 PG-PAI Si
158,133 2,019 MISA1**021992 1992-02-24 27 3a75e77a4ce5b30b7d2a9f3666e30c6d NA Hombre 2019-06-11 NA PG-PR Si
136,785 2,018 MISA1**021992 1992-02-24 27 3a75e77a4ce5b30b7d2a9f3666e30c6d NA Hombre 2018-01-31 2018-09-03 PG-PAI Si
124,084 2,017 MISA1**111992 1992-11-24 26 3a75e77a4ce5b30b7d2a9f3666e30c6d NA Hombre 2017-11-20 2018-01-30 PG-PAI Si
99,658 2,016 MISA1**021992 1992-02-24 27 3a75e77a4ce5b30b7d2a9f3666e30c6d Hombre 2016-07-01 2016-10-03 PG-PAI Si
93,817 2,016 MISA1**021992 1992-02-24 27 3a75e77a4ce5b30b7d2a9f3666e30c6d Hombre 2016-02-16 2016-02-25 PG-PR Si
92,729 2,016 MISA1**021992 1992-02-24 27 3a75e77a4ce5b30b7d2a9f3666e30c6d Hombre 2016-01-04 2016-02-15 PG-PAI Si
115,490 2,017 FEGO1**071990 1990-07-10 29 3b6b0d5597eb3e49a55e4573f6da281c NA Hombre 2017-04-12 2017-11-24 PG-PR Si
111,130 2,017 FEGO1**061989 1989-06-10 30 3b6b0d5597eb3e49a55e4573f6da281c NA Hombre 2016-11-18 2017-04-11 PG-PAI Si
118,976 2,017 MALO1**091972 1972-09-26 47 3b6f56c451c233f26335d161b7362c25 NA Hombre 2017-06-20 2017-07-05 PG-PR Si
75,679 2,015 MALO1**091976 1976-09-26 43 3b6f56c451c233f26335d161b7362c25 Hombre 2015-03-27 2015-06-26 PG-PAB Si
65,859 2,015 RIAC1**111963 1963-11-11 55 3b8b26bc16ce8e1bd91c39bb3fb45def Hombre 2013-08-26 2015-07-31 PG-PAI Si
37,423 2,013 RIAC1**111963 1963-11-11 55 3b8b26bc16ce8e1bd91c39bb3fb45def Hombre 2013-02-05 2013-06-14 PG-PR No
35,388 2,013 RIAC1**111963 1963-11-11 55 3b8b26bc16ce8e1bd91c39bb3fb45def Hombre 2013-01-01 2013-01-18 PG-PR No
4,458 2,010 RIAC1**031963 1963-03-30 56 3b8b26bc16ce8e1bd91c39bb3fb45def Hombre 2010-03-30 2010-08-31 PG-PAI Si
120,191 2,017 ALGO1**041989 1989-04-25 30 3b9953bce1926a1de01159f3cca3213e NA Hombre 2017-07-20 2017-09-05 PG-PAB Si
116,208 2,017 ALGO2**041999 1999-04-25 20 3b9953bce1926a1de01159f3cca3213e NA Mujer 2017-04-26 2017-06-01 PG-PAB Si
61,418 2,014 ALGO2**041989 1989-04-25 30 3b9953bce1926a1de01159f3cca3213e Mujer 2014-08-18 2014-11-10 M-PAI Si
17,827 2,011 CARE2**101965 1965-10-09 54 3bac62b75bac67e735e439ab55e88098 Mujer 2011-08-05 2011-10-19 PG-PAI Si
263 2,010 CARE2**111965 1965-11-09 53 3bac62b75bac67e735e439ab55e88098 Mujer 2008-12-02 2010-01-29 PG-PAB Si
48,096 2,014 CO-F2**071981 1981-07-13 38 3bbea54bc0d42b2b68a9e092e8547fc1 Mujer 2012-10-26 2014-09-02 M-PAI Si
12,841 2,011 COFO2**071982 1982-07-13 37 3bbea54bc0d42b2b68a9e092e8547fc1 Mujer 2009-10-15 2011-05-31 M-PAI Si
6,105 2,010 COFO2**071982 1982-07-13 37 3bbea54bc0d42b2b68a9e092e8547fc1 Mujer 2010-06-17 2010-07-01 PG-PAB No
6,791 2,010 COFO2**071982 1982-07-13 37 3bbea54bc0d42b2b68a9e092e8547fc1 Mujer 2009-10-23 2010-12-31 PG-PAB Si
450 2,010 COFO2**071982 1982-07-13 37 3bbea54bc0d42b2b68a9e092e8547fc1 Mujer 2009-10-23 2010-04-30 PG-PAB Si
55,751 2,014 EDOL1**051999 1999-05-04 20 3bf683b688905bc5a7d123f0d417a4db Hombre 2014-03-17 2014-07-02 PG-PR Si
22,665 2,012 EDOL1**101992 1992-10-04 27 3bf683b688905bc5a7d123f0d417a4db Hombre 2011-10-24 2012-03-02 PG-PR Si
119,196 2,017 EDVA1**041978 1978-04-03 41 3c40a5378f42a65896b3f9df0991086f NA Hombre 2017-06-26 2017-08-28 PG-PAI Si
115,551 2,017 EDVA1**041988 1988-04-03 31 3c40a5378f42a65896b3f9df0991086f NA Hombre 2017-03-06 2017-06-22 PG-PR Si
115,235 2,017 EDVA1**041988 1988-04-03 31 3c40a5378f42a65896b3f9df0991086f NA Hombre 2017-02-06 2017-03-01 PG-PR Si
104,928 2,016 EDVA1**041978 1978-04-03 41 3c40a5378f42a65896b3f9df0991086f Hombre 2016-12-14 2017-01-31 PG-PAI Si
153,217 2,019 IRMU2**031967 1967-03-22 52 3c7ae70b602f0901d7b1da2582fe5c59 NA Mujer 2019-02-08 2019-09-26 PG-PAI Si
112,188 2,017 IRMU2**031967 1967-03-22 52 3c7ae70b602f0901d7b1da2582fe5c59 NA Mujer 2017-01-27 2017-08-23 M-PAI Si
93,475 2,016 IRMU2**081968 1968-08-07 51 3c7ae70b602f0901d7b1da2582fe5c59 Mujer 2016-02-01 2016-07-01 PG-PAI Si
154,816 2,019 OLME2**121980 1980-12-09 38 3cb1ef4b7345a35f465f1487e5df6ce9 NA Mujer 2018-12-14 2019-08-30 PG-PAI Si
50,094 2,014 OLME2**081994 1994-08-05 25 3cb1ef4b7345a35f465f1487e5df6ce9 Mujer 2013-08-05 2014-12-18 PG-PAI Si
92,836 2,016 JOCA1**041960 1960-04-27 59 3d0a7d37e269ef2c7af0904ca38a372f Hombre 2016-01-07 2016-06-09 PG-PR Si
66,616 2,015 JOCA1**041961 1961-04-27 58 3d0a7d37e269ef2c7af0904ca38a372f Hombre 2014-03-17 2015-01-30 PG-PAI Si
32,550 2,013 JOCA2**041961 1961-04-27 58 3d0a7d37e269ef2c7af0904ca38a372f Mujer 2012-02-15 2013-01-14 PG-PAI Si
159,740 2,019 ALPL1**111975 1975-11-07 44 3d429bd3650dcfa355f2866128e370ac NA Hombre 2019-07-11 NA PG-PAB Si
28,673 2,012 ALPL1**111975 1975-11-07 43 3d429bd3650dcfa355f2866128e370ac Hombre 2012-07-24 2012-11-28 PG-PAI Si
70,680 2,015 PIIN1**121987 1987-12-17 31 3d4672352143804b176bef2d0c41a29e Hombre 2014-12-02 2015-05-29 PG-PAI Si
34,407 2,013 PIIN1**121986 1986-12-17 32 3d4672352143804b176bef2d0c41a29e Hombre 2012-10-09 2013-08-23 PG-PAI Si
2,970 2,010 PIIN1**121987 1987-12-17 31 3d4672352143804b176bef2d0c41a29e Hombre 2009-11-12 2010-11-18 PG-PAI Si
131,643 2,018 MALO2**041999 1999-04-15 20 3d92dfbff13134f727a05b00cfe693f9 NA Mujer 2017-12-06 2018-03-22 PG-PAI Si
102,661 2,016 MALO2**041990 1990-04-15 29 3d92dfbff13134f727a05b00cfe693f9 Mujer 2016-10-04 2016-11-07 PG-PAI Si
49,535 2,014 MALO2**041990 1990-04-15 29 3d92dfbff13134f727a05b00cfe693f9 Mujer 2013-05-15 2014-10-30 PG-PAB Si
14,862 2,011 MALO2**041990 1990-04-15 29 3d92dfbff13134f727a05b00cfe693f9 Mujer 2011-01-25 2011-05-31 PG-PAB Si
65,398 2,015 ERCA1**021966 1966-02-20 53 3da88c37852db5e6c5080b87ec39b42c Hombre 2012-12-05 2015-10-26 PG-PAI Si
27,765 2,012 ERCA1**071969 1969-07-07 50 3da88c37852db5e6c5080b87ec39b42c Hombre 2012-06-26 2012-08-01 PG-PAI Si
136,042 2,018 FACA1**121981 1981-12-02 37 3ddd00986d9710f33a28fbdc90f91e9c NA Hombre 2018-03-29 2018-07-23 PG-PR Si
132,302 2,018 FACA1**121981 1981-12-02 37 3ddd00986d9710f33a28fbdc90f91e9c NA Hombre 2017-12-27 2018-03-28 PG-PAI Si
101,062 2,016 FACA1**121981 1981-12-02 37 3ddd00986d9710f33a28fbdc90f91e9c Hombre 2016-08-29 2016-11-08 PG-PAI Si
94,554 2,016 FACA1**031981 1981-03-02 38 3ddd00986d9710f33a28fbdc90f91e9c Hombre 2016-03-07 2016-05-18 PG-PAI Si
89,365 2,016 FACA1**121981 1981-12-02 37 3ddd00986d9710f33a28fbdc90f91e9c Hombre 2015-09-23 2016-02-04 PG-PR Si
74,307 2,015 FACA1**121981 1981-12-02 37 3ddd00986d9710f33a28fbdc90f91e9c Hombre 2015-03-23 2015-09-23 PG-PAI Si
93,218 2,016 RUGU1**011982 1982-01-03 37 3dead7975ce27db8c75d262fdda4a71a Hombre 2016-01-02 2016-05-02 PG-PAB Si
84,649 2,015 RUGU1**121982 1982-12-09 36 3dead7975ce27db8c75d262fdda4a71a Hombre 2015-10-13 2016-01-01 PG-PAB Si
85,919 2,016 SEVE1**041954 1954-04-01 65 3e07869975e77b637468046ea4b804d8 Hombre 2014-10-10 2016-02-12 PG-PAB Si
56,088 2,014 SEVE1**041956 1956-04-01 63 3e07869975e77b637468046ea4b804d8 Hombre 2014-03-26 2014-10-01 PG-PAB Si
22,009 2,012 JONU1**031975 1975-03-20 44 3e21d3226613a4b06a222cb51ef56de2 Hombre 2011-08-02 2012-09-10 PG-PR Si
16,978 2,011 JOMU1**031972 1972-03-09 47 3e21d3226613a4b06a222cb51ef56de2 Hombre 2011-06-20 2011-06-30 PG-PAI Si
160,988 2,019 JOME1**061984 1984-06-30 35 3e4cb97e9e916d4bbbc191e130a2a16f NA Hombre 2019-08-13 NA PG-PR No
157,017 2,019 JOME1**061984 1984-06-30 35 3e4cb97e9e916d4bbbc191e130a2a16f NA Hombre 2019-05-01 2019-08-12 PG-PAI Si
59,249 2,014 JOME1**061982 1982-06-30 37 3e4cb97e9e916d4bbbc191e130a2a16f Hombre 2014-06-17 2015-02-01 PG-PAB Si
23,305 2,012 ARSA1**111965 1965-11-23 53 3e789587fb44c2ae24828dc0a4dbfb05 Hombre 2011-12-12 2012-02-15 PG-PAI Si
15,522 2,011 ARSA1**111963 1963-11-23 55 3e789587fb44c2ae24828dc0a4dbfb05 Hombre 2011-04-26 2011-11-30 PG-PAI Si
91,083 2,016 RAPO1**011981 1981-01-31 38 3e797b702d9b7cbf359683189faf32e2 Hombre 2015-11-09 2016-05-18 PG-PAB Si
57,817 2,014 RAPO1**011981 1981-01-31 38 3e797b702d9b7cbf359683189faf32e2 Hombre 2014-05-09 2014-07-10 PG-PAI Si
23,366 2,012 RAPO1**011982 1982-01-31 37 3e797b702d9b7cbf359683189faf32e2 Hombre 2011-12-15 2012-02-01 PG-PAI Si
6,851 2,010 RAPO1**011981 1981-01-31 38 3e797b702d9b7cbf359683189faf32e2 Hombre 2010-03-30 2010-09-06 PG-PAB Si
134,803 2,018 EDTO1**101965 1965-10-18 54 3e7c040a540c8b33a98a7d50c90f55e1 NA Hombre 2018-03-01 2018-06-29 PG-PAI Si
129,759 2,018 EDTO1**101995 1995-10-18 24 3e7c040a540c8b33a98a7d50c90f55e1 NA Hombre 2017-09-21 2018-02-14 PG-PR Si
80,790 2,015 EDTO1**101965 1965-10-18 54 3e7c040a540c8b33a98a7d50c90f55e1 Hombre 2015-08-18 2015-11-26 PG-PAB Si
60,986 2,014 EDTO1**101965 1965-10-18 54 3e7c040a540c8b33a98a7d50c90f55e1 Hombre 2014-08-13 2015-01-28 PG-PAB Si
45,545 2,013 FRVA1**071979 1979-07-02 40 3ead9c6041b6b8f182f63ca9d517a596 Hombre 2013-10-07 2014-06-06 PG-PAB Si
12,424 2,011 FRVA1**121991 1991-12-02 27 3ead9c6041b6b8f182f63ca9d517a596 Hombre 2010-12-09 2011-06-24 PG-PAI Si
17,671 2,011 JUNA1**071964 1964-07-02 55 3f5e99b97f461a1d62102383a08c808a Hombre 2011-05-03 2011-09-01 PG-PR Si
12,214 2,011 JUNA1**071969 1969-07-02 50 3f5e99b97f461a1d62102383a08c808a Hombre 2010-11-11 2011-05-02 PG-PR Si
7,833 2,010 JUNA1**071964 1964-07-02 55 3f5e99b97f461a1d62102383a08c808a Hombre 2010-07-26 2010-11-02 PG-PR Si
35,398 2,013 NABA2**091985 1985-09-13 34 3f7fde6b8b43fb8106bd00b23529f1cd Mujer 2013-01-08 2013-05-08 PG-PAI Si
12,152 2,011 NABA2**091985 1985-09-13 34 3f7fde6b8b43fb8106bd00b23529f1cd Mujer 2010-11-09 2011-08-18 PG-PAI Si
8,189 2,010 NABA2**091984 1984-09-13 35 3f7fde6b8b43fb8106bd00b23529f1cd Mujer 2010-09-01 2010-10-08 PG-PAB Si
118,099 2,017 ITCO1**041977 1977-04-11 42 3f8df3675ce3f0a4fffe3c667cfb637a NA Hombre 2017-06-13 2017-07-21 PG-PAI Si
112,588 2,017 ITCO1**041967 1967-04-11 52 3f8df3675ce3f0a4fffe3c667cfb637a NA Hombre 2017-01-24 2017-05-01 PG-PAB Si
88,676 2,016 ITCO1**111977 1977-11-04 42 3f8df3675ce3f0a4fffe3c667cfb637a Hombre 2015-06-22 2016-04-25 PG-PAB Si
56,924 2,014 ITCO1**041977 1977-04-11 42 3f8df3675ce3f0a4fffe3c667cfb637a Hombre 2014-04-03 2014-07-31 PG-PAB Si
7,307 2,010 ITCO1**041977 1977-04-11 42 3f8df3675ce3f0a4fffe3c667cfb637a Hombre 2010-08-11 2010-11-17 PG-PAB Si
22,192 2,012 MAGU1**111964 1964-11-04 55 3fe09bd41f49b4aa1ba5efae8052c056 Hombre 2011-08-10 2012-03-09 PG-PAB Si
16,487 2,011 MAGU1**061992 1992-06-04 27 3fe09bd41f49b4aa1ba5efae8052c056 Hombre 2011-05-17 2011-07-15 PG-PAI Si
13,030 2,011 MAGU1**111964 1964-11-04 55 3fe09bd41f49b4aa1ba5efae8052c056 Hombre 2011-01-05 2011-03-31 PG-PAB Si
56,004 2,014 MOPE2**071952 1952-07-13 67 400a4fba1bef062a1ee4fa15b49484df Mujer 2014-02-18 2014-03-18 PG-PAI No
15,364 2,011 MOPE2**071957 1957-07-13 62 400a4fba1bef062a1ee4fa15b49484df Mujer 2011-04-06 2011-09-30 PG-PAI Si
112,997 2,017 EDME1**101969 1969-10-02 50 409e73b733c641e26c4a83e3e4509dd9 NA Hombre 2017-02-01 2017-05-22 PG-PAB Si
88,168 2,016 EDME1**101969 1969-10-02 50 409e73b733c641e26c4a83e3e4509dd9 Hombre 2015-07-17 2016-03-23 PG-PAB Si
70,960 2,015 EDME1**101964 1964-10-02 55 409e73b733c641e26c4a83e3e4509dd9 Hombre 2015-01-01 2015-01-26 PG-PAB Si
58,434 2,014 EDME1**101964 1964-10-02 55 409e73b733c641e26c4a83e3e4509dd9 Hombre 2014-06-09 2014-12-02 PG-PAB Si
151,259 2,019 OSTR1**101966 1966-10-28 53 40ba257084418a89e6770501177d57d8 NA Hombre 2018-12-14 2019-07-09 PG-PR Si
144,933 2,018 OSTR1**101966 1966-10-28 53 40ba257084418a89e6770501177d57d8 NA Hombre 2018-12-03 2018-12-13 PG-PAB Si
130,181 2,018 OSTR1**101965 1965-10-28 54 40ba257084418a89e6770501177d57d8 NA Hombre 2017-10-10 2018-07-24 PG-PAB Si
64,629 2,014 CRMI1**011986 1986-01-14 33 40d0cef98fc8281976c88034c48bfba3 Hombre 2014-11-24 2014-12-15 PG-PAI Si
26,783 2,012 CRMI1**111986 1986-11-14 32 40d0cef98fc8281976c88034c48bfba3 Hombre 2012-05-10 2012-06-28 PG-PAI Si
136,156 2,018 LUGI1**111982 1982-11-06 36 41500e96b509011c3df5c66a73b7ce78 NA Hombre 2018-04-18 2018-09-10 PG-PAB Si
119,596 2,017 LUGI1**111982 1982-11-06 36 41500e96b509011c3df5c66a73b7ce78 NA Hombre 2017-07-03 2017-12-19 PG-PAI Si
94,068 2,016 LUGI1**111982 1982-11-06 36 41500e96b509011c3df5c66a73b7ce78 Hombre 2016-02-17 2016-04-29 PG-PAI Si
56,355 2,014 LUGI1**111984 1984-11-06 34 41500e96b509011c3df5c66a73b7ce78 Hombre 2014-04-01 2014-05-14 PG-PAI Si
157,711 2,019 MADI1**052001 2001-05-05 18 4194168c6d6ea52910b7f9a7b2c97a72 NA Hombre 2019-05-30 NA PG-PR Si
157,271 2,019 MADI1**051981 1981-05-02 38 4194168c6d6ea52910b7f9a7b2c97a72 NA Hombre 2019-04-30 2019-05-29 PG-PAI Si
20,898 2,012 MADI1**051981 1981-05-02 38 4194168c6d6ea52910b7f9a7b2c97a72 Hombre 2011-01-18 2012-10-17 PG-PR Si
1,645 2,010 MADI1**051981 1981-05-02 38 4194168c6d6ea52910b7f9a7b2c97a72 Hombre 2009-11-20 2010-01-29 PG-PR Si
159,957 2,019 CRFE1**121983 1983-12-13 35 41b9bcca87b9589aa2c4b7bbffb51621 NA Hombre 2019-07-12 NA PG-PAI Si
17,522 2,011 CRFE1**091987 1987-09-13 32 41b9bcca87b9589aa2c4b7bbffb51621 Hombre 2011-07-09 2011-10-28 PG-PR Si
11,531 2,011 CRFE1**121987 1987-12-13 31 41b9bcca87b9589aa2c4b7bbffb51621 Hombre 2010-10-25 2011-06-03 PG-PR Si
161,367 2,019 KUKA1**021973 1973-02-14 46 424b920790657fa64203b767c88e7ac0 NA Hombre 2019-09-06 NA PG-PR Si
158,884 2,019 KUKA1**021973 1973-02-14 46 424b920790657fa64203b767c88e7ac0 NA Hombre 2019-06-24 2019-09-05 PG-PAI Si
11,223 2,011 KUKA1**011991 1991-01-14 28 424b920790657fa64203b767c88e7ac0 Hombre 2010-07-29 2011-09-01 PG-PR Si
3,085 2,010 KUKA1**021973 1973-02-14 46 424b920790657fa64203b767c88e7ac0 Hombre 2009-11-23 2010-03-01 PG-PR Si
44,167 2,013 JUVA2**031980 1980-03-22 39 425c27d2f91cfbb4f5c28d0161b5c3e8 Mujer 2013-09-11 2013-12-30 PG-PAI Si
19,627 2,011 PAFE1**011978 1978-01-31 41 425c27d2f91cfbb4f5c28d0161b5c3e8 Hombre 2011-11-07 2012-03-12 PG-PAB Si
129,496 2,018 JUAL1**091972 1972-09-17 47 4293f15f1263aa4c59fda17cef5f4a0b NA Hombre 2017-09-21 2018-10-10 PG-PR Si
120,355 2,017 JUAL1**091972 1972-09-17 47 4293f15f1263aa4c59fda17cef5f4a0b NA Hombre 2017-08-02 2017-09-20 PG-PAI No
115,285 2,017 JUAL1**091972 1972-09-17 47 4293f15f1263aa4c59fda17cef5f4a0b NA Hombre 2017-04-03 2017-08-01 PG-PAI Si
110,571 2,017 JUAL1**091972 1972-09-17 47 4293f15f1263aa4c59fda17cef5f4a0b NA Hombre 2016-11-23 2017-02-09 PG-PR Si
91,943 2,016 JUAL1**121972 1972-12-13 46 4293f15f1263aa4c59fda17cef5f4a0b Hombre 2015-11-04 2016-11-14 PG-PAI Si
15,711 2,011 MAPI2**091954 1954-09-19 65 42e3bc995e8759bb352b6599075fd95b Mujer 2011-05-02 2011-09-30 PG-PAI Si
13,317 2,011 MAPI1**011992 1992-01-21 27 42e3bc995e8759bb352b6599075fd95b Hombre 2011-01-21 2011-05-02 M-PAI Si
22,314 2,012 ALRI1**111970 1970-11-26 48 438190ad4c60442f5fceb6c458d39dc6 Hombre 2011-09-08 2012-07-05 PG-PR Si
18,299 2,011 ALRI1**111971 1971-11-26 47 438190ad4c60442f5fceb6c458d39dc6 Hombre 2011-08-01 2011-09-14 PG-PAB Si
72,320 2,015 GUEC1**111982 1982-11-13 36 4392cafadcbeb18bbe9a2c4c65550d6c Hombre 2015-01-15 2015-06-10 PG-PR Si
67,628 2,015 GUET1**111983 1983-11-13 35 4392cafadcbeb18bbe9a2c4c65550d6c Hombre 2014-06-09 2015-01-15 PG-PAI Si
93,216 2,016 MAIN2**051995 1995-05-08 24 43b4b187546005de26437df0eadb74a3 Mujer 2016-01-02 2017-01-02 PG-PAB Si
73,976 2,015 MAIN2**051998 1998-05-08 21 43b4b187546005de26437df0eadb74a3 Mujer 2015-01-22 2016-01-01 PG-PAB Si
54,824 2,014 SEPI1**101982 1982-10-24 37 43b6bb769341ce8824a76be7c1f51038 Hombre 2014-01-31 2014-03-25 PG-PR Si
22,008 2,012 SEPI1**111982 1982-11-24 36 43b6bb769341ce8824a76be7c1f51038 Hombre 2011-08-05 2012-01-06 PG-PR Si
70,870 2,015 LEVE1**051985 1985-05-23 34 43be2a2f0c2764a4a0a6079fe31d9706 Hombre 2014-12-03 2015-03-31 PG-PAB Si
14,217 2,011 LEVE1**051989 1989-05-23 30 43be2a2f0c2764a4a0a6079fe31d9706 Hombre 2011-03-16 2011-04-19 PG-PAI Si
130,450 2,018 ANMU2**071973 1973-07-19 46 442c647d624086ba5e2e8f84d7d93d19 NA Mujer 2017-10-24 2018-06-29 M-PAI Si
105,456 2,017 ANMU2**071973 1973-07-19 46 442c647d624086ba5e2e8f84d7d93d19 NA Mujer 2014-12-30 2017-04-17 M-PAI Si
52,875 2,014 ANMU2**111973 1973-11-19 45 442c647d624086ba5e2e8f84d7d93d19 Mujer 2013-12-04 2014-04-29 PG-PAB Si
28,269 2,012 CAPA1**071993 1993-07-05 26 447fd2034230872b29a7184274f7de83 Hombre 2012-07-02 2012-08-31 PG-PAI Si
22,683 2,012 CAPA1**101992 1992-10-05 27 447fd2034230872b29a7184274f7de83 Hombre 2011-10-17 2012-05-20 PG-PR Si
158,439 2,019 HUGO1**111988 1988-11-09 31 44a1fc5a3f6b560bc0dd96f187b5d48a NA Hombre 2019-06-07 2019-07-03 PG-PAI Si
150,659 2,019 HUGO1**111988 1988-11-09 31 44a1fc5a3f6b560bc0dd96f187b5d48a NA Hombre 2018-11-23 2019-05-09 PG-PR Si
37,796 2,013 HUGO1**111988 1988-11-09 30 44a1fc5a3f6b560bc0dd96f187b5d48a Hombre 2013-03-11 2013-08-30 PG-PAB Si
13,279 2,011 MAMO1**011959 1959-01-22 60 450c9888490dea842ecec1b83e2aa24f Hombre 2011-01-24 2011-09-27 PG-PAB Si
4,442 2,010 MAMO1**091955 1955-09-10 64 450c9888490dea842ecec1b83e2aa24f Hombre 2010-03-01 2010-11-03 PG-PAB Si
49,451 2,014 JUTO1**111978 1978-11-07 40 45a68026fa698bc463f1b4c6392f47ba Hombre 2013-06-25 2014-09-30 PG-PAB Si
16,646 2,011 JUTO1**011978 1978-01-07 41 45a68026fa698bc463f1b4c6392f47ba Hombre 2011-01-03 2011-09-01 PG-PAI Si
13,482 2,011 JUTO2**111978 1978-11-07 40 45a68026fa698bc463f1b4c6392f47ba Mujer 2011-01-03 2011-06-01 PG-PAI Si
156,920 2,019 RAMO1**041985 1985-04-19 34 45dcfaf3807d0971c45d41ef2a5801cb NA Hombre 2019-05-22 2019-07-09 PG-PR Si
51,923 2,014 RAMO1**041986 1986-04-19 33 45dcfaf3807d0971c45d41ef2a5801cb Hombre 2013-09-25 2014-09-01 PG-PAI Si
27,612 2,012 RAMO1**041985 1985-04-19 34 45dcfaf3807d0971c45d41ef2a5801cb Hombre 2012-06-14 2012-08-17 PG-PR Si
92,725 2,016 JAJO1**011975 1975-01-11 44 4676c518a210b1c3c4370d6372d62155 Hombre 2016-01-26 2016-02-12 PG-PR Si
59,315 2,014 JAJO1**121975 1975-12-11 43 4676c518a210b1c3c4370d6372d62155 Hombre 2014-06-04 2014-12-01 PG-PAB Si
92,713 2,016 HECA1**101969 1969-10-28 50 46b49d3743f99c2d0e32a7663e986c84 Hombre 2016-01-18 2016-05-03 PG-PR Si
23,219 2,012 HECA1**101964 1964-10-28 55 46b49d3743f99c2d0e32a7663e986c84 Hombre 2011-10-05 2012-03-28 PG-PAI Si
126,254 2,018 ALMA1**061988 1988-06-22 31 46d0f8889953e0770a94d79ef02e3656 NA Hombre 2016-09-29 2018-07-04 PG-PAB Si
48,066 2,014 ALMA1**111988 1988-11-22 30 46d0f8889953e0770a94d79ef02e3656 Hombre 2012-11-20 2014-03-03 PG-PAI Si
18,972 2,011 ALMA1**061988 1988-06-22 31 46d0f8889953e0770a94d79ef02e3656 Hombre 2011-09-03 2011-12-19 PG-PAI Si
186 2,010 ALMA1**061988 1988-06-22 31 46d0f8889953e0770a94d79ef02e3656 Hombre 2009-11-11 2010-07-24 PG-PAB Si
82,295 2,015 GIGU2**081982 1982-08-27 37 473c12958c68b510800cb364ed28dec8 Mujer 2015-09-17 2015-12-18 PG-PAI Si
73,065 2,015 GIGU2**081982 1982-08-27 37 473c12958c68b510800cb364ed28dec8 Mujer 2015-02-17 2015-08-31 M-PAI Si
68,177 2,015 GIGU2**081982 1982-08-27 37 473c12958c68b510800cb364ed28dec8 Mujer 2014-08-04 2015-01-22 M-PR Si
56,393 2,014 GUGU2**081982 1982-08-27 37 473c12958c68b510800cb364ed28dec8 Mujer 2014-04-10 2014-07-31 PG-PAB Si
54,200 2,014 GIGU2**081982 1982-08-27 37 473c12958c68b510800cb364ed28dec8 Mujer 2014-02-07 2014-03-05 PG-PAB Si
28,465 2,012 PAGU2**081981 1981-08-27 38 473c12958c68b510800cb364ed28dec8 Mujer 2012-07-09 2012-07-09 Otro No
102,637 2,016 ARHE1**081996 1996-08-10 23 47990dd6dac288871e0b2568309c57e4 Hombre 2016-10-03 2017-01-03 PG-PAB Si
79,176 2,015 ARHE1**081982 1982-08-10 37 47990dd6dac288871e0b2568309c57e4 Hombre 2015-07-28 2015-09-21 PG-PAB Si
135,139 2,018 MIAG1**041997 1997-04-08 22 47bbad2f9753e164fb3a32a27e8f3ba5 NA Hombre 2018-03-13 2018-10-01 PG-PAI Si
108,762 2,017 MIAG1**041996 1996-04-08 23 47bbad2f9753e164fb3a32a27e8f3ba5 NA Hombre 2016-08-30 2017-01-09 PG-PR Si
150,796 2,019 CANA1**111969 1969-11-06 50 47dd35665e142c4e98b7112942f4d5fb NA Hombre 2018-11-05 NA PG-PAI Si
133,174 2,018 CANA1**111969 1969-11-06 49 47dd35665e142c4e98b7112942f4d5fb NA Hombre 2018-01-12 2018-02-15 PG-PAB Si
97,734 2,016 CANA1**111969 1969-11-06 49 47dd35665e142c4e98b7112942f4d5fb Hombre 2016-05-31 2016-09-30 PG-PAB Si
54,422 2,014 YAPO2**121998 1998-12-12 20 4869357c9d0a2fc7eb4ace9bdcd7a0b9 Mujer 2014-02-03 2014-09-05 M-PR Si
52,659 2,014 YAPO2**121989 1989-12-12 29 4869357c9d0a2fc7eb4ace9bdcd7a0b9 Mujer 2013-12-13 2014-01-31 M-PR Si
54,383 2,014 YAPO2**121989 1989-12-12 29 4869357c9d0a2fc7eb4ace9bdcd7a0b9 Mujer 2013-12-13 2014-01-31 M-PR No
148,935 2,019 ESPE1**021969 1969-02-21 50 488d1dd82b26262edd3ed20671ff0f29 NA Hombre 2018-08-29 2019-02-05 PG-PR Si
139,290 2,018 ESPE1**021969 1969-02-21 50 488d1dd82b26262edd3ed20671ff0f29 NA Hombre 2018-06-04 2018-08-28 PG-PAI Si
41,574 2,013 ESPE1**021969 1969-02-21 50 488d1dd82b26262edd3ed20671ff0f29 Hombre 2013-05-22 2013-09-30 PG-PAI Si
17,648 2,011 ESPE1**021968 1968-02-21 51 488d1dd82b26262edd3ed20671ff0f29 Hombre 2011-06-28 2012-01-02 PG-PAB Si
125,792 2,018 KABA2**051970 1970-05-26 49 48cebc8d0fcded6e7b82cc15c7c65824 NA Mujer 2014-06-03 2018-10-01 PG-PAB Si
8,014 2,010 KABA2**051978 1978-05-26 41 48cebc8d0fcded6e7b82cc15c7c65824 Mujer 2010-09-28 2011-01-26 PG-PAB Si
133,256 2,018 CALU2**121982 1982-12-29 36 4908c125c91bed71becbd7cf1077e5b2 NA Mujer 2018-01-15 2018-07-30 PG-PAB Si
119,326 2,017 CALU2**071999 1999-07-11 20 4908c125c91bed71becbd7cf1077e5b2 NA Mujer 2017-07-19 2018-01-12 M-PR Si
117,932 2,017 CALU2**101982 1982-10-29 37 4908c125c91bed71becbd7cf1077e5b2 NA Mujer 2017-05-02 2017-07-18 PG-PAI Si
93,636 2,016 MALO2**111981 1981-11-23 37 496b4d5850a9fbf1e56f14ce307b0186 Mujer 2016-02-17 2016-05-02 PG-PAB Si
68,677 2,015 MALO2**111980 1980-11-23 38 496b4d5850a9fbf1e56f14ce307b0186 Mujer 2014-09-24 2015-03-02 PG-PAB Si
52,641 2,014 MALO2**111981 1981-11-23 37 496b4d5850a9fbf1e56f14ce307b0186 Mujer 2013-10-01 2014-03-18 M-PAI No
155,427 2,019 BEGO2**011989 1989-01-23 30 49badae0a0c78d3116b83556f1481de5 NA Mujer 2019-02-20 2019-06-01 M-PAI Si
38,901 2,013 BEGO2**011993 1993-01-23 26 49badae0a0c78d3116b83556f1481de5 Mujer 2013-04-08 2014-01-01 PG-PAB Si
33,833 2,013 BEGO2**011983 1983-01-23 36 49badae0a0c78d3116b83556f1481de5 Mujer 2012-09-03 2013-04-01 PG-PAB Si
105,879 2,017 JASA2**121959 1959-12-16 59 49ef2f66903424007a1106ea25a042e1 NA Mujer 2015-08-26 2017-05-02 PG-PAI Si
33,805 2,013 JASA2**121958 1958-12-16 60 49ef2f66903424007a1106ea25a042e1 Mujer 2012-08-24 2013-05-02 PG-PAI Si
9,782 2,011 JASA2**121959 1959-12-16 59 49ef2f66903424007a1106ea25a042e1 Mujer 2009-05-18 2011-09-05 PG-PAB Si
140,865 2,018 ROAR1**091983 1983-09-26 36 4a9222bfba109c5c918c2d979c2e3aff NA Hombre 2018-08-01 2018-12-20 PG-PAI Si
114,390 2,017 ROAR1**091983 1983-09-26 36 4a9222bfba109c5c918c2d979c2e3aff NA Hombre 2017-03-16 2017-06-19 PG-PR Si
49,926 2,014 ROAR1**091983 1983-09-26 36 4a9222bfba109c5c918c2d979c2e3aff Hombre 2013-07-22 2014-02-14 PG-PAB Si
30,890 2,012 ROAR1**091986 1986-09-26 33 4a9222bfba109c5c918c2d979c2e3aff Hombre 2012-10-01 2013-02-01 PG-PR Si
6,682 2,010 ROAR1**091983 1983-09-26 36 4a9222bfba109c5c918c2d979c2e3aff Hombre 2010-07-19 2010-11-30 PG-PAB Si
133,414 2,018 MARU1**031980 1980-03-03 39 4ac77675a222dba74b958429e4d16814 NA Hombre 2017-12-01 2018-10-15 PG-PAI Si
108,588 2,017 MARU1**011996 1996-01-11 23 4ac77675a222dba74b958429e4d16814 NA Hombre 2016-07-20 2017-03-28 PG-PAI Si
152,096 2,019 FRLA1**111988 1988-11-09 31 4acdea101b1708eac4fb8b16d56a8908 NA Hombre 2019-01-28 2019-02-04 PG-PR Si
101,607 2,016 FRLA1**111988 1988-11-09 30 4acdea101b1708eac4fb8b16d56a8908 Hombre 2016-09-02 2016-12-01 PG-PAI Si
89,848 2,016 FRLA1**111988 1988-11-09 30 4acdea101b1708eac4fb8b16d56a8908 Hombre 2015-09-10 2016-01-20 PG-PAB Si
34,784 2,013 FRLA1**111988 1988-11-09 30 4acdea101b1708eac4fb8b16d56a8908 Hombre 2012-11-15 2013-03-26 PG-PAI Si
156,933 2,019 JALA1**111955 1955-11-08 64 4ae675649d7c5c0f143b19b880168307 NA Hombre 2019-04-16 NA PG-PAI Si
105,817 2,017 JALA1**111955 1955-11-08 63 4ae675649d7c5c0f143b19b880168307 NA Hombre 2015-08-07 2017-03-30 PG-PAB Si
71,078 2,015 YETA2**051978 1978-05-04 41 4b13f5bdb55f93b44dfdc4cb5ac61fa7 Mujer 2014-12-16 2015-05-27 PG-PAI Si
34,809 2,013 YETA2**051977 1977-05-04 42 4b13f5bdb55f93b44dfdc4cb5ac61fa7 Mujer 2012-11-14 2013-05-31 M-PR Si
27,357 2,012 YETA2**051977 1977-05-04 42 4b13f5bdb55f93b44dfdc4cb5ac61fa7 Mujer 2012-05-23 2012-11-19 PG-PAI Si
25,083 2,012 YETA2**051977 1977-05-04 42 4b13f5bdb55f93b44dfdc4cb5ac61fa7 Mujer 2012-02-21 2012-06-04 PG-PAB Si
56,966 2,014 ANCA2**041988 1988-04-03 31 4b29519f8f9974c31e0f05567ba15578 Mujer 2014-04-01 2014-07-30 PG-PAB Si
34,794 2,013 ANCA2**041986 1986-04-03 33 4b29519f8f9974c31e0f05567ba15578 Mujer 2012-11-05 2013-06-28 PG-PAB Si
23,117 2,012 ANCA2**041986 1986-04-03 33 4b29519f8f9974c31e0f05567ba15578 Mujer 2011-11-10 2012-11-05 PG-PAI Si
153,580 2,019 ORAL1**111987 1987-11-05 32 4b59b57f2266ba06fe0e212e6724948e NA Hombre 2019-02-21 2019-03-29 PG-PAI Si
67,103 2,015 ORAL1**051987 1987-05-05 32 4b59b57f2266ba06fe0e212e6724948e Hombre 2014-05-26 2015-03-20 PG-PR Si
22,893 2,012 ORAL1**111986 1986-11-05 33 4b59b57f2266ba06fe0e212e6724948e Hombre 2011-11-22 2012-03-27 PG-PAB Si
157,463 2,019 ANCA2**091988 1988-09-13 31 4b5bde97100768f1658aac3d25d18e23 NA Mujer 2019-05-02 NA M-PAI Si
149,674 2,019 ANCA2**091988 1988-09-13 31 4b5bde97100768f1658aac3d25d18e23 NA Mujer 2018-10-09 2019-04-23 M-PR Si
127,111 2,018 ANCA2**091988 1988-09-13 31 4b5bde97100768f1658aac3d25d18e23 NA Mujer 2017-03-06 2018-10-08 M-PAI Si
87,113 2,016 ANCA1**091988 1988-09-13 31 4b5bde97100768f1658aac3d25d18e23 Hombre 2015-04-21 2016-09-28 PG-PAB Si
37,866 2,013 ANCA2**091987 1987-09-13 32 4b5bde97100768f1658aac3d25d18e23 Mujer 2013-03-25 2013-11-05 PG-PAB Si
39,288 2,013 CASA2**051994 1994-05-01 25 4b92b8554c32df279ad6799341f53001 Mujer 2013-05-03 2013-07-19 M-PAI Si
34,878 2,013 CASA2**081993 1993-08-01 26 4b92b8554c32df279ad6799341f53001 Mujer 2012-11-13 2013-04-30 PG-PAB Si
162,501 2,019 MABR1**091977 1977-09-14 42 4bb12ee910453a8a1b270a2ceeb804d0 NA Hombre 2019-10-08 NA PG-PAB Si
124,908 2,017 MABR1**091972 1972-09-14 47 4bb12ee910453a8a1b270a2ceeb804d0 NA Hombre 2017-11-13 2018-01-01 PG-PAB Si
160,575 2,019 MAFR2**091989 1989-09-17 30 4bd6f7bd0fa3a57a9021d3f6f3f7b554 NA Mujer 2019-08-13 2019-10-29 M-PAI Si
24,812 2,012 MAFR2**111982 1982-11-16 36 4bd6f7bd0fa3a57a9021d3f6f3f7b554 Mujer 2012-02-27 2012-05-15 M-PAI Si
89,223 2,016 MASI2**111985 1985-11-07 33 4be497d1fc78e007a74e1c53ad5cb84f Mujer 2015-09-10 2016-07-27 M-PAI Si
74,490 2,015 MASI2**111985 1985-11-07 33 4be497d1fc78e007a74e1c53ad5cb84f Mujer 2015-03-11 2015-08-24 M-PR Si
50,064 2,014 MASI2**111985 1985-11-07 33 4be497d1fc78e007a74e1c53ad5cb84f Mujer 2013-08-01 2014-01-31 M-PR Si
29,752 2,012 MASI2**091985 1985-09-07 34 4be497d1fc78e007a74e1c53ad5cb84f Mujer 2012-05-25 2012-09-27 PG-PAB Si
154,588 2,019 CACA2**031976 1976-03-12 43 4c01529a3549fba63ba3a01eaf2b00ef NA Mujer 2019-03-21 NA PG-PAB Si
105,738 2,017 CACA2**031996 1996-03-12 23 4c01529a3549fba63ba3a01eaf2b00ef NA Mujer 2015-06-09 2017-06-01 PG-PAI Si
70,000 2,015 ROMA1**021967 1967-02-12 52 4c333b8f8117a71d1340f69ca6f7d3ea Hombre 2014-10-21 2015-04-30 PG-PAB Si
50,958 2,014 ROMA1**121982 1982-12-13 36 4c333b8f8117a71d1340f69ca6f7d3ea Hombre 2013-08-07 2014-07-31 PG-PAB Si
7,960 2,010 ROMA1**021967 1967-02-12 52 4c333b8f8117a71d1340f69ca6f7d3ea Hombre 2010-10-02 2011-03-29 PG-PAB Si
126,607 2,018 SUSA2**121968 1968-12-02 50 4c55916cebfea224bc5b266f95419ddf NA Mujer 2017-01-10 2018-03-28 M-PR Si
67,761 2,015 SUSA2**121958 1958-12-02 60 4c55916cebfea224bc5b266f95419ddf Mujer 2014-07-04 2015-07-02 PG-PAI Si
851 2,010 SUSA2**121958 1958-12-02 60 4c55916cebfea224bc5b266f95419ddf Mujer 2010-01-20 2010-02-15 M-PAI Si
151,284 2,019 EMSA2**071964 1964-07-18 55 4c5bbc4b774ab316240a84c146dd8d75 NA Mujer 2018-12-03 2019-08-27 M-PR Si
138,011 2,018 EMSA2**071964 1964-07-18 55 4c5bbc4b774ab316240a84c146dd8d75 NA Mujer 2018-05-16 2018-11-30 PG-PR Si
49,994 2,014 EMSA2**071964 1964-07-15 55 4c5bbc4b774ab316240a84c146dd8d75 Mujer 2013-07-26 2014-03-31 PG-PR Si
42,214 2,013 EMSA2**071994 1994-07-18 25 4c5bbc4b774ab316240a84c146dd8d75 Mujer 2013-07-24 2013-07-24 PG-PR No
24,774 2,012 EMSA2**081964 1964-08-18 55 4c5bbc4b774ab316240a84c146dd8d75 Mujer 2009-11-04 2012-06-28 PG-PAB Si
118,068 2,017 ESFU1**121988 1988-12-18 30 4c8c3690fd88e70ba6d3743841daefc7 NA Hombre 2017-05-23 2017-07-06 PG-PAI Si
34,337 2,013 ESFU1**081988 1988-08-18 31 4c8c3690fd88e70ba6d3743841daefc7 Hombre 2012-10-09 2013-05-31 PG-PAB Si
126,171 2,018 MAPE2**071996 1996-07-05 23 4c918814287dc28194c22c37cc19be2b NA Mujer 2016-08-11 2018-08-13 PG-PAI Si
96,523 2,016 MAPE2**071995 1995-07-05 24 4c918814287dc28194c22c37cc19be2b Mujer 2016-03-15 2016-07-25 PG-PAI Si
24,475 2,012 GOCA1**011993 1993-01-01 26 4d09755fb9fabb916e79dd436cff0e9a Hombre 2011-07-20 2012-03-05 PG-PAI Si
22,331 2,012 GOCA1**011977 1977-01-03 42 4d09755fb9fabb916e79dd436cff0e9a Hombre 2011-07-20 2012-02-07 PG-PAI Si
100,284 2,016 JAGA2**071986 1986-07-02 33 4d3620d788bf355f874da36f214bb9eb Mujer 2016-07-20 2016-10-26 PG-PAI Si
72,069 2,015 JAGA2**071988 1988-07-27 31 4d3620d788bf355f874da36f214bb9eb Mujer 2015-01-14 2015-01-31 M-PR Si
61,141 2,014 JAGA2**071988 1988-07-27 31 4d3620d788bf355f874da36f214bb9eb Mujer 2014-08-13 2014-12-23 M-PAI Si
127,049 2,018 PABR1**031973 1973-03-20 46 4d3d6d7b9ab8c4db2db07b2a81366d1e NA Hombre 2017-02-14 2018-01-31 PG-PAI Si
80,217 2,015 PABR1**031976 1976-03-20 43 4d3d6d7b9ab8c4db2db07b2a81366d1e Hombre 2015-08-18 2015-08-20 PG-PAI Si
57,401 2,014 PABR1**031976 1976-03-20 43 4d3d6d7b9ab8c4db2db07b2a81366d1e Hombre 2014-05-06 2014-08-29 PG-PAI Si
44,996 2,013 MISA1**111978 1978-11-05 41 4da1d2c175908329ec5e028dbf6a7524 Hombre 2013-10-07 2013-10-31 PG-PAI Si
28,255 2,012 MISA1**111978 1978-11-15 40 4da1d2c175908329ec5e028dbf6a7524 Hombre 2012-07-09 2012-09-06 PG-PAI Si
161,751 2,019 FEMO1**111991 1991-11-08 28 4dae06240e74dc5a30e45da818c8b7db NA Hombre 2019-09-02 NA PG-PAI Si
135,286 2,018 FEMO1**111991 1991-11-08 27 4dae06240e74dc5a30e45da818c8b7db NA Hombre 2018-03-06 2018-05-02 PG-PAI Si
90,175 2,016 JOFI1**061982 1982-06-18 37 4dc287bf2506d72ed89f4b5161dd59e9 Hombre 2015-10-28 2016-06-03 PG-PR Si
54,959 2,014 JOFI1**061982 1982-06-18 37 4dc287bf2506d72ed89f4b5161dd59e9 Hombre 2014-02-01 2014-04-30 PG-PAB Si
39,405 2,013 JOFI1**061981 1981-06-18 38 4dc287bf2506d72ed89f4b5161dd59e9 Hombre 2013-04-30 2013-09-26 PG-PR Si
66,374 2,015 JUVA1**111977 1977-11-17 41 4ddc99b3fe5a34f5fe56691a6da9651d Hombre 2014-02-10 2015-06-26 PG-PR Si
9,792 2,011 JUVA1**121976 1976-12-17 42 4ddc99b3fe5a34f5fe56691a6da9651d Hombre 2009-10-06 2011-02-01 PG-PR Si
129,426 2,018 ESAV2**041998 1998-04-28 21 4e0b3d9173d6ad90a099bfae874c7b77 NA Mujer 2017-08-08 2018-05-23 M-PR Si
105,364 2,017 ESAV1**041978 1978-04-28 41 4e0b3d9173d6ad90a099bfae874c7b77 NA Hombre 2014-04-16 2017-06-01 PG-PAB Si
38,424 2,013 ESAV2**041978 1978-04-28 41 4e0b3d9173d6ad90a099bfae874c7b77 Mujer 2013-03-15 2013-06-06 M-PR Si
35,888 2,013 ESAV2**041978 1978-04-28 41 4e0b3d9173d6ad90a099bfae874c7b77 Mujer 2013-01-15 2013-03-13 PG-PAI Si
35,116 2,013 ESAV2**041978 1978-04-28 41 4e0b3d9173d6ad90a099bfae874c7b77 Mujer 2012-12-04 2013-01-18 PG-PAB Si
15,887 2,011 ESAV2**041978 1978-04-28 41 4e0b3d9173d6ad90a099bfae874c7b77 Mujer 2011-05-25 2012-05-31 PG-PAB No
130,509 2,018 SACO1**041999 1999-04-15 20 4e5ec31f076c7e93fe7812ef0c0adf1b NA Hombre 2017-10-24 2018-11-13 PG-PAI Si
108,748 2,017 SACO1**041978 1978-04-15 41 4e5ec31f076c7e93fe7812ef0c0adf1b NA Hombre 2016-08-24 2017-01-10 PG-PR Si
77,410 2,015 SACO1**041978 1978-04-15 41 4e5ec31f076c7e93fe7812ef0c0adf1b Hombre 2015-06-08 2015-06-23 PG-PAI Si
65,676 2,015 SACO1**041978 1978-04-15 41 4e5ec31f076c7e93fe7812ef0c0adf1b Hombre 2013-06-28 2015-05-18 PG-PAI Si
129,932 2,018 OJVA2**011999 1999-01-15 20 4e64ae4bd275897c2d8cb7ed465aab35 NA Mujer 2017-09-26 2018-10-31 PG-PAI Si
48,621 2,014 NEOJ2**011964 1964-01-15 55 4e64ae4bd275897c2d8cb7ed465aab35 Mujer 2013-03-25 2014-06-30 PG-PAI Si
33,271 2,013 NEOJ2**011964 1964-01-15 55 4e64ae4bd275897c2d8cb7ed465aab35 Mujer 2012-07-12 2013-01-31 PG-PAI Si
81,236 2,015 NEFA1**061974 1974-06-30 45 4eb1c37a67adb9338cdd89a29747a9e4 Hombre 2015-09-01 2015-12-10 PG-PAI Si
53,110 2,014 NEFA1**111974 1974-11-30 44 4eb1c37a67adb9338cdd89a29747a9e4 Hombre 2014-01-07 2015-03-26 PG-PAB Si
51,490 2,014 CLFU1**121965 1965-12-22 53 4f0d66b6472cbde97bb2634693bfa269 Hombre 2013-10-23 2014-06-02 PG-PR Si
24,764 2,012 CLFU1**121964 1964-12-22 54 4f0d66b6472cbde97bb2634693bfa269 Hombre 2012-02-06 2012-06-01 PG-PAB Si
28,547 2,012 JEOT2**061986 1986-06-06 33 4f5f13f11b7ee3bb2427596a847050af Mujer 2012-07-23 2012-11-30 PG-PAI Si
26,815 2,012 JEOR2**061980 1980-06-06 39 4f5f13f11b7ee3bb2427596a847050af Mujer 2012-05-02 2012-07-01 M-PAI Si
13,931 2,011 GECH2**021992 1992-02-11 27 4f62ce08c24560d6f8a6faa6119d774f Mujer 2011-02-16 2011-06-01 PG-PAI Si
10,565 2,011 GECH2**021989 1989-02-11 30 4f62ce08c24560d6f8a6faa6119d774f Mujer 2010-06-16 2011-01-20 M-PR Si
34,916 2,013 PEET1**091955 1955-09-24 64 4f6b636506174cb7a0024672ca17fab4 Hombre 2012-10-10 2013-07-26 PG-PAB No
16,629 2,011 PEET1**091956 1956-09-24 63 4f6b636506174cb7a0024672ca17fab4 Hombre 2011-06-24 2011-11-30 PG-PAB No
17,307 2,011 CAGA1**091978 1978-09-13 41 4fb1c253fb398c6356bfd98b8725bc95 Hombre 2011-04-25 2012-03-30 PG-PR No
10,409 2,011 CAGA1**091970 1970-09-13 49 4fb1c253fb398c6356bfd98b8725bc95 Hombre 2010-03-18 2011-03-31 PG-PR Si
3,363 2,010 CAGA1**091970 1970-09-13 49 4fb1c253fb398c6356bfd98b8725bc95 Hombre 2010-02-02 2010-03-29 PG-PAI Si
61,403 2,014 LENU1**081984 1984-08-17 35 4fcc34cce9bdde10d46cd49579f791b1 Hombre 2014-08-24 2015-01-30 PG-PAB No
60,612 2,014 LENU1**111984 1984-11-17 34 4fcc34cce9bdde10d46cd49579f791b1 Hombre 2014-07-24 2015-01-30 PG-PAB Si
150,133 2,019 KESI1**111995 1995-11-08 24 50ee2dcfc52ae37b7e6af84bc287f530 NA Hombre 2018-07-17 2019-04-17 PG-PAI Si
96,779 2,016 KESI1**111995 1995-11-08 23 50ee2dcfc52ae37b7e6af84bc287f530 Hombre 2016-04-11 2016-08-01 PG-PAI No
121,513 2,017 MAGU2**081999 1999-08-06 20 516092218226d680a8e11014dad5102a NA Mujer 2017-08-15 2017-11-30 PG-PAB Si
118,283 2,017 MAGU2**041982 1982-04-06 37 516092218226d680a8e11014dad5102a NA Mujer 2017-06-14 2017-08-14 PG-PAI Si
52,359 2,014 YAPI2**051994 1994-05-27 25 517c9e2abc17b73b96ea9ba6076c4d4f Mujer 2013-11-15 2014-05-05 PG-PAI Si
45,140 2,013 YAPI2**101993 1993-10-01 26 517c9e2abc17b73b96ea9ba6076c4d4f Mujer 2013-10-07 2013-11-04 M-PR Si
55,367 2,014 JEFL1**111981 1981-11-03 38 5183831851bb0047dda4d544fda7a39b Hombre 2014-03-18 2014-09-24 PG-PAB Si
23,746 2,012 JEFL1**111982 1982-11-03 37 5183831851bb0047dda4d544fda7a39b Hombre 2011-11-10 2012-04-26 PG-PAB No
24,126 2,012 MARO1**011971 1971-01-14 48 51a1e29f10d31649964a9c1c0f334047 Hombre 2012-01-17 2012-05-11 PG-PR Si
22,837 2,012 MARO1**021972 1972-02-14 47 51a1e29f10d31649964a9c1c0f334047 Hombre 2011-10-03 2012-01-11 PG-PAB Si
5,504 2,010 ANCA2**081988 1988-08-04 31 51a366db3163eb84845d2868d9cf1271 Mujer 2009-08-10 2011-08-29 PG-PAI Si
2,649 2,010 ANCA2**011989 1989-01-03 30 51a366db3163eb84845d2868d9cf1271 Mujer 2009-03-02 2010-04-30 PG-PAB Si
111,409 2,017 RANE1**121969 1969-12-01 49 51a849af664ae271959b2d831b6eb91f NA Hombre 2016-11-28 2017-08-30 PG-PAI Si
70,585 2,015 RANE1**121964 1964-12-01 54 51a849af664ae271959b2d831b6eb91f Hombre 2014-12-15 2015-08-27 PG-PAB Si
101,863 2,016 NIRO1**021986 1986-02-28 33 51f9d74d21f506124555c0162840e632 Hombre 2016-07-13 2016-10-31 PG-PAI Si
98,706 2,016 NIRO1**021982 1982-02-28 37 51f9d74d21f506124555c0162840e632 Hombre 2016-06-29 2016-07-06 PG-PR Si
129,242 2,018 MAAG1**081999 1999-08-11 20 5203d3cb710640c434b0ed0edc33ee8b NA Hombre 2017-09-01 2018-05-10 PG-PAI Si
120,572 2,017 MAAG1**091971 1971-09-11 48 5203d3cb710640c434b0ed0edc33ee8b NA Hombre 2017-08-03 2017-08-31 PG-PAI Si
153,333 2,019 MAGO1**091970 1970-09-19 49 52492d5501873180feeff80f8e759c41 NA Hombre 2019-02-15 2019-03-27 PG-PAI Si
152,361 2,019 MAGO1**091970 1970-09-19 49 52492d5501873180feeff80f8e759c41 NA Hombre 2019-01-11 2019-01-25 PG-PR Si
149,286 2,019 MAGO1**091970 1970-09-19 49 52492d5501873180feeff80f8e759c41 NA Hombre 2018-09-10 2019-01-10 PG-PAI Si
87,229 2,016 MAGO1**091977 1977-09-19 42 52492d5501873180feeff80f8e759c41 Hombre 2015-04-15 2016-06-29 PG-PAB Si
92,663 2,016 ALRO1**011996 1996-01-08 23 52fe14d633bb2d7f751659f478c97848 Hombre 2016-01-04 2016-06-22 PG-PAI Si
79,097 2,015 ALRO1**021966 1966-02-23 53 52fe14d633bb2d7f751659f478c97848 Hombre 2015-07-23 2015-07-24 Otro No
155,516 2,019 JOGU1**091984 1984-09-24 35 5321b7b59e82f25805438eddb1568247 NA Hombre 2019-04-05 NA PG-PAI Si
42,246 2,013 CACO1**041992 1992-04-21 27 5321b7b59e82f25805438eddb1568247 Hombre 2013-07-12 2013-07-23 PG-PR Si
96,872 2,016 PETA1**051965 1965-05-28 54 5343b02547a7d51bb1808a5377191371 Hombre 2016-05-06 2016-05-13 PG-PR Si
95,288 2,016 PETA1**051964 1964-05-28 55 5343b02547a7d51bb1808a5377191371 Hombre 2016-03-31 2016-05-05 PG-PAI Si
91,616 2,016 PETA1**051964 1964-05-28 55 5343b02547a7d51bb1808a5377191371 Hombre 2015-12-01 2016-02-03 PG-PAI Si
81,284 2,015 PETA1**051964 1964-05-28 55 5343b02547a7d51bb1808a5377191371 Hombre 2015-09-08 2015-11-13 PG-PAI Si
61,309 2,014 PETA1**051964 1964-05-28 55 5343b02547a7d51bb1808a5377191371 Hombre 2014-08-11 2014-12-01 PG-PAB Si
156,198 2,019 GUCO1**111981 1981-11-11 38 5359359e43e29fc2c0bf098ec7fdd9b5 NA Hombre 2018-11-12 2019-09-30 PG-PAB Si
38,326 2,013 GUCO1**111981 1981-11-11 37 5359359e43e29fc2c0bf098ec7fdd9b5 Hombre 2013-02-12 2013-04-23 PG-PAI Si
60,271 2,014 GLOV2**051971 1971-05-21 48 535c6025e9d4ad7024d99b88da999ac7 Mujer 2014-07-23 2014-08-05 M-PR Si
53,662 2,014 GLOV2**051974 1974-05-21 45 535c6025e9d4ad7024d99b88da999ac7 Mujer 2014-01-13 2014-02-01 M-PR Si
110,160 2,017 JHUL1**101996 1996-10-23 23 541685ef6c6991feafaa8c73e63eee42 NA Hombre 2016-10-24 2017-02-01 PG-PAI Si
32,316 2,013 JHUL1**091969 1969-09-28 50 541685ef6c6991feafaa8c73e63eee42 Hombre 2011-11-09 2013-04-17 PG-PR Si
50,868 2,014 JOAG1**011972 1972-01-05 47 546e30e7b824ddcdca79f762b8d76f4a Hombre 2013-09-03 2014-05-02 PG-PAI Si
30,848 2,012 JOAG1**011982 1982-01-05 37 546e30e7b824ddcdca79f762b8d76f4a Hombre 2012-10-26 2013-01-07 PG-PR Si
29,035 2,012 JOAG1**011972 1972-01-05 47 546e30e7b824ddcdca79f762b8d76f4a Hombre 2012-07-19 2012-10-25 PG-PAI Si
28,028 2,012 JOAG1**011972 1972-01-05 47 546e30e7b824ddcdca79f762b8d76f4a Hombre 2012-06-12 2012-08-02 PG-PAB Si
73,012 2,015 CRCA1**121982 1982-12-04 36 54829078153f0810030e1ae010026dad Hombre 2015-02-24 2015-05-11 PG-PR No
55,854 2,014 CRCA1**121989 1989-12-04 29 54829078153f0810030e1ae010026dad Hombre 2014-03-04 2014-06-05 PG-PR Si
33,235 2,013 CHCA1**121989 1989-12-04 29 54829078153f0810030e1ae010026dad Hombre 2012-07-01 2013-06-30 PG-PR Si
27,265 2,012 CHCA1**121989 1989-12-04 29 54829078153f0810030e1ae010026dad Hombre 2012-04-05 2012-07-01 PG-PAB Si
122,146 2,017 INFU2**061981 1981-06-04 38 551b55d52ddcbabfc02a0415b69f1082 NA Mujer 2017-09-12 2018-01-01 PG-PAI Si
28,711 2,012 INFU2**071993 1993-07-04 26 551b55d52ddcbabfc02a0415b69f1082 Mujer 2012-07-06 2012-11-09 PG-PAI Si
11,951 2,011 INFU2**061981 1981-06-04 38 551b55d52ddcbabfc02a0415b69f1082 Mujer 2010-10-18 2011-05-30 PG-PAI Si
72,728 2,015 DEGO2**121983 1983-12-31 35 553290335909599dc2372fc9c3a6c82d Mujer 2015-02-23 2015-06-09 M-PAI Si
70,747 2,015 DEGO2**121982 1982-12-31 36 553290335909599dc2372fc9c3a6c82d Mujer 2014-12-09 2015-01-30 PG-PAB Si
134,461 2,018 PALO2**061975 1975-06-02 44 5593ac006f16e35e3512fe003b8027ad NA Mujer 2018-02-13 2018-04-16 M-PAI Si
110,838 2,017 PALO2**061995 1995-06-02 24 5593ac006f16e35e3512fe003b8027ad NA Mujer 2016-10-31 2017-02-22 M-PAI Si
35,735 2,013 PALO2**061975 1975-06-02 44 5593ac006f16e35e3512fe003b8027ad Mujer 2013-01-07 2013-05-31 M-PAI Si
24,104 2,012 PALO2**061975 1975-06-02 44 5593ac006f16e35e3512fe003b8027ad Mujer 2012-01-17 2012-12-28 PG-PAI Si
145,710 2,019 PASA2**061969 1969-06-11 50 55b6ef5141c83a38abaadaba683f6e32 NA Mujer 2015-04-06 2019-03-29 PG-PAB Si
50,217 2,014 PASA2**061968 1968-06-11 51 55b6ef5141c83a38abaadaba683f6e32 Mujer 2013-08-08 2014-05-02 PG-PAB Si
57,054 2,014 YEGO2**021982 1982-02-07 37 55e100b92ee5561a0ee0e1be7f1565c3 Mujer 2014-04-15 2014-10-31 PG-PAB Si
50,400 2,014 JEGO2**021982 1982-02-07 37 55e100b92ee5561a0ee0e1be7f1565c3 Mujer 2013-08-27 2014-04-14 M-PR Si
22,215 2,012 JEGO2**021992 1992-02-07 27 55e100b92ee5561a0ee0e1be7f1565c3 Mujer 2011-08-02 2012-02-27 M-PR Si
17,301 2,011 YEGO2**021982 1982-02-07 37 55e100b92ee5561a0ee0e1be7f1565c3 Mujer 2011-07-05 2011-08-01 PG-PAB Si
113,888 2,017 JOTO1**121961 1961-12-06 57 55eebab769261b2447f7947c0a3bb63a NA Hombre 2017-02-13 2017-09-01 PG-PAB Si
56,311 2,014 JOTO1**121961 1961-12-06 57 55eebab769261b2447f7947c0a3bb63a Hombre 2014-04-02 2014-11-05 PG-PAB Si
39,791 2,013 JOTO1**121962 1962-12-06 56 55eebab769261b2447f7947c0a3bb63a Hombre 2013-05-13 2014-03-08 PG-PAB Si
114,769 2,017 PIMA2**021985 1985-02-01 34 5656f5539e55a3b999879adb5ff2bd9c NA Mujer 2017-03-21 2018-01-01 PG-PAI Si
40,578 2,013 PIMA1**021994 1994-02-01 25 5656f5539e55a3b999879adb5ff2bd9c Hombre 2013-06-04 2013-08-01 M-PAI Si
136,971 2,018 GRMO2**081987 1987-08-21 32 566363c1bc2e15a4cd2e41c58cc2f243 NA Mujer 2018-04-21 2018-06-01 PG-PAI Si
109,494 2,017 GRMO2**081996 1996-08-21 23 566363c1bc2e15a4cd2e41c58cc2f243 NA Mujer 2016-09-26 2017-02-08 M-PR No
109,408 2,017 ENRI1**021985 1985-02-19 34 5666dcb7e87ff94f0c233544cceb702e NA Hombre 2016-09-13 2017-05-03 PG-PR Si
97,128 2,016 ENRI1**021985 1985-02-19 34 5666dcb7e87ff94f0c233544cceb702e Hombre 2016-05-02 2016-09-11 PG-PAI Si
86,213 2,016 JOCA1**091988 1988-09-05 31 5666dcb7e87ff94f0c233544cceb702e Hombre 2015-01-06 2016-02-04 PG-PAI Si
163,083 2,019 GULE1**111986 1986-11-08 33 56a193bf2f0d0d2b90acb46b043668fd NA Hombre 2019-10-01 NA PG-PAI Si
150,166 2,019 GULE1**111986 1986-11-08 33 56a193bf2f0d0d2b90acb46b043668fd NA Hombre 2018-10-23 2019-07-24 PG-PAI Si
17,591 2,011 GULE1**111986 1986-11-08 32 56a193bf2f0d0d2b90acb46b043668fd Hombre 2011-07-01 2011-08-29 PG-PAI Si
156,187 2,019 FELI1**091991 1991-09-12 28 56a8568ae02986d385da71204a657215 NA Hombre 2019-04-29 2019-10-23 PG-PR Si
110,774 2,017 FELI1**091991 1991-09-12 28 56a8568ae02986d385da71204a657215 NA Hombre 2016-11-25 2017-06-15 PG-PR Si
96,485 2,016 FELI1**091991 1991-09-12 28 56a8568ae02986d385da71204a657215 Hombre 2016-04-01 2016-08-01 PG-PAI Si
94,012 2,016 FELI1**091988 1988-09-12 31 56a8568ae02986d385da71204a657215 Hombre 2016-02-25 2016-03-24 PG-PR Si
125,965 2,018 IVPE2**051957 1957-05-01 62 56ab4edc851309a6abef212da531bb6c NA Mujer 2016-02-19 2018-04-27 PG-PAI Si
57,505 2,014 IVPE2**051957 1957-05-05 62 56ab4edc851309a6abef212da531bb6c Mujer 2014-05-12 2014-12-01 PG-PR Si
5,836 2,010 IVPE2**051962 1962-05-01 57 56ab4edc851309a6abef212da531bb6c Mujer 2010-06-14 2010-08-31 M-PAI Si
533 2,010 IVPE2**051962 1962-05-04 57 56ab4edc851309a6abef212da531bb6c Mujer 2009-07-01 2010-02-23 M-PAI Si
100,401 2,016 HUBR1**041996 1996-04-11 23 56ab5055a4e57bea456d76e91ef50cca Hombre 2016-08-01 2016-10-01 PG-PAI Si
90,108 2,016 HUBR1**111969 1969-11-04 50 56ab5055a4e57bea456d76e91ef50cca Hombre 2015-10-19 2016-03-01 PG-PAB Si
11,783 2,011 HUBR1**041969 1969-04-11 50 56ab5055a4e57bea456d76e91ef50cca Hombre 2010-10-10 2011-10-01 PG-PAI Si
110,177 2,017 HEAC1**051973 1973-05-09 46 56b8d9a916403aafd4eaaa79773be140 NA Hombre 2016-10-18 2017-07-29 PG-PR Si
96,601 2,016 HEAC1**051972 1972-05-09 47 56b8d9a916403aafd4eaaa79773be140 Hombre 2016-03-11 2016-10-14 PG-PAB Si
107,592 2,017 JOSO1**101975 1975-10-06 44 56ebb38e7d4cc24e6e97cc53ae447801 NA Hombre 2016-06-01 2017-03-27 PG-PAB Si
53,963 2,014 JOSO1**101978 1978-10-06 41 56ebb38e7d4cc24e6e97cc53ae447801 Hombre 2013-05-30 2014-05-07 PG-PAB Si
40,210 2,013 JOSO1**101978 1978-10-06 41 56ebb38e7d4cc24e6e97cc53ae447801 Hombre 2013-05-30 2013-11-29 PG-PAB Si
159,225 2,019 CABA2**021987 1987-02-05 32 5793ec5dff253b7f540afe1622a86a5a NA Mujer 2019-07-02 NA M-PAI Si
142,596 2,018 CABA2**021987 1987-02-05 32 5793ec5dff253b7f540afe1622a86a5a NA Mujer 2018-09-07 2018-12-28 M-PR Si
133,400 2,018 CABA2**021987 1987-02-05 32 5793ec5dff253b7f540afe1622a86a5a NA Mujer 2018-01-24 2018-04-25 M-PR Si
132,312 2,018 CABA2**021987 1987-02-05 32 5793ec5dff253b7f540afe1622a86a5a NA Mujer 2017-12-28 2018-01-23 M-PAI Si
103,762 2,016 CABA2**021987 1987-02-05 32 5793ec5dff253b7f540afe1622a86a5a Mujer 2016-11-09 2016-12-22 M-PR Si
83,154 2,015 CABA2**021982 1982-02-05 37 5793ec5dff253b7f540afe1622a86a5a Mujer 2015-10-15 2015-12-14 PG-PAI Si
16,565 2,011 CABA2**021987 1987-02-05 32 5793ec5dff253b7f540afe1622a86a5a Mujer 2011-06-08 2011-08-05 PG-PAI Si
134,162 2,018 SEGU1**081969 1969-08-06 50 57b4de7542dfab3c29b6705cb392ff8a NA Hombre 2018-02-01 2018-12-27 PG-PAI Si
67,665 2,015 SEGU1**081969 1969-08-06 50 57b4de7542dfab3c29b6705cb392ff8a Hombre 2014-07-01 2015-07-14 PG-PAI Si
48,343 2,014 SEGU1**081961 1961-08-06 58 57b4de7542dfab3c29b6705cb392ff8a Hombre 2013-01-11 2014-05-29 PG-PAI Si
6,593 2,010 SEGU1**091969 1969-09-21 50 57b4de7542dfab3c29b6705cb392ff8a Hombre 2010-07-09 NA PG-PAB Si
128,052 2,018 JUAR1**101957 1957-10-28 62 57d0da5172d067c1d6e15e6dba100aa7 NA Hombre 2017-06-08 2018-07-24 PG-PR Si
108,823 2,017 JUAR1**051958 1958-05-14 61 57d0da5172d067c1d6e15e6dba100aa7 NA Hombre 2016-08-03 2017-02-09 PG-PR Si
56,011 2,014 CRVI1**091988 1988-09-16 31 5803d607dc618290123f2529f0eb43f5 Hombre 2014-03-05 2014-10-01 PG-PR Si
22,277 2,012 CRVI1**091992 1992-09-16 27 5803d607dc618290123f2529f0eb43f5 Hombre 2011-08-11 2012-03-30 PG-PR Si
76,949 2,015 CLFU2**041974 1974-04-05 45 585a331ab042dec23109aceae1b22d01 Mujer 2015-05-28 2015-06-01 M-PR Si
37,127 2,013 CLFU2**041975 1975-04-03 44 585a331ab042dec23109aceae1b22d01 Mujer 2013-02-18 2013-07-31 M-PR Si
33,795 2,013 CLFU2**041975 1975-04-03 44 585a331ab042dec23109aceae1b22d01 Mujer 2012-09-03 2013-02-19 PG-PAI Si
131,249 2,018 GAGO1**081969 1969-08-02 50 586ca12603ad0429d347c4841e15a8be NA Hombre 2017-11-08 2018-10-31 PG-PR Si
59,345 2,014 GAGO1**081976 1976-08-02 43 586ca12603ad0429d347c4841e15a8be Hombre 2014-06-30 2014-07-16 PG-PR Si
35,033 2,013 GAGO1**081976 1976-08-02 43 586ca12603ad0429d347c4841e15a8be Hombre 2012-12-13 2013-07-16 PG-PR Si
132,071 2,018 RAPA1**051983 1983-05-20 36 587498372a88012d1ad93aeb56ec0db0 NA Hombre 2017-12-01 2018-07-24 PG-PAI Si
73,164 2,015 RAPA1**051983 1983-05-20 36 587498372a88012d1ad93aeb56ec0db0 Hombre 2015-02-25 2015-10-26 PG-PR Si
70,055 2,015 RAPA1**051993 1993-05-20 26 587498372a88012d1ad93aeb56ec0db0 Hombre 2014-11-03 2015-02-24 PG-PAI Si
92,925 2,016 ANAR2**091981 1981-09-10 38 58a45e71163cfda894f3c1bf3da7d810 Mujer 2016-01-21 2016-03-09 M-PR Si
89,268 2,016 ANAR2**091980 1980-09-10 39 58a45e71163cfda894f3c1bf3da7d810 Mujer 2015-08-31 2016-01-21 PG-PAI Si
76,348 2,015 ANAR2**091981 1981-09-10 38 58a45e71163cfda894f3c1bf3da7d810 Mujer 2015-05-18 2015-08-31 M-PR Si
5,909 2,010 ANAR2**091981 1981-09-10 38 58a45e71163cfda894f3c1bf3da7d810 Mujer 2010-06-10 2010-12-02 PG-PAI No
24,463 2,012 VAVE2**111985 1985-11-11 33 58badbe9a65a84604452cbe092153c1d Mujer 2012-01-09 2012-05-01 PG-PAI Si
23,581 2,012 VAVE2**101985 1985-10-11 34 58badbe9a65a84604452cbe092153c1d Mujer 2012-01-09 2012-02-06 PG-PAI Si
152,694 2,019 MAQU2**091982 1982-09-08 37 58c590476e8d000b675ce85d23992de5 NA Mujer 2019-01-14 2019-07-30 M-PR Si
122,013 2,017 MAQU2**091982 1982-09-08 37 58c590476e8d000b675ce85d23992de5 NA Mujer 2017-08-24 2017-11-01 PG-PAI Si
55,708 2,014 MAQU2**091992 1992-09-08 27 58c590476e8d000b675ce85d23992de5 Mujer 2014-02-27 2014-09-24 M-PAI Si
115,413 2,017 PASI1**031963 1963-03-22 56 58fded5ce22e8c7b07fa8c0ac1212866 NA Hombre 2017-04-03 2017-06-01 PG-PAI Si
92,627 2,016 PASI1**011996 1996-01-22 23 58fded5ce22e8c7b07fa8c0ac1212866 Hombre 2016-01-15 2016-07-19 PG-PAB Si
66,826 2,015 PASI1**031963 1963-03-22 56 58fded5ce22e8c7b07fa8c0ac1212866 Hombre 2014-04-14 2015-10-07 PG-PAI Si
50,633 2,014 MASA2**091987 1987-09-12 32 592cde1cfeaa6e637b9c95d40c797c98 Mujer 2013-09-24 2014-09-29 PG-PAB Si
36,181 2,013 MASA2**011994 1994-01-12 25 592cde1cfeaa6e637b9c95d40c797c98 Mujer 2013-01-18 2013-06-27 M-PAI Si
160,597 2,019 TASE2**111969 1969-11-12 50 5985faf65d7e3b6ddcb8e8e3f9b1c8c7 NA Mujer 2019-08-12 NA M-PR Si
152,953 2,019 TASE2**111969 1969-11-12 50 5985faf65d7e3b6ddcb8e8e3f9b1c8c7 NA Mujer 2019-01-21 2019-08-09 PG-PAI Si
148,236 2,019 TASE2**111969 1969-11-12 50 5985faf65d7e3b6ddcb8e8e3f9b1c8c7 NA Mujer 2018-07-23 2019-01-17 M-PR Si
36,227 2,013 TASE2**111969 1969-11-12 49 5985faf65d7e3b6ddcb8e8e3f9b1c8c7 Mujer 2013-01-16 2013-12-12 M-PR Si
34,740 2,013 TASE1**111969 1969-11-12 49 5985faf65d7e3b6ddcb8e8e3f9b1c8c7 Hombre 2012-11-05 2013-01-16 PG-PAI Si
68,688 2,015 NESA1**041965 1965-04-01 54 599694e519566fa469009a099cbe7049 Hombre 2014-09-24 2015-10-07 PG-PAI Si
35,749 2,013 NESA1**041966 1966-04-01 53 599694e519566fa469009a099cbe7049 Hombre 2012-11-22 2013-10-30 PG-PAB Si
10,866 2,011 NESA1**041966 1966-04-01 53 599694e519566fa469009a099cbe7049 Hombre 2010-07-19 2011-08-01 PG-PR Si
74,526 2,015 CLDO2**031985 1985-03-08 34 59c44a0a3dce003dd4d5876f2e4acd07 Mujer 2015-03-04 2015-09-01 PG-PAI Si
15,809 2,011 CLDO2**091982 1982-09-26 37 59c44a0a3dce003dd4d5876f2e4acd07 Mujer 2011-05-17 2011-07-03 M-PR Si
14,168 2,011 CLDO2**031985 1985-03-08 34 59c44a0a3dce003dd4d5876f2e4acd07 Mujer 2011-03-07 2011-04-28 M-PR Si
2,159 2,010 CLDO1**031985 1985-03-08 34 59c44a0a3dce003dd4d5876f2e4acd07 Hombre 2009-12-31 2010-05-31 PG-PAB Si
112,706 2,017 LUVA1**121980 1980-12-23 38 59df2f8f02f216417795d3c0a4153564 NA Hombre 2017-01-17 2017-06-30 PG-PAB Si
52,677 2,014 LUVA1**121990 1990-12-23 28 59df2f8f02f216417795d3c0a4153564 Hombre 2013-12-18 2014-03-10 PG-PAI Si
35,071 2,013 LUVA1**121990 1990-12-23 28 59df2f8f02f216417795d3c0a4153564 Hombre 2012-12-03 2013-06-28 PG-PAB Si
146,128 2,019 JUOS1**111993 1993-11-11 26 59e020e6170c2999afb5d3c236abc1a8 NA Hombre 2017-09-25 2019-07-30 PG-PAB Si
105,382 2,017 JUOS1**111993 1993-11-11 25 59e020e6170c2999afb5d3c236abc1a8 NA Hombre 2014-06-09 2017-06-01 PG-PAB Si
24,958 2,012 IRNA2**021993 1993-02-15 26 59e499ced6f79e60cbe52a33be9a92cb Mujer 2012-02-15 2012-03-29 PG-PAB Si
22,621 2,012 IRNA2**061966 1966-06-22 53 59e499ced6f79e60cbe52a33be9a92cb Mujer 2011-10-25 2012-01-19 M-PR Si
106,252 2,017 CLUR1**101978 1978-10-11 41 5a1a427f6407e5ebf6c9311276b3d43b NA Hombre 2015-12-14 2017-07-13 PG-PAB Si
72,465 2,015 CLUR1**101987 1987-10-11 32 5a1a427f6407e5ebf6c9311276b3d43b Hombre 2014-11-12 2015-10-23 PG-PR Si
93,220 2,016 SESO1**121977 1977-12-29 41 5a80b8ef158e1d0f05d4471c863409aa Hombre 2016-01-19 2016-04-06 PG-PAI Si
12,907 2,011 SESO1**121978 1978-12-29 40 5a80b8ef158e1d0f05d4471c863409aa Hombre 2011-01-20 2011-04-19 Otro No
69,234 2,015 ALVA2**101992 1992-10-07 27 5aa22b1d35b733b4c67455d4cca0689e Mujer 2014-10-23 2015-05-14 M-PR Si
30,394 2,012 ALVA2**101991 1991-10-07 28 5aa22b1d35b733b4c67455d4cca0689e Mujer 2012-10-12 2013-01-03 M-PR Si
30,062 2,012 ALVA2**101991 1991-10-07 28 5aa22b1d35b733b4c67455d4cca0689e Mujer 2012-09-05 2012-10-11 M-PAI Si
136,201 2,018 ALBA1**111988 1988-11-04 31 5b25e9d472e59911df950d74bf24fb85 NA Hombre 2018-04-19 2018-07-31 PG-PR Si
120,864 2,017 ALBA1**111988 1988-11-04 31 5b25e9d472e59911df950d74bf24fb85 NA Hombre 2017-08-21 2017-09-07 PG-PAI Si
100,764 2,016 ALBA1**111988 1988-11-04 31 5b25e9d472e59911df950d74bf24fb85 Hombre 2016-08-03 2016-11-21 PG-PAI Si
21,083 2,012 ALBA1**111989 1989-11-04 30 5b25e9d472e59911df950d74bf24fb85 Hombre 2011-03-16 2012-03-25 PG-PAB Si
6,148 2,010 ALRO1**111988 1988-11-04 31 5b25e9d472e59911df950d74bf24fb85 Hombre 2010-06-23 2010-08-03 PG-PAB Si
131,906 2,018 YOAG1**071965 1965-07-11 54 5bb781d9306ce4d247c2ee3678ffd169 NA Hombre 2017-11-15 2018-11-05 PG-PAI Si
106,156 2,017 YOAG1**071965 1965-07-11 54 5bb781d9306ce4d247c2ee3678ffd169 NA Hombre 2015-12-04 2017-06-19 PG-PAI Si
67,072 2,015 YOAG1**071965 1965-07-11 54 5bb781d9306ce4d247c2ee3678ffd169 Hombre 2014-05-08 2015-10-05 PG-PAI Si
3,231 2,010 YOAG1**071951 1951-07-06 68 5bb781d9306ce4d247c2ee3678ffd169 Hombre 2009-11-04 2010-04-06 PG-PAI No
153,487 2,019 CACI1**111988 1988-11-06 31 5bd1a336b19142f5b8547d38c89fadee NA Hombre 2019-02-01 NA PG-PAI Si
53,158 2,014 CACI1**111988 1988-11-06 30 5bd1a336b19142f5b8547d38c89fadee Hombre 2014-01-06 2014-04-01 PG-PAI Si
146,785 2,019 JARO2**121985 1985-12-24 33 5bff5cc2bd6e7c2db441889c3491f172 NA Mujer 2018-01-22 2019-11-05 M-PAI Si
101,774 2,016 JARO2**121985 1985-12-24 33 5bff5cc2bd6e7c2db441889c3491f172 Mujer 2016-08-22 2016-12-12 M-PAI Si
88,218 2,016 JARO2**121985 1985-12-24 33 5bff5cc2bd6e7c2db441889c3491f172 Mujer 2015-07-10 2016-03-02 M-PAI Si
71,255 2,015 JARO2**121986 1986-12-24 32 5bff5cc2bd6e7c2db441889c3491f172 Mujer 2015-01-02 2015-02-04 M-PAI Si
66,754 2,015 SAMO1**071989 1989-07-14 30 5c32c9405f7d4c33ea21d763d61f76ff Hombre 2014-04-07 2016-01-04 PG-PAB Si
47,685 2,013 SAMO1**071979 1979-07-14 40 5c32c9405f7d4c33ea21d763d61f76ff Hombre 2013-12-20 2014-03-03 PG-PAB Si
91,034 2,016 CAGO1**091981 1981-09-20 38 5c5d74e97c401423a26d6f90fd855b98 Hombre 2015-10-06 2016-03-31 PG-PAB Si
74,348 2,015 CAGO1**091982 1982-09-20 37 5c5d74e97c401423a26d6f90fd855b98 Hombre 2015-03-20 2015-06-26 PG-PAI Si
85,711 2,016 MASA2**091970 1970-09-11 49 5c5d87a29348bd48889b4ab10856aead Mujer 2014-06-26 2016-06-30 M-PR Si
37,446 2,013 MASA2**111970 1970-11-11 48 5c5d87a29348bd48889b4ab10856aead Mujer 2013-02-20 2013-05-28 PG-PAB Si
29,626 2,012 MASA2**091970 1970-09-11 49 5c5d87a29348bd48889b4ab10856aead Mujer 2012-08-28 2012-11-09 M-PAB Si
149,189 2,019 ROAG2**111988 1988-11-07 31 5c6d6e5dd5b8442e03670de1b5195310 NA Mujer 2018-09-21 NA M-PR Si
95,500 2,016 ROAG2**111988 1988-11-07 30 5c6d6e5dd5b8442e03670de1b5195310 Mujer 2016-03-31 2016-09-30 M-PAI Si
89,588 2,016 ROAG2**111988 1988-11-07 30 5c6d6e5dd5b8442e03670de1b5195310 Mujer 2015-09-28 2016-01-14 M-PR Si
138,545 2,018 MADA2**121992 1992-12-17 26 5cce486c134f846c321fa18ca6d6dac4 NA Mujer 2018-05-04 2018-11-20 PG-PAI Si
114,673 2,017 MADA2**121992 1992-12-17 26 5cce486c134f846c321fa18ca6d6dac4 NA Mujer 2017-03-02 2017-09-04 PG-PAI Si
107,790 2,017 MADA2**121992 1992-12-17 26 5cce486c134f846c321fa18ca6d6dac4 NA Mujer 2016-06-22 2017-02-28 M-PR Si
95,912 2,016 MADA2**021992 1992-02-17 27 5cce486c134f846c321fa18ca6d6dac4 Mujer 2016-04-13 2016-06-21 PG-PAB Si
62,850 2,014 MADA2**121992 1992-12-17 26 5cce486c134f846c321fa18ca6d6dac4 Mujer 2014-10-09 2015-01-06 PG-PAB Si
126,665 2,018 LESO1**051959 1959-05-30 60 5ce741b10df9df4103b6d4ceae909d11 NA Hombre 2017-02-02 2018-05-31 PG-PR Si
104,504 2,016 LESO1**051959 1959-05-30 60 5ce741b10df9df4103b6d4ceae909d11 Hombre 2016-11-01 2017-02-01 PG-PAI Si
48,179 2,014 LESO1**031957 1957-03-30 62 5ce741b10df9df4103b6d4ceae909d11 Hombre 2013-01-02 2014-05-19 PG-PAI Si
53,699 2,014 ARCO1**041982 1982-04-08 37 5cf7e0058df0a8c347b8dc1358b0f1c6 Hombre 2014-01-21 2014-08-02 PG-PR Si
36,834 2,013 ARCO1**121975 1975-12-10 43 5cf7e0058df0a8c347b8dc1358b0f1c6 Hombre 2013-01-08 2013-10-01 PG-PR Si
35,645 2,013 ARCO1**121975 1975-12-10 43 5cf7e0058df0a8c347b8dc1358b0f1c6 Hombre 2013-01-08 2013-02-02 PG-PR Si
94,139 2,016 KAIN2**081985 1985-08-08 34 5cff430b77f4706a864af2dfd9136b98 Mujer 2016-02-20 2016-02-22 M-PR Si
92,375 2,016 KAIN2**081986 1986-08-08 33 5cff430b77f4706a864af2dfd9136b98 Mujer 2016-01-22 2016-02-19 M-PAI Si
129,428 2,018 JOOY1**011999 1999-01-24 20 5d4e4614962cdfbb16bdd276b7aa120a NA Hombre 2017-09-21 2018-07-11 PG-PAB Si
52,110 2,014 JOOY1**011991 1991-01-24 28 5d4e4614962cdfbb16bdd276b7aa120a Hombre 2013-11-13 2014-08-04 PG-PAB Si
38,774 2,013 JOOY1**011991 1991-01-24 28 5d4e4614962cdfbb16bdd276b7aa120a Hombre 2013-04-25 2013-07-31 PG-PAI Si
26,138 2,012 JOOY1**011991 1991-01-24 28 5d4e4614962cdfbb16bdd276b7aa120a Hombre 2012-04-18 2012-10-31 PG-PAB Si
15,947 2,011 JOOY1**011991 1991-01-24 28 5d4e4614962cdfbb16bdd276b7aa120a Hombre 2011-05-12 2011-09-29 PG-PAB Si
125,954 2,018 SAMA2**061971 1971-06-15 48 5d541ea2d7d88eb4f9fe96847f5c1d19 NA Mujer 2016-02-01 2018-05-24 PG-PAI Si
65,433 2,015 SAMA2**081970 1970-08-27 49 5d541ea2d7d88eb4f9fe96847f5c1d19 Mujer 2013-01-01 2015-04-01 PG-PAI Si
130,240 2,018 BRPO1**081997 1997-08-01 22 5d5d4f6cb6d7268a3705105250d83d4d NA Hombre 2017-10-24 2018-08-24 PG-PR Si
121,130 2,017 BRPO1**081999 1999-08-01 20 5d5d4f6cb6d7268a3705105250d83d4d NA Hombre 2017-07-12 2017-10-23 PG-PAI Si
61,697 2,014 SEAL1**111983 1983-11-12 35 5dbeef09e7d209c6384f23f3421a47aa Hombre 2014-06-16 2014-11-17 PG-PR Si
57,221 2,014 SEAL1**111983 1983-11-02 36 5dbeef09e7d209c6384f23f3421a47aa Hombre 2014-04-15 2014-06-25 PG-PAB Si
5,390 2,010 SEAL1**111983 1983-11-02 36 5dbeef09e7d209c6384f23f3421a47aa Hombre 2010-05-06 2010-07-01 PG-PR Si
18,701 2,011 FAOL1**041986 1986-04-04 33 5dda046920f44c681845287d201c6187 Hombre 2008-11-19 2011-09-30 PG-PAB Si
16,173 2,011 FAOL1**041986 1986-04-04 33 5dda046920f44c681845287d201c6187 Hombre 2008-11-19 2011-08-31 PG-PAI Si
11,837 2,011 FAOL1**041991 1991-04-04 28 5dda046920f44c681845287d201c6187 Hombre 2008-11-19 2011-04-27 PG-PAB Si
6,867 2,010 FAOL1**041986 1986-04-04 33 5dda046920f44c681845287d201c6187 Hombre 2008-11-19 2010-09-30 PG-PAI Si
58,856 2,014 SECO1**101978 1978-10-18 41 5df2f229995c8fac25f5b2a711269bc6 Hombre 2014-06-17 2014-10-01 PG-PAI Si
21,889 2,012 SECO1**111978 1978-11-18 40 5df2f229995c8fac25f5b2a711269bc6 Hombre 2011-08-17 2012-04-30 PG-PAI Si
113,983 2,017 NALA2**011982 1982-01-14 37 5df752405b3351905e7e030c8cb57921 NA Mujer 2017-02-27 2017-10-31 M-PAI Si
111,210 2,017 NALA2**011981 1981-01-14 38 5df752405b3351905e7e030c8cb57921 NA Mujer 2016-12-05 2017-01-20 PG-PAI Si
75,064 2,015 NALA2**011982 1982-01-14 37 5df752405b3351905e7e030c8cb57921 Mujer 2015-04-16 2015-12-17 M-PAI Si
162,383 2,019 MAGO2**111986 1986-11-06 33 5e1e5070f44ce5e47f3963df85f012e5 NA Mujer 2019-09-23 NA PG-PAB Si
108,691 2,017 MAGO2**111986 1986-11-06 32 5e1e5070f44ce5e47f3963df85f012e5 NA Mujer 2016-08-11 2017-07-27 M-PAI Si
114,857 2,017 ALGO2**071987 1987-07-15 32 5e496767473c3504a48abe41dac58352 NA Mujer 2017-03-23 2017-06-30 M-PR Si
17,777 2,011 ALGO2**071992 1992-07-15 27 5e496767473c3504a48abe41dac58352 Mujer 2011-08-09 2011-09-30 M-PR Si
13,113 2,011 ALGO2**071987 1987-07-15 32 5e496767473c3504a48abe41dac58352 Mujer 2011-01-26 2011-02-28 M-PR Si
146,312 2,019 MALE2**111992 1992-11-09 27 5e5087aa7d95f16bc15990bb3b8b2294 NA Mujer 2017-11-06 2019-02-28 M-PR Si
115,754 2,017 MALE2**111992 1992-11-09 26 5e5087aa7d95f16bc15990bb3b8b2294 NA Mujer 2017-04-06 2017-11-01 PG-PAB Si
86,415 2,016 RUCA2**071958 1958-07-08 61 5e67a3ab52aa26031af4b621d28a3403 Mujer 2013-01-31 2017-01-06 PG-PAI Si
56,108 2,014 RUCA2**071958 1958-07-08 61 5e67a3ab52aa26031af4b621d28a3403 Mujer 2013-01-08 2015-02-04 PG-PAB Si
18,129 2,011 RUCA2**071992 1992-07-08 27 5e67a3ab52aa26031af4b621d28a3403 Mujer 2011-08-16 2011-12-20 M-PR No
130,002 2,018 FECA1**031985 1985-03-19 34 5eae11e4d772232a13ab8991361b3dc5 NA Hombre 2017-10-10 2018-06-14 PG-PR Si
102,007 2,016 FECA1**031983 1983-03-19 36 5eae11e4d772232a13ab8991361b3dc5 Hombre 2016-09-15 2016-11-01 PG-PAI Si
93,939 2,016 FECA1**031983 1983-03-19 36 5eae11e4d772232a13ab8991361b3dc5 Hombre 2016-01-26 2016-08-03 PG-PR Si
89,856 2,016 FECA1**031983 1983-03-19 36 5eae11e4d772232a13ab8991361b3dc5 Hombre 2015-10-08 2016-01-20 PG-PAI Si
17,731 2,011 FECA1**031983 1983-03-19 36 5eae11e4d772232a13ab8991361b3dc5 Hombre 2011-08-08 2012-01-25 PG-PAB No
15,116 2,011 FECA1**031983 1983-03-19 36 5eae11e4d772232a13ab8991361b3dc5 Hombre 2011-04-21 2011-05-26 PG-PAB Si
116,387 2,017 JUJA1**071974 1974-07-03 45 5ecc3680fd76bc8479a4eba3d7d4eff1 NA Hombre 2017-04-04 2017-07-01 PG-PR No
106,118 2,017 JUJA1**071974 1974-07-03 45 5ecc3680fd76bc8479a4eba3d7d4eff1 NA Hombre 2015-10-21 2017-03-31 PG-PAI Si
65,472 2,015 JUJA1**071974 1974-07-03 45 5ecc3680fd76bc8479a4eba3d7d4eff1 Hombre 2012-07-10 2015-07-31 PG-PAI Si
34,933 2,013 JUJA1**091974 1974-09-03 45 5ecc3680fd76bc8479a4eba3d7d4eff1 Hombre 2012-07-10 2013-01-01 PG-PAB Si
24,272 2,012 JUJA1**011993 1993-01-16 26 5ecc3680fd76bc8479a4eba3d7d4eff1 Hombre 2012-01-21 2012-01-26 PG-PR No
21,173 2,012 JUJA1**061974 1974-06-22 45 5ecc3680fd76bc8479a4eba3d7d4eff1 Hombre 2011-02-28 2012-01-16 PG-PR Si
21,223 2,012 CEBE1**111963 1963-11-04 56 5eed7cad22a3c5ec83a1dc71d4c99b71 Hombre 2010-10-22 2012-03-07 PG-PAB Si
3,245 2,010 CEBE1**111962 1962-11-04 57 5eed7cad22a3c5ec83a1dc71d4c99b71 Hombre 2010-01-22 2010-02-26 PG-PAB Si
149,661 2,019 DAMO1**091980 1980-09-02 39 5f2bf849fde5375c58838205912adec3 NA Hombre 2018-10-11 2019-01-08 PG-PR Si
120,940 2,017 DAMO1**091980 1980-09-02 39 5f2bf849fde5375c58838205912adec3 NA Hombre 2017-08-01 2017-10-16 PG-PAI Si
118,657 2,017 DAMO1**091980 1980-09-02 39 5f2bf849fde5375c58838205912adec3 NA Hombre 2017-06-15 2017-07-31 PG-PAB Si
42,788 2,013 DAMO1**081994 1994-08-01 25 5f2bf849fde5375c58838205912adec3 Hombre 2013-08-01 2013-11-19 PG-PAB Si
12,830 2,011 DAMO1**091980 1980-09-02 39 5f2bf849fde5375c58838205912adec3 Hombre 2011-01-26 2011-10-31 PG-PR Si
12,752 2,011 DAMO1**091980 1980-09-02 39 5f2bf849fde5375c58838205912adec3 Hombre 2011-01-07 2011-01-27 PG-PAB Si
131,213 2,018 ERGU1**091974 1974-09-10 45 5f38403b5348de1127bbee34e9d38423 NA Hombre 2017-11-02 2018-10-23 PG-PAI Si
107,359 2,017 ERGU1**091974 1974-09-10 45 5f38403b5348de1127bbee34e9d38423 NA Hombre 2016-05-25 2017-01-04 PG-PR Si
90,169 2,016 ERGU1**091994 1994-09-10 25 5f38403b5348de1127bbee34e9d38423 Hombre 2015-10-28 2016-03-01 PG-PR Si
56,840 2,014 SIAG2**031964 1964-03-14 55 5f4134f42c0a128faee84263c4572516 Mujer 2014-04-24 2014-10-30 M-PR Si
49,636 2,014 SIAG2**031969 1969-03-14 50 5f4134f42c0a128faee84263c4572516 Mujer 2013-06-28 2014-03-03 M-PAI Si
34,103 2,013 SIAG2**031969 1969-03-14 50 5f4134f42c0a128faee84263c4572516 Mujer 2012-10-15 2013-07-01 PG-PR Si
17,775 2,011 SIAG2**081992 1992-08-03 27 5f4134f42c0a128faee84263c4572516 Mujer 2011-08-03 2011-12-07 M-PR Si
121,054 2,017 HIMI2**091958 1958-09-08 61 5f4ff611db6116825b590c4ea8b30339 NA Mujer 2017-08-02 2017-11-30 M-PAI Si
49,759 2,014 HIMI2**091955 1955-09-08 64 5f4ff611db6116825b590c4ea8b30339 Mujer 2013-07-17 2014-05-06 PG-PAI Si
71,845 2,015 ERRO2**091962 1962-09-30 57 5f690fd17a2cc3e926a38870e5d47c8e Mujer 2015-01-29 2015-09-28 PG-PAB Si
54,981 2,014 ERRO2**091961 1961-09-30 58 5f690fd17a2cc3e926a38870e5d47c8e Mujer 2014-02-20 2014-12-13 M-PR Si
116,618 2,017 RIIB1**121961 1961-12-25 57 600238ec9b57e26c91d48da07fb5b139 NA Hombre 2017-05-09 2017-12-01 PG-PR Si
77,130 2,015 RIIB1**121962 1962-12-23 56 600238ec9b57e26c91d48da07fb5b139 Hombre 2015-05-07 2015-05-29 PG-PAI Si
56,348 2,014 RIIB1**121961 1961-12-23 57 600238ec9b57e26c91d48da07fb5b139 Hombre 2014-04-04 2014-10-09 PG-PR Si
159,961 2,019 JEES2**071984 1984-07-23 35 6002ccff0133fbb02f7fffc4096012f8 NA Mujer 2019-07-10 NA PG-PAI Si
153,888 2,019 JEES2**071985 1985-07-23 34 6002ccff0133fbb02f7fffc4096012f8 NA Mujer 2019-02-21 2019-04-01 PG-PR No
84,780 2,015 JEES2**071985 1985-07-23 34 6002ccff0133fbb02f7fffc4096012f8 Mujer 2015-12-07 2016-01-16 M-PR Si
80,876 2,015 JEES2**071985 1985-07-23 34 6002ccff0133fbb02f7fffc4096012f8 Mujer 2015-08-17 2015-12-07 PG-PAI Si
75,633 2,015 JEES2**071985 1985-07-23 34 6002ccff0133fbb02f7fffc4096012f8 Mujer 2015-04-01 2015-08-10 PG-PAI Si
53,967 2,014 JEES2**071985 1985-07-23 34 6002ccff0133fbb02f7fffc4096012f8 Mujer 2014-01-02 2014-07-28 PG-PAI Si
69,607 2,015 LURU1**111985 1985-11-20 33 6015820066908811088f6fe1c1fd97d0 Hombre 2014-11-03 2014-12-31 PG-PAI Si
46,796 2,013 LURU1**111987 1987-11-20 31 6015820066908811088f6fe1c1fd97d0 Hombre 2013-11-05 2014-03-19 PG-PAI Si
40,849 2,013 LURU1**111985 1985-11-20 33 6015820066908811088f6fe1c1fd97d0 Hombre 2013-06-07 2013-06-24 PG-PR Si
38,708 2,013 LURU1**111987 1987-11-20 31 6015820066908811088f6fe1c1fd97d0 Hombre 2013-04-10 2013-06-01 PG-PAI Si
98,645 2,016 MALO2**021968 1968-02-15 51 6033dab1b9b20d031c2d6c8c4c78108b Mujer 2016-06-16 2016-11-24 PG-PAB Si
88,150 2,016 MALO2**021966 1966-02-15 53 6033dab1b9b20d031c2d6c8c4c78108b Mujer 2015-07-14 2016-02-25 PG-PAB Si
149,828 2,019 NOCA2**111966 1966-11-10 53 603deca766468c7556db103bd5cf11fe NA Mujer 2018-10-23 NA PG-PAI Si
128,410 2,018 NOCA2**111966 1966-11-16 52 603deca766468c7556db103bd5cf11fe NA Mujer 2017-07-07 2018-01-26 M-PAI Si
20,642 2,012 NOCA2**111966 1966-11-10 52 603deca766468c7556db103bd5cf11fe Mujer 2009-03-30 2012-04-30 PG-PAB Si
147,191 2,019 OSAL1**081982 1982-08-29 37 6061bbf673474dfc0a0f6d9ad49d3026 NA Hombre 2018-04-17 2019-02-01 PG-PR Si
132,301 2,018 OSAL1**081982 1982-08-29 37 6061bbf673474dfc0a0f6d9ad49d3026 NA Hombre 2017-12-27 2018-04-16 PG-PAI Si
99,444 2,016 OSAL1**081982 1982-08-29 37 6061bbf673474dfc0a0f6d9ad49d3026 Hombre 2016-07-12 2016-12-01 PG-PR Si
92,159 2,016 OSAL1**081981 1981-08-29 38 6061bbf673474dfc0a0f6d9ad49d3026 Hombre 2016-01-15 2016-07-11 PG-PAI Si
70,097 2,015 OSAL1**081982 1982-08-29 37 6061bbf673474dfc0a0f6d9ad49d3026 Hombre 2014-11-27 2015-08-10 PG-PAI No
36,722 2,013 JAMA1**021975 1975-02-12 44 608128bade3313068c279b85f9e48210 Hombre 2013-02-04 NA PG-PAI Si
16,077 2,011 YUVA1**041973 1973-04-13 46 608128bade3313068c279b85f9e48210 Hombre 2011-03-05 2011-11-02 PG-PR No
2,030 2,010 YUVE1**041973 1973-04-13 46 608128bade3313068c279b85f9e48210 Hombre 2009-10-09 2010-06-01 PG-PAI Si
72,390 2,015 LAFU2**061962 1962-06-27 57 60abc2f28c48aeba3ce84d07c7fa9489 Mujer 2015-02-09 2015-06-23 M-PAI Si
67,710 2,015 LAFU2**061964 1964-06-27 55 60abc2f28c48aeba3ce84d07c7fa9489 Mujer 2014-03-05 2015-01-30 PG-PAI Si
81,702 2,015 ABGO1**041984 1984-04-18 35 60c80267639c08cdfef770998a3345ec Hombre 2015-09-22 2015-10-10 PG-PR Si
58,352 2,014 ABGO1**041984 1984-04-18 35 60c80267639c08cdfef770998a3345ec Hombre 2014-05-13 2014-07-01 PG-PR Si
22,042 2,012 ABGO1**041984 1984-04-18 35 60c80267639c08cdfef770998a3345ec Hombre 2011-07-27 2012-01-09 PG-PR Si
16,780 2,011 ABGO1**041984 1984-04-18 35 60c80267639c08cdfef770998a3345ec Hombre 2011-06-01 2011-07-22 PG-PAI Si
12,966 2,011 ABGO1**041987 1987-04-18 32 60c80267639c08cdfef770998a3345ec Hombre 2011-01-05 2011-03-11 PG-PAI Si
121,097 2,017 FRCA1**111990 1990-11-24 28 60d1d8394976618ad9a926dee7884dc8 NA Hombre 2017-04-28 2017-10-23 PG-PAI No
6,218 2,010 FRCA1**111950 1950-11-24 68 60d1d8394976618ad9a926dee7884dc8 Hombre 2010-06-24 2010-07-25 Otro No
162,697 2,019 MANA1**111972 1972-11-06 47 60ec4b5ab64a55015172d9c854292dd2 NA Hombre 2019-10-22 NA PG-PAI Si
134,966 2,018 MANA1**111972 1972-11-06 46 60ec4b5ab64a55015172d9c854292dd2 NA Hombre 2017-10-19 2018-07-31 PG-PAI Si
54,408 2,014 CAGO2**021987 1987-02-14 32 610f1af6cbdf4e7d715b1840a11d6ffc Mujer 2014-02-04 2014-08-12 PG-PAB Si
41,635 2,013 CAGO2**121987 1987-12-14 31 610f1af6cbdf4e7d715b1840a11d6ffc Mujer 2013-06-06 2014-01-20 PG-PAI Si
22,597 2,012 CAGO2**121987 1987-12-14 31 610f1af6cbdf4e7d715b1840a11d6ffc Mujer 2011-10-18 2012-09-03 PG-PAB Si
57,151 2,014 LIGO2**101987 1987-10-14 32 61192822d7b8420107683b788b23d3cf Mujer 2014-04-18 2015-01-23 M-PAI Si
45,061 2,013 LIGO2**101986 1986-10-14 33 61192822d7b8420107683b788b23d3cf Mujer 2013-10-14 2013-10-18 M-PR Si
37,383 2,013 LIGO2**101987 1987-10-14 32 61192822d7b8420107683b788b23d3cf Mujer 2013-01-07 2013-04-29 M-PAI Si
153,764 2,019 MAUL2**041978 1978-04-29 41 613f750b24a793860b7489ae94fd4d52 NA Mujer 2019-02-20 2019-10-01 M-PR Si
131,868 2,018 MAUL2**051980 1980-05-15 39 613f750b24a793860b7489ae94fd4d52 NA Mujer 2017-12-12 2018-10-11 M-PAI Si
148,637 2,019 LUMA1**071968 1968-07-11 51 614503f45047d7d3cf3ebab104890506 NA Hombre 2018-08-21 2019-05-30 PG-PR Si
126,711 2,018 LUMA1**071968 1968-07-11 51 614503f45047d7d3cf3ebab104890506 NA Hombre 2017-02-07 2018-03-31 PG-PR Si
103,431 2,016 LUMA1**071996 1996-07-11 23 614503f45047d7d3cf3ebab104890506 Hombre 2016-10-28 2016-11-29 PG-PAI Si
69,220 2,015 LUMA1**071968 1968-07-11 51 614503f45047d7d3cf3ebab104890506 Hombre 2014-10-26 2015-07-01 PG-PAI Si
21,127 2,012 LUMA1**071968 1968-07-14 51 614503f45047d7d3cf3ebab104890506 Hombre 2011-03-09 2012-05-07 PG-PAI Si
37,484 2,013 PASC2**061982 1982-06-27 37 617e94145f791e6a960406039b5d3267 Mujer 2013-02-22 2013-12-19 M-PR No
28,771 2,012 PASC2**061981 1981-06-27 38 617e94145f791e6a960406039b5d3267 Mujer 2012-05-25 2012-08-31 PG-PAB Si
13,842 2,011 PASC2**061981 1981-06-27 38 617e94145f791e6a960406039b5d3267 Mujer 2011-02-02 2011-06-30 PG-PAI Si
4,748 2,010 PASC2**061981 1981-06-27 38 617e94145f791e6a960406039b5d3267 Mujer 2010-04-26 2010-05-07 M-PR No
319 2,010 PASC2**071981 1981-07-27 38 617e94145f791e6a960406039b5d3267 Mujer 2009-07-20 2010-04-01 PG-PAB Si
43,144 2,013 MAAR2**121959 1959-12-09 59 61a56d20db61f5132e0c280a5ac61390 Mujer 2013-08-14 2013-09-02 PG-PR Si
15,863 2,011 MAAR2**011959 1959-01-09 60 61a56d20db61f5132e0c280a5ac61390 Mujer 2011-05-16 2011-08-31 PG-PAB Si
155,991 2,019 SAMU1**121970 1970-12-23 48 61aad02ec8b63c549f1f7b02ee64e493 NA Hombre 2019-04-01 NA PG-PAI Si
138,618 2,018 SAMU1**121970 1970-12-23 48 61aad02ec8b63c549f1f7b02ee64e493 NA Hombre 2018-06-15 2018-11-14 PG-PR Si
135,589 2,018 SAMU1**121971 1971-12-23 47 61aad02ec8b63c549f1f7b02ee64e493 NA Hombre 2018-02-05 2018-06-14 PG-PAI Si
130,498 2,018 CRRE1**051988 1988-05-15 31 61bc966c192dd86165d7274fe83dafe1 NA Hombre 2017-10-02 2018-03-01 PG-PAB Si
110,149 2,017 CRRE1**051985 1985-05-15 34 61bc966c192dd86165d7274fe83dafe1 NA Hombre 2016-10-14 2017-10-01 PG-PR Si
94,629 2,016 CRRE1**051988 1988-05-15 31 61bc966c192dd86165d7274fe83dafe1 Hombre 2016-03-14 2016-10-13 PG-PAI Si
115,559 2,017 CAOR1**031999 1999-03-30 20 61d28f0b3b3ddf072a176767ba7eb1b9 NA Hombre 2017-01-20 2017-12-01 PG-PAI Si
23,650 2,012 CAOR1**011980 1980-01-30 39 61d28f0b3b3ddf072a176767ba7eb1b9 Hombre 2011-12-19 2012-09-17 PG-PAI Si
127,967 2,018 ROMA1**111972 1972-11-21 46 61f5b5d80dcf67e0aca308da98e62281 NA Hombre 2017-06-23 2018-03-01 PG-PAB Si
93,409 2,016 ROMA1**111972 1972-11-21 46 61f5b5d80dcf67e0aca308da98e62281 Hombre 2016-02-04 2016-09-21 PG-PR Si
85,810 2,016 ROMA1**111971 1971-11-21 47 61f5b5d80dcf67e0aca308da98e62281 Hombre 2014-08-08 2016-02-03 PG-PAI Si
20,766 2,012 ROMA1**111972 1972-11-21 46 61f5b5d80dcf67e0aca308da98e62281 Hombre 2010-10-18 2012-10-01 PG-PAI Si
109,549 2,017 ENES1**121960 1960-12-03 58 62549beb63c3c36b134b4f4eac63b020 NA Hombre 2016-10-11 2017-05-01 PG-PAB Si
63,783 2,014 MAES1**021960 1960-02-03 59 62549beb63c3c36b134b4f4eac63b020 Hombre 2014-10-29 2015-01-29 PG-PAI Si
71,507 2,015 CLCA1**031972 1972-03-12 47 633fbb6471b6d7a0f610cd774bf62988 Hombre 2015-01-08 2015-04-22 PG-PAI Si
54,148 2,014 CLCA1**031972 1972-03-12 47 633fbb6471b6d7a0f610cd774bf62988 Hombre 2014-01-28 2014-07-01 PG-PAB No
37,410 2,013 CLCA1**031971 1971-03-12 48 633fbb6471b6d7a0f610cd774bf62988 Hombre 2013-02-26 2013-08-08 PG-PR Si
146,523 2,019 MANA1**111981 1981-11-06 38 634ad1403ca15b4ddc9444bf044767bc NA Hombre 2018-01-23 NA PG-PR Si
105,543 2,017 MANA1**111981 1981-11-06 37 634ad1403ca15b4ddc9444bf044767bc NA Hombre 2015-03-26 2017-04-21 PG-PR Si
71,418 2,015 MANA1**111981 1981-11-06 37 634ad1403ca15b4ddc9444bf044767bc Hombre 2015-01-05 2015-03-26 PG-PAI Si
67,932 2,015 MANA1**111981 1981-11-06 37 634ad1403ca15b4ddc9444bf044767bc Hombre 2014-07-09 2014-12-30 PG-PAB Si
97,823 2,016 PAPE2**071983 1983-07-14 36 6360c7b079194ef6330356ad6615bcfa Mujer 2016-05-23 2016-12-20 M-PAI Si
95,838 2,016 PAPE2**041996 1996-04-02 23 6360c7b079194ef6330356ad6615bcfa Mujer 2016-03-31 2016-05-13 M-PAI Si
94,874 2,016 PAPE2**061983 1983-06-14 36 6360c7b079194ef6330356ad6615bcfa Mujer 2016-03-24 2016-03-28 M-PR Si
102,524 2,016 LUPA1**121982 1982-12-03 36 6399431ce5cea017850abe9808e0e28b Hombre 2016-09-01 2016-10-31 PG-PAB Si
94,255 2,016 LUPA1**071982 1982-07-17 37 6399431ce5cea017850abe9808e0e28b Hombre 2016-02-01 2016-04-30 PG-PAI Si
91,862 2,016 LUPA1**071982 1982-07-17 37 6399431ce5cea017850abe9808e0e28b Hombre 2015-12-03 2016-01-29 PG-PAB Si
48,045 2,014 MADE2**111993 1993-11-01 26 640b5a60580e9b6b4500545af987c528 Mujer 2012-10-02 2014-11-13 M-PAI Si
26,924 2,012 MADE2**111989 1989-11-01 30 640b5a60580e9b6b4500545af987c528 Mujer 2012-05-29 2012-06-25 M-PR Si
99,915 2,016 ANES1**021975 1975-02-05 44 640d3f8ee84e7f91442e2a47454fbccc Hombre 2016-06-01 2016-09-26 PG-PAI Si
88,557 2,016 ANES1**021976 1976-02-05 43 640d3f8ee84e7f91442e2a47454fbccc Hombre 2015-05-13 2016-03-29 PG-PAI Si
71,097 2,015 LUSA1**091954 1954-09-10 65 647ee162b4ba6e5dae1561dd9c993903 Hombre 2015-01-14 2015-06-03 PG-PAB Si
55,137 2,014 LUSA1**091960 1960-09-10 59 647ee162b4ba6e5dae1561dd9c993903 Hombre 2014-03-04 2014-07-03 PG-PAB Si
99,643 2,016 ALAT1**031974 1974-03-25 45 6493ea969763d77f08c93389ff2222e9 Hombre 2016-07-01 2016-10-03 PG-PAB Si
69,879 2,015 ALAT1**031974 1974-03-25 45 6493ea969763d77f08c93389ff2222e9 Hombre 2014-10-02 2015-03-24 PG-PAI Si
11,575 2,011 ALAT1**101991 1991-10-01 28 6493ea969763d77f08c93389ff2222e9 Hombre 2010-10-01 2011-05-30 PG-PAB No
92,860 2,016 ROFI1**111982 1982-11-11 36 64a12e5191add2b68284ef98753ec0d8 Hombre 2016-01-14 2016-10-27 PG-PAI Si
90,614 2,016 ROFI1**111982 1982-11-01 37 64a12e5191add2b68284ef98753ec0d8 Hombre 2015-11-09 2016-01-12 PG-PR Si
135,518 2,018 SEDI1**011988 1988-01-24 31 64a42d46c0be692de4a4e9bc85d5a272 NA Hombre 2018-03-29 2018-05-15 PG-PAI Si
100,747 2,016 SEDI1**011996 1996-01-24 23 64a42d46c0be692de4a4e9bc85d5a272 Hombre 2016-08-22 2016-09-05 PG-PAI Si
96,880 2,016 JUCE1**051996 1996-05-01 23 64cdbaaa9243a43ec59043b5a6105294 Hombre 2016-04-29 2016-09-13 PG-PAB Si
92,215 2,016 JUCE2**061987 1987-06-01 32 64cdbaaa9243a43ec59043b5a6105294 Mujer 2015-12-09 2016-04-27 PG-PAB Si
78,992 2,015 JUCE1**061987 1987-06-01 32 64cdbaaa9243a43ec59043b5a6105294 Hombre 2015-07-22 2015-11-05 PG-PAB Si
147,395 2,019 JISA1**111978 1978-11-08 41 64de7be6e74b3bcf66b2a3f810bf574e NA Hombre 2018-05-16 2019-02-14 PG-PR Si
131,624 2,018 JISA1**111979 1979-11-09 39 64de7be6e74b3bcf66b2a3f810bf574e NA Hombre 2017-11-07 2018-05-15 PG-PAI Si
71,243 2,015 MARU2**101962 1962-10-07 57 65154efe6cf64b87bca337aecd4388a4 Mujer 2015-01-19 2015-10-13 M-PAI Si
35,317 2,013 MARU2**121993 1993-12-07 25 65154efe6cf64b87bca337aecd4388a4 Mujer 2012-12-26 2013-10-03 PG-PAI Si
111,862 2,017 MABU1**071982 1982-07-25 37 6555d0236edd3453e42921339925e809 NA Hombre 2017-01-13 2017-01-24 PG-PR Si
48,175 2,014 MABU1**071983 1983-07-25 36 6555d0236edd3453e42921339925e809 Hombre 2013-01-03 2014-01-31 PG-PAI Si
130,805 2,018 GRRE2**021978 1978-02-16 41 6565fa56eb6115eb38f6fa37ae61c04a NA Mujer 2017-10-26 2018-03-01 M-PAI Si
71,483 2,015 GRRE2**021978 1978-02-16 41 6565fa56eb6115eb38f6fa37ae61c04a Mujer 2015-01-05 2015-01-29 M-PR Si
70,362 2,015 GRRE2**021968 1968-02-16 51 6565fa56eb6115eb38f6fa37ae61c04a Mujer 2014-12-01 2015-01-29 PG-PAB Si
157,662 2,019 JUMO1**101983 1983-10-28 36 656e632a8b2c6efca7915720bafdf94a NA Hombre 2019-05-22 2019-09-02 PG-PAI Si
88,144 2,016 JUMO1**101993 1993-10-28 26 656e632a8b2c6efca7915720bafdf94a Hombre 2015-07-13 2016-06-13 PG-PAI Si
142,943 2,018 YOME2**041986 1986-04-17 33 657ab439431d1cfb06e64e590ceddfb5 NA Mujer 2018-10-03 2018-12-19 PG-PAI Si
119,625 2,017 YOME2**071999 1999-07-17 20 657ab439431d1cfb06e64e590ceddfb5 NA Mujer 2017-07-24 2017-10-26 M-PAI Si
73,752 2,015 CRVA1**011972 1972-01-21 47 657addcf6decb77c802458436ee56c4e Hombre 2015-03-02 2015-10-02 PG-PAB Si
60,442 2,014 CRVA1**051986 1986-05-20 33 657addcf6decb77c802458436ee56c4e Hombre 2014-07-01 2014-12-31 PG-PR Si
58,924 2,014 CRVA1**011972 1972-01-21 47 657addcf6decb77c802458436ee56c4e Hombre 2014-06-26 2014-07-17 PG-PAB Si
133,905 2,018 MIGA1**091966 1966-09-28 53 659dcb1937135f9adda55882bbc323fb NA Hombre 2018-01-08 2018-05-01 PG-PAI Si
95,122 2,016 MIGA1**091965 1965-09-29 54 659dcb1937135f9adda55882bbc323fb Hombre 2016-03-23 2016-08-01 PG-PAB Si
94,632 2,016 YOPL2**031981 1981-03-03 38 65f5ff4ff757cbe9399c81e3b835af95 Mujer 2016-03-09 2016-04-21 M-PR Si
92,093 2,016 JOPL2**031983 1983-03-03 36 65f5ff4ff757cbe9399c81e3b835af95 Mujer 2016-01-07 2016-03-08 M-PAI Si
49,996 2,014 SIMO2**061974 1974-06-02 45 66260badd8d309433fde85c24ffa10de Mujer 2013-07-12 2015-05-15 PG-PAB Si
37,803 2,013 SIMO2**061964 1964-06-02 55 66260badd8d309433fde85c24ffa10de Mujer 2012-12-18 2013-03-19 PG-PAB No
29,726 2,012 SIMO2**061974 1974-06-12 45 66260badd8d309433fde85c24ffa10de Mujer 2012-09-06 2012-10-04 PG-PAI No
13,624 2,011 SIMO2**061974 1974-06-02 45 66260badd8d309433fde85c24ffa10de Mujer 2011-02-11 2011-06-15 PG-PAB Si
154,118 2,019 FRCA1**091985 1985-09-15 34 6634876d1e6b8d719606c49baf4134e0 NA Hombre 2019-02-11 2019-06-26 PG-PR Si
123,535 2,017 FRCA1**091985 1985-09-15 34 6634876d1e6b8d719606c49baf4134e0 NA Hombre 2017-09-29 2017-11-13 PG-PR Si
111,022 2,017 FRCA1**121996 1996-12-02 22 6634876d1e6b8d719606c49baf4134e0 NA Hombre 2016-12-02 2017-04-28 PG-PR Si
86,304 2,016 FRCA1**091985 1985-09-15 34 6634876d1e6b8d719606c49baf4134e0 Hombre 2015-01-02 2016-03-09 PG-PAI Si
115,197 2,017 ROCO2**031966 1966-03-12 53 663aa62752ead527a632d4b6d48a7af3 NA Mujer 2017-03-31 2017-08-31 M-PAI Si
73,191 2,015 ROCO2**121966 1966-12-08 52 663aa62752ead527a632d4b6d48a7af3 Mujer 2015-02-02 2015-10-01 PG-PR Si
50,918 2,014 ROCO2**121966 1966-12-08 52 663aa62752ead527a632d4b6d48a7af3 Mujer 2013-09-01 2014-06-03 PG-PR Si
34,860 2,013 ROCO2**121966 1966-12-08 52 663aa62752ead527a632d4b6d48a7af3 Mujer 2012-11-01 2013-05-01 PG-PR Si
28,962 2,012 ROCO2**121966 1966-12-08 52 663aa62752ead527a632d4b6d48a7af3 Mujer 2012-07-10 2012-10-29 M-PAI Si
2,226 2,010 ROCO2**121966 1966-12-08 52 663aa62752ead527a632d4b6d48a7af3 Mujer 2009-06-18 2010-04-06 PG-PAI Si
133,445 2,018 JAMA1**021985 1985-02-14 34 66832c6892aaf19a0710907c9ae4f485 NA Hombre 2018-02-02 2018-04-02 PG-PAI Si
124,416 2,017 JAMA1**021995 1995-02-14 24 66832c6892aaf19a0710907c9ae4f485 NA Hombre 2017-11-03 2018-02-01 PG-PAB Si
146,057 2,019 GAAV1**061999 1999-06-24 20 668c94afa0abbae67a7daf92020e159c NA Hombre 2017-08-03 2019-07-01 PG-PAB Si
96,532 2,016 GAAV1**061990 1990-06-24 29 668c94afa0abbae67a7daf92020e159c Hombre 2016-04-14 2016-07-29 PG-PAB Si
71,921 2,015 GAAV1**061990 1990-06-24 29 668c94afa0abbae67a7daf92020e159c Hombre 2015-01-05 2015-04-17 PG-PAB Si
53,146 2,014 GAAV1**061990 1990-06-24 29 668c94afa0abbae67a7daf92020e159c Hombre 2014-01-03 2014-03-25 PG-PAB Si
145,747 2,019 ROFL1**011960 1960-01-10 59 66a87459ee05e5b6c72a734c0a4cdd1a NA Hombre 2016-03-31 2019-01-29 PG-PAI Si
12,793 2,011 ROFL1**011960 1960-01-10 59 66a87459ee05e5b6c72a734c0a4cdd1a Hombre 2011-01-03 2011-05-30 PG-PAB Si
6,646 2,010 ROFL1**011960 1960-01-10 59 66a87459ee05e5b6c72a734c0a4cdd1a Hombre 2010-07-19 2010-12-21 PG-PAB Si
3,198 2,010 ROFL1**111960 1960-11-10 58 66a87459ee05e5b6c72a734c0a4cdd1a Hombre 2009-09-14 2010-06-07 PG-PAB Si
98,407 2,016 ANUL2**031973 1973-03-05 46 6759376625adea41a1b8cae2acaf5456 Mujer 2016-06-22 2016-09-30 M-PAI Si
71,337 2,015 ANUL2**041967 1967-04-17 52 6759376625adea41a1b8cae2acaf5456 Mujer 2014-12-04 2016-01-07 M-PAI Si
110,867 2,017 ANBO1**111996 1996-11-21 22 67795ad778ecfc15e05917163199469e NA Hombre 2016-11-22 2017-01-13 PG-PAI Si
81,672 2,015 ANBO1**061979 1979-06-29 40 67795ad778ecfc15e05917163199469e Hombre 2015-09-21 2015-12-17 PG-PAI Si
50,999 2,014 ANBO1**061979 1979-06-29 40 67795ad778ecfc15e05917163199469e Hombre 2013-10-04 2014-06-09 PG-PAI Si
107,824 2,017 PAVE2**031981 1981-03-05 38 67cf75e20c434987e50cf542daa266b0 NA Mujer 2016-05-05 2017-04-28 M-PR Si
95,989 2,016 PAVE2**031981 1981-03-05 38 67cf75e20c434987e50cf542daa266b0 Mujer 2016-02-01 2016-05-04 PG-PAI No
92,857 2,016 RUCH1**031987 1987-03-29 32 67cf75e20c434987e50cf542daa266b0 Hombre 2016-01-20 2016-06-17 PG-PAI Si
96,576 2,016 ROAC1**031967 1967-03-13 52 67e10e24f8d31c941b35ad9dc6be7acd Hombre 2016-04-20 2016-09-02 PG-PAI Si
66,363 2,015 ROAC1**031963 1963-03-13 56 67e10e24f8d31c941b35ad9dc6be7acd Hombre 2014-02-06 2015-03-30 PG-PAI Si
148,011 2,019 JOMO1**111963 1963-11-09 56 67e395cfb7f7dd737c94b38970f6f35f NA Hombre 2018-06-29 2019-03-01 PG-PAB Si
29,923 2,012 JOMO1**111963 1963-11-09 55 67e395cfb7f7dd737c94b38970f6f35f Hombre 2012-09-03 2012-11-20 PG-PAB Si
26,639 2,012 VISA1**011956 1956-01-10 63 67e4f8edcf503748d6ef6a1f7b5fc8b9 Hombre 2012-05-08 2012-06-07 PG-PR Si
4,469 2,010 VISA1**011954 1954-01-10 65 67e4f8edcf503748d6ef6a1f7b5fc8b9 Hombre 2010-03-10 2010-07-13 PG-PAB No
23,510 2,012 MACO2**121992 1992-12-02 26 682d18c2ae3e2513fe83f204b72c90e5 Mujer 2011-12-20 2012-10-25 PG-PAB Si
16,686 2,011 MACO2**121976 1976-12-02 42 682d18c2ae3e2513fe83f204b72c90e5 Mujer 2011-06-01 2011-12-07 PG-PAB Si
88,937 2,016 RORI1**091983 1983-09-11 36 68757012556c73e190ea839f4cb80e65 Hombre 2015-08-17 2016-02-24 PG-PR Si
40,897 2,013 BLLA1**041986 1986-04-21 33 68757012556c73e190ea839f4cb80e65 Hombre 2013-06-03 2013-11-18 PG-PAI Si
37,769 2,013 RORI1**091983 1983-09-11 36 68757012556c73e190ea839f4cb80e65 Hombre 2013-03-12 2013-06-03 PG-PAI Si
87,330 2,016 VIZU1**111989 1989-11-06 29 68e0f7383b74992fe8f828f109351ecb Hombre 2015-05-14 2016-03-14 PG-PR Si
26,651 2,012 VIZU1**031989 1989-03-06 30 68e0f7383b74992fe8f828f109351ecb Hombre 2012-05-07 2012-11-13 PG-PAI Si
16,890 2,011 VIZU1**031989 1989-03-06 30 68e0f7383b74992fe8f828f109351ecb Hombre 2011-05-26 2011-10-07 PG-PAI Si
43,716 2,013 MAPE1**031986 1986-03-27 33 68fb26b75ebccbc698672c22149801fa Hombre 2013-08-22 2013-08-22 PG-PAB No
42,671 2,013 MAPE1**031984 1984-03-27 35 68fb26b75ebccbc698672c22149801fa Hombre 2013-07-05 2013-09-26 PG-PAI Si
99,671 2,016 PAVE1**101979 1979-10-16 40 6903619e6bddb121fd76c79877f1ccdd Hombre 2016-06-06 2016-11-21 PG-PAB Si
18,392 2,011 PAVE1**101971 1971-10-16 48 6903619e6bddb121fd76c79877f1ccdd Hombre 2011-09-12 2012-01-23 PG-PAI Si
87,428 2,016 ROPE1**061982 1982-06-11 37 692d4a37604742738e929351a36a2002 Hombre 2015-04-15 2016-07-01 PG-PAB Si
53,853 2,014 ROPE1**061981 1981-06-17 38 692d4a37604742738e929351a36a2002 Hombre 2014-01-22 2014-10-28 PG-PAB Si
162,766 2,019 CARI1**041990 1990-04-21 29 6944a4e9e916f3ee987ca73bcba81913 NA Hombre 2019-10-10 NA PG-PAI Si
63,968 2,014 CARI1**041989 1989-04-21 30 6944a4e9e916f3ee987ca73bcba81913 Hombre 2014-11-11 2014-12-19 PG-PAB Si
10,997 2,011 ALMO1**021981 1981-02-18 38 698ef15123258366adc55141324f4272 Hombre 2010-08-23 2011-08-30 PG-PR Si
3,504 2,010 ALMO1**021991 1991-02-18 28 698ef15123258366adc55141324f4272 Hombre 2010-02-15 2010-08-18 PG-PAI Si
149,560 2,019 GOVA1**111991 1991-11-06 28 69d2c38406915820725a3edd3bee3878 NA Hombre 2018-09-03 2019-08-31 M-PAI Si
129,163 2,018 GOVA1**111991 1991-11-06 27 69d2c38406915820725a3edd3bee3878 NA Hombre 2017-08-24 2018-04-30 M-PR Si
103,212 2,016 PECE1**051996 1996-05-07 23 6a00d5207a311dc8fc68e6220ceb67c8 Hombre 2016-10-12 2016-11-07 PG-PR No
92,738 2,016 PECE1**051966 1966-05-07 53 6a00d5207a311dc8fc68e6220ceb67c8 Hombre 2015-12-15 2016-08-04 PG-PR No
78,272 2,015 ARHE1**051961 1961-05-27 58 6a14aa2767ec44b264dd898dd0d52ad5 Hombre 2015-06-11 2015-08-14 PG-PAI Si
36,074 2,013 ARHE1**051962 1962-05-27 57 6a14aa2767ec44b264dd898dd0d52ad5 Hombre 2013-01-10 2013-02-28 PG-PAI Si
51,072 2,014 FRPU1**081984 1984-08-11 35 6a5f454b669fbbc92c1ec5c0cccc374e Hombre 2013-10-17 2014-06-04 PG-PR Si
21,813 2,012 FRPU1**081989 1989-08-11 30 6a5f454b669fbbc92c1ec5c0cccc374e Hombre 2011-07-25 2012-01-05 PG-PR Si
6,616 2,010 FRPU1**081989 1989-08-11 30 6a5f454b669fbbc92c1ec5c0cccc374e Hombre 2010-06-22 2010-12-17 PG-PAB Si
119,668 2,017 XINA2**111979 1979-11-27 39 6ac0479188ae0d56f517ff039921b92e NA Mujer 2017-07-20 2017-11-15 PG-PR Si
100,211 2,016 XINA2**071979 1979-07-22 40 6ac0479188ae0d56f517ff039921b92e Mujer 2016-07-29 2016-09-28 M-PAI Si
71,962 2,015 MACO2**021937 1937-02-17 82 6acbf444bde40eb4142d134a1af067c4 Mujer 2015-01-06 2015-08-07 M-PAI Si
49,677 2,014 MACO2**021939 1939-02-14 80 6acbf444bde40eb4142d134a1af067c4 Mujer 2012-12-06 2014-07-23 PG-PAB No
157,543 2,019 ROSA1**111981 1981-11-12 38 6ad2b9a93bfeb89797bd1a09c96f7339 NA Hombre 2019-05-27 2019-06-03 PG-PAI Si
148,782 2,019 ROSA1**111981 1981-11-12 38 6ad2b9a93bfeb89797bd1a09c96f7339 NA Hombre 2018-08-01 2019-04-10 PG-PR Si
137,643 2,018 ROSA1**111981 1981-11-12 37 6ad2b9a93bfeb89797bd1a09c96f7339 NA Hombre 2018-05-14 2018-07-30 PG-PAI Si
131,397 2,018 ROSA1**111981 1981-11-12 37 6ad2b9a93bfeb89797bd1a09c96f7339 NA Hombre 2017-11-22 2018-03-02 PG-PR Si
118,975 2,017 ROSA1**111981 1981-11-12 37 6ad2b9a93bfeb89797bd1a09c96f7339 NA Hombre 2017-06-01 2017-11-21 PG-PAI Si
70,020 2,015 ROSA1**111981 1981-11-12 37 6ad2b9a93bfeb89797bd1a09c96f7339 Hombre 2014-11-04 2015-06-30 PG-PAI Si
34,647 2,013 ROSA1**111981 1981-11-12 37 6ad2b9a93bfeb89797bd1a09c96f7339 Hombre 2012-11-13 2013-01-31 PG-PAI Si
109,115 2,017 ANOR2**081992 1992-08-21 27 6b95f52d9bd3b327257fb2f6f8697f1a NA Mujer 2016-09-07 2017-06-27 PG-PAI Si
70,773 2,015 ROEC2**081993 1993-08-21 26 6b95f52d9bd3b327257fb2f6f8697f1a Mujer 2014-12-02 2015-06-05 PG-PAI Si
152,022 2,019 PASA1**101973 1973-10-14 46 6ba5f74c5219ae11f809dfbe4f2ac5da NA Hombre 2018-12-06 2019-07-22 PG-PAI Si
55,276 2,014 PASA1**111973 1973-11-14 45 6ba5f74c5219ae11f809dfbe4f2ac5da Hombre 2014-03-15 2014-06-07 PG-PAB Si
80,152 2,015 EMES1**091992 1992-09-06 27 6bb338c99a824b557ad72f8ac5811484 Hombre 2015-08-03 2015-09-25 PG-PAI Si
72,119 2,015 EMES1**091999 1999-09-06 20 6bb338c99a824b557ad72f8ac5811484 Hombre 2015-01-05 2015-06-01 PG-PAI Si
148,097 2,019 ROCA1**091977 1977-09-18 42 6c59712cecc09651d0246149b60e2225 NA Hombre 2018-07-05 2019-09-02 M-PR Si
130,669 2,018 PADI2**091973 1973-09-18 46 6c59712cecc09651d0246149b60e2225 NA Mujer 2017-10-23 2018-02-28 PG-PAI Si
105,513 2,017 ROCA2**091977 1977-09-18 42 6c59712cecc09651d0246149b60e2225 NA Mujer 2015-02-20 2017-06-01 M-PAI Si
145,071 2,018 CECI1**081981 1981-08-14 38 6c929d1c762bc2161df8a3d68e8eaafc NA Hombre 2018-11-13 2019-02-01 PG-PAI Si
132,088 2,018 CECI1**091971 1971-09-16 48 6c929d1c762bc2161df8a3d68e8eaafc NA Hombre 2017-12-18 2018-05-01 PG-PR Si
43,910 2,013 CE-C1**091971 1971-09-16 48 6c929d1c762bc2161df8a3d68e8eaafc Hombre 2013-08-07 2013-12-18 PG-PAI Si
1,957 2,010 CECI1**091971 1971-09-16 48 6c929d1c762bc2161df8a3d68e8eaafc Hombre 2010-01-01 2010-07-06 PG-PAB Si
155,883 2,019 -JSA2**121979 1979-12-02 39 6cdb85e296b3d461b13cd3a6903c2942 NA Mujer 2019-04-16 2019-06-10 PG-PAB Si
113,972 2,017 JESA2**121976 1976-12-02 42 6cdb85e296b3d461b13cd3a6903c2942 NA Mujer 2017-02-28 2017-04-12 PG-PAB Si
16,765 2,011 JESA2**121976 1976-12-02 42 6cdb85e296b3d461b13cd3a6903c2942 Mujer 2011-06-08 2011-10-25 PG-PAB Si
113,323 2,017 LIHU1**011979 1979-01-18 40 6ce4b7320ac6b4458730b8d5ce515ba9 NA Hombre 2017-02-06 2017-05-01 PG-PAB Si
59,765 2,014 LIHU1**011980 1980-01-18 39 6ce4b7320ac6b4458730b8d5ce515ba9 Hombre 2014-07-07 2015-03-02 PG-PAB Si
125,659 2,017 SOBE2**031956 1956-03-28 63 6cfc0e022e2fec32a17ab00d6d40de8e NA Mujer 2017-12-05 2017-12-19 M-PR Si
98,819 2,016 SOBE2**031959 1959-03-28 60 6cfc0e022e2fec32a17ab00d6d40de8e Mujer 2016-06-28 2016-11-02 M-PR Si
72,278 2,015 SOBE2**031959 1959-03-28 60 6cfc0e022e2fec32a17ab00d6d40de8e Mujer 2015-01-07 2015-11-09 M-PR Si
39,519 2,013 SOBE2**031959 1959-03-28 60 6cfc0e022e2fec32a17ab00d6d40de8e Mujer 2013-05-06 2013-09-15 M-PR Si
37,633 2,013 SOBE2**031959 1959-03-28 60 6cfc0e022e2fec32a17ab00d6d40de8e Mujer 2013-03-12 2013-04-30 M-PAI Si
25,541 2,012 SOBE2**031959 1959-03-28 60 6cfc0e022e2fec32a17ab00d6d40de8e Mujer 2012-03-28 2012-06-02 M-PR Si
18,453 2,011 SOBE2**031959 1959-03-28 60 6cfc0e022e2fec32a17ab00d6d40de8e Mujer 2011-09-21 2011-11-04 M-PR Si
1,489 2,010 SOBE2**031959 1959-03-28 60 6cfc0e022e2fec32a17ab00d6d40de8e Mujer 2009-12-01 2010-03-31 M-PAI Si
48,587 2,014 JACO1**031986 1986-03-20 33 6d01686d8a85699ced1c6222fbb7aa3e Hombre 2013-02-07 2014-08-18 PG-PAB Si
27,207 2,012 JACO1**031983 1983-03-20 36 6d01686d8a85699ced1c6222fbb7aa3e Hombre 2012-05-22 2012-07-17 PG-PAB Si
113,753 2,017 ANCA1**111984 1984-11-14 34 6db7cad5faf2cf90a08dfc9f4bfed5a4 NA Hombre 2017-02-22 2017-05-31 PG-PR Si
106,892 2,017 ANCA1**101984 1984-10-14 35 6db7cad5faf2cf90a08dfc9f4bfed5a4 NA Hombre 2016-04-14 2017-02-21 PG-PAI Si
36,526 2,013 MAME1**121967 1967-12-30 51 6e2edf7b0885502ede98e91a93522fcb Hombre 2013-01-29 2013-05-01 PG-PAI Si
29,700 2,012 MAME1**121962 1962-12-30 56 6e2edf7b0885502ede98e91a93522fcb Hombre 2012-08-27 2012-11-06 PG-PR Si
135,736 2,018 ARGA1**121992 1992-12-23 26 6e74f073e0110e252097582db8dfadf8 NA Hombre 2018-03-07 2018-06-20 PG-PR No
128,001 2,018 ARGA1**081992 1992-08-23 27 6e74f073e0110e252097582db8dfadf8 NA Hombre 2017-06-06 2018-03-06 PG-PAB Si
127,221 2,018 DERI2**041973 1973-04-15 46 6ec7a06da84c9be437e651be6d93d1b8 NA Mujer 2017-04-06 2018-03-16 M-PR Si
54,073 2,014 DERI2**041974 1974-04-15 45 6ec7a06da84c9be437e651be6d93d1b8 Mujer 2014-01-28 2014-03-31 M-PR Si
85,249 2,015 JUNE2**011978 1978-01-28 41 6efd3143c9a2f46f616aa67d828ddcb4 Mujer 2015-11-24 2015-12-14 PG-PR Si
73,987 2,015 JUNE2**011970 1970-01-28 49 6efd3143c9a2f46f616aa67d828ddcb4 Mujer 2015-01-30 2015-12-01 PG-PAB Si
26,346 2,012 CRCO1**041993 1993-04-09 26 6f563f48f84aaf49bf65e25a9c38b8ab Hombre 2012-04-09 2012-06-29 PG-PAB Si
24,610 2,012 CRCO1**111989 1989-11-11 29 6f563f48f84aaf49bf65e25a9c38b8ab Hombre 2012-02-06 2012-04-02 PG-PAI Si
160,320 2,019 JAGA1**111987 1987-11-09 32 6f5d71d4bb89ee90632a4763280f011a NA Hombre 2019-08-14 2019-10-09 PG-PR Si
56,457 2,014 JAGA1**111987 1987-11-09 31 6f5d71d4bb89ee90632a4763280f011a Hombre 2014-04-10 2014-09-22 PG-PAB Si
32,785 2,013 KARO2**041993 1993-04-20 26 6f8ba11077722af5de74f13124158426 Mujer 2012-04-20 2013-09-02 PG-PAI Si
12,464 2,011 KARO2**111989 1989-11-03 30 6f8ba11077722af5de74f13124158426 Mujer 2010-12-10 2011-03-01 M-PAI Si
154,316 2,019 NARA1**041974 1974-04-15 45 6f8c3e84a251159fb8be1b73b374b8af NA Hombre 2019-03-08 NA PG-PR Si
153,510 2,019 NARA1**041974 1974-04-15 45 6f8c3e84a251159fb8be1b73b374b8af NA Hombre 2019-02-13 2019-03-07 PG-PAI Si
73,597 2,015 NARO1**041974 1974-04-15 45 6f8c3e84a251159fb8be1b73b374b8af Hombre 2015-03-04 2015-04-23 PG-PAB Si
33,226 2,013 NARA1**031974 1974-03-15 45 6f8c3e84a251159fb8be1b73b374b8af Hombre 2012-06-27 2013-05-27 PG-PR Si
11,806 2,011 NARO2**101991 1991-10-04 28 6f8c3e84a251159fb8be1b73b374b8af Mujer 2010-10-01 2011-02-01 PG-PAI Si
100,080 2,016 PAAL2**071996 1996-07-01 23 6faa630f15e4bb127d6100e2863bf898 Mujer 2016-07-15 2016-08-12 M-PR Si
74,474 2,015 PAAL2**101971 1971-10-21 48 6faa630f15e4bb127d6100e2863bf898 Mujer 2015-03-26 2015-06-22 M-PR Si
47,952 2,014 PAAL2**101971 1971-10-21 48 6faa630f15e4bb127d6100e2863bf898 Mujer 2012-08-08 2014-05-05 PG-PAI Si
13,862 2,011 PAAL2**101971 1971-10-21 48 6faa630f15e4bb127d6100e2863bf898 Mujer 2011-02-15 2011-11-15 M-PR Si
95,117 2,016 EVGO2**041981 1981-04-05 38 6fb3781a1e5d7f08aa8aaf50aef0e4de Mujer 2016-03-16 2016-06-20 PG-PAI Si
89,644 2,016 EVGO2**061984 1984-06-05 35 6fb3781a1e5d7f08aa8aaf50aef0e4de Mujer 2015-09-29 2016-03-15 M-PR Si
80,023 2,015 EVGO2**051981 1981-05-05 38 6fb3781a1e5d7f08aa8aaf50aef0e4de Mujer 2015-06-18 2015-09-29 PG-PAI Si
50,362 2,014 EVGO2**041984 1984-04-05 35 6fb3781a1e5d7f08aa8aaf50aef0e4de Mujer 2013-08-01 2014-06-30 PG-PAB Si
41,968 2,013 EVGO2**041984 1984-04-05 35 6fb3781a1e5d7f08aa8aaf50aef0e4de Mujer 2013-07-18 2013-07-31 M-PR Si
148,442 2,019 JACA1**051989 1989-05-22 30 70230f35293e683cb7f13af6ab0ef492 NA Hombre 2018-04-30 2019-04-17 PG-PAB Si
23,241 2,012 CAMA1**121992 1992-12-07 26 70230f35293e683cb7f13af6ab0ef492 Hombre 2011-12-07 2012-08-03 PG-PR Si
71,659 2,015 ALUL1**011966 1966-01-19 53 702cbc2d241a8d04c0657f7bf97e41a9 Hombre 2014-11-14 2015-06-30 PG-PAI Si
143 2,010 ALUL1**111966 1966-11-19 52 702cbc2d241a8d04c0657f7bf97e41a9 Hombre 2009-06-22 2010-03-01 PG-PR Si
81,681 2,015 MAOC1**061961 1961-06-16 58 704e7185f38d3d8da86f0cbc3c88080d Hombre 2015-09-02 2015-12-30 PG-PAB Si
50,390 2,014 MAOC1**061981 1981-06-16 38 704e7185f38d3d8da86f0cbc3c88080d Hombre 2013-08-08 2014-08-31 PG-PAB Si
159,449 2,019 JHDI1**111981 1981-11-09 38 7077d9fba29800d0127e0fce3fa43e72 NA Hombre 2019-07-05 NA PG-PAB Si
133,854 2,018 JHDI1**111981 1981-11-09 37 7077d9fba29800d0127e0fce3fa43e72 NA Hombre 2018-02-06 2018-08-01 PG-PAB Si
114,588 2,017 JHDI1**111981 1981-11-09 37 7077d9fba29800d0127e0fce3fa43e72 NA Hombre 2017-03-10 2017-09-25 PG-PAB Si
154,221 2,019 VAFA2**091983 1983-09-21 36 70d247b465c92870e9babb9962e3c246 NA Mujer 2019-01-31 2019-04-25 PG-PAI Si
128,847 2,018 VAFA2**091993 1993-09-21 26 70d247b465c92870e9babb9962e3c246 NA Mujer 2017-08-21 2018-02-01 PG-PAB Si
55,745 2,014 JUGA1**061973 1973-06-25 46 70e4a30ea1ad0d2acdb7275852f7e258 Hombre 2014-03-24 2014-06-04 PG-PAB Si
40,129 2,013 JUGA1**061972 1972-06-25 47 70e4a30ea1ad0d2acdb7275852f7e258 Hombre 2013-05-28 2013-07-09 PG-PR No
19,094 2,011 JUGA1**061972 1972-06-25 47 70e4a30ea1ad0d2acdb7275852f7e258 Hombre 2011-10-13 2011-11-03 PG-PR Si
67,463 2,015 CIBE2**091972 1972-09-30 47 70f08e62975d02470d0bc625c83428b3 Mujer 2014-06-23 2015-03-30 M-PAI Si
54,810 2,014 CIBE2**091971 1971-09-30 48 70f08e62975d02470d0bc625c83428b3 Mujer 2014-02-11 2014-06-10 M-PR Si
10,351 2,011 CIBE2**091971 1971-09-30 48 70f08e62975d02470d0bc625c83428b3 Mujer 2010-03-22 2011-07-23 PG-PAI Si
88,626 2,016 JOJI1**041978 1978-04-29 41 7123798a26b6e129845ada1f698ebbb5 Hombre 2015-08-04 2016-04-01 PG-PR Si
41,696 2,013 JOJI1**041978 1978-04-29 41 7123798a26b6e129845ada1f698ebbb5 Hombre 2013-06-20 2013-10-07 PG-PAI No
39,524 2,013 JOJI1**041978 1978-04-29 41 7123798a26b6e129845ada1f698ebbb5 Hombre 2013-04-22 2013-06-17 PG-PR Si
37,922 2,013 JOJI1**041978 1978-04-29 41 7123798a26b6e129845ada1f698ebbb5 Hombre 2013-02-25 2013-05-01 PG-PAI No
35,516 2,013 JOJI1**041978 1978-04-29 41 7123798a26b6e129845ada1f698ebbb5 Hombre 2013-01-14 2013-04-29 PG-PAB Si
12,082 2,011 JOJI1**041979 1979-04-29 40 7123798a26b6e129845ada1f698ebbb5 Hombre 2010-11-12 2011-02-21 PG-PAI Si
1,307 2,010 JOJI1**041978 1978-04-02 41 7123798a26b6e129845ada1f698ebbb5 Hombre 2009-11-12 2010-02-25 PG-PAB Si
4,411 2,010 ROCE2**071978 1978-07-15 41 71b7c29d53f541b0639e042ec9a8f0b2 Mujer 2010-03-18 2010-10-31 PG-PAI Si
9,334 2,010 ROCE2**071975 1975-07-15 44 71b7c29d53f541b0639e042ec9a8f0b2 Mujer 2010-03-17 2011-06-02 PG-PAB Si
68,476 2,015 CHVA1**031995 1995-03-28 24 71c7fab4802898db5a3ab07b53cab756 Hombre 2014-08-25 2015-02-02 PG-PAI Si
54,903 2,014 CRVA1**031985 1985-03-28 34 71c7fab4802898db5a3ab07b53cab756 Hombre 2014-02-04 2014-08-29 PG-PAB Si
49,878 2,014 MAFU2**031969 1969-03-15 50 720399b6a401897bfba793d7a05e32d6 Mujer 2013-07-22 2014-03-10 M-PR Si
41,947 2,013 MAFU2**031968 1968-03-15 51 720399b6a401897bfba793d7a05e32d6 Mujer 2013-07-04 2013-07-18 M-PAI Si
29,874 2,012 MAFU2**031968 1968-03-15 51 720399b6a401897bfba793d7a05e32d6 Mujer 2012-09-20 2012-12-28 M-PAI Si
29,259 2,012 MAFU2**031968 1968-03-15 51 720399b6a401897bfba793d7a05e32d6 Mujer 2012-08-21 2012-09-13 M-PR Si
31,583 2,012 ELAV1**121988 1988-12-13 30 72881c0695dacc19edf34fa87573b3d8 Hombre 2012-11-08 2012-11-29 M-PR Si
26,908 2,012 ELAV2**121981 1981-12-13 37 72881c0695dacc19edf34fa87573b3d8 Mujer 2012-05-17 2012-06-20 M-PR Si
140,830 2,018 LULE1**021986 1986-02-20 33 728a335875d7d499777af77e7867fd58 NA Hombre 2018-08-01 2018-11-26 PG-PAI Si
106,807 2,017 LULE1**021985 1985-02-20 34 728a335875d7d499777af77e7867fd58 NA Hombre 2016-03-31 2017-05-23 PG-PAI Si
159,798 2,019 CACA1**111989 1989-11-10 30 72a5ba730f6d54f7fa4823f5058579de NA Hombre 2019-07-23 NA PG-PAB No
113,498 2,017 CACA1**111989 1989-11-10 29 72a5ba730f6d54f7fa4823f5058579de NA Hombre 2017-02-01 2017-12-04 PG-PAI Si
102,448 2,016 JORE1**061986 1986-06-07 33 72ed4f8fb3d34d869b9b5341f4f289f0 Hombre 2016-09-23 2016-09-29 PG-PR Si
18,196 2,011 JORE1**061986 1986-06-07 33 72ed4f8fb3d34d869b9b5341f4f289f0 Hombre 2011-08-08 2011-12-26 PG-PAI Si
16,709 2,011 JORE1**061989 1989-06-07 30 72ed4f8fb3d34d869b9b5341f4f289f0 Hombre 2011-06-15 2011-08-31 PG-PAB Si
81,393 2,015 VAST2**051984 1984-05-08 35 730da61df15d10ba88760647a2781887 Mujer 2015-09-11 2015-11-02 PG-PAI Si
75,568 2,015 VEST2**051984 1984-05-08 35 730da61df15d10ba88760647a2781887 Mujer 2015-04-13 2015-05-31 M-PR Si
57,517 2,014 VAST2**051984 1984-05-08 35 730da61df15d10ba88760647a2781887 Mujer 2014-05-16 2014-06-30 PG-PAI Si
45,853 2,013 -VST2**041979 1979-04-28 40 730da61df15d10ba88760647a2781887 Mujer 2013-10-30 2014-01-31 M-PAI Si
132,052 2,018 MARI1**031979 1979-03-15 40 73196f7294bca07762177caf808edeb3 NA Hombre 2017-12-14 2018-12-03 PG-PAB Si
111,007 2,017 MARI1**121979 1979-12-25 39 73196f7294bca07762177caf808edeb3 NA Hombre 2016-12-12 2017-06-06 PG-PAB Si
158,086 2,019 MAGO1**111977 1977-11-29 41 735c0910edd411d98f9ae9757208f3f1 NA Hombre 2019-06-14 2019-08-26 PG-PAI Si
99,469 2,016 MAGO1**111977 1977-11-29 41 735c0910edd411d98f9ae9757208f3f1 Hombre 2016-07-04 2016-08-18 PG-PAI Si
76,259 2,015 MAGO1**111975 1975-11-29 43 735c0910edd411d98f9ae9757208f3f1 Hombre 2015-05-14 2015-11-24 PG-PAI Si
91,686 2,016 MASE2**011994 1994-01-09 25 738724a225b311034608fe7598069e7a Mujer 2015-12-07 2016-04-04 M-PR Si
34,531 2,013 MASE2**011992 1992-01-09 27 738724a225b311034608fe7598069e7a Mujer 2012-11-09 2013-04-29 M-PR Si
157,764 2,019 MARI2**111978 1978-11-01 41 738ac24e37e4e15fb08d18b5b026fb09 NA Mujer 2019-04-16 NA PG-PAI Si
141,693 2,018 MARI1**111978 1978-11-30 40 738ac24e37e4e15fb08d18b5b026fb09 NA Hombre 2018-08-06 2018-12-04 PG-PAB Si
117,298 2,017 LURI1**101991 1991-10-19 28 73a5e240f2728db65ea9a61f67397809 NA Hombre 2017-05-15 2017-08-04 PG-PAI Si
90,457 2,016 LURI1**051979 1979-05-01 40 73a5e240f2728db65ea9a61f67397809 Hombre 2015-10-09 2016-04-08 PG-PAI Si
121,148 2,017 JOVA2**081999 1999-08-02 20 73ce9cf1568b03697c6d59e1a7c4ddaa NA Mujer 2017-08-17 2017-09-26 M-PAI Si
105,429 2,017 YOVA2**081986 1986-08-02 33 73ce9cf1568b03697c6d59e1a7c4ddaa NA Mujer 2014-07-08 2017-06-01 PG-PAI Si
35,859 2,013 YOVA2**081986 1986-08-02 33 73ce9cf1568b03697c6d59e1a7c4ddaa Mujer 2013-01-01 2014-01-02 PG-PAI Si
20,737 2,012 JOVA2**081986 1986-08-02 33 73ce9cf1568b03697c6d59e1a7c4ddaa Mujer 2010-05-28 2012-04-27 M-PAI Si
180 2,010 JOVA2**081986 1986-08-02 33 73ce9cf1568b03697c6d59e1a7c4ddaa Mujer 2008-08-10 2010-04-30 M-PAI Si
158,053 2,019 EDCO1**111983 1983-11-09 36 7453c21c9cea9a08d8d56580727fc184 NA Hombre 2019-06-04 2019-10-01 PG-PAB Si
42,197 2,013 EDCO1**111983 1983-11-09 35 7453c21c9cea9a08d8d56580727fc184 Hombre 2013-07-19 2013-11-11 PG-PAB Si
154,551 2,019 RIJA1**041969 1969-04-22 50 748737b54b842c01b34299a9a65d8897 NA Hombre 2019-03-01 NA PG-PAI Si
136,409 2,018 RIJA1**041969 1969-04-22 50 748737b54b842c01b34299a9a65d8897 NA Hombre 2018-04-02 2019-01-31 PG-PAI Si
51,805 2,014 RIJA1**041970 1970-04-22 49 748737b54b842c01b34299a9a65d8897 Hombre 2013-10-28 2014-03-31 PG-PAI Si
77,528 2,015 TADE2**051990 1990-05-28 29 7498942be79edf4d86e179409dabdeb7 Mujer 2015-06-08 2015-08-31 PG-PAI Si
76,235 2,015 TADE2**111990 1990-11-28 28 7498942be79edf4d86e179409dabdeb7 Mujer 2015-05-08 2015-05-31 M-PR Si
92,377 2,016 RODI1**101987 1987-10-11 32 74cbaafccee38535898bb51fc7fd112b Hombre 2016-01-22 2016-07-04 PG-PAI Si
79,975 2,015 RODI1**101988 1988-10-11 31 74cbaafccee38535898bb51fc7fd112b Hombre 2015-07-08 2016-01-18 PG-PAB Si
77,028 2,015 CEMO1**101972 1972-10-29 47 74fc355b25935179803549fd5adceb72 Hombre 2015-05-04 2015-07-01 PG-PAI Si
698 2,010 CEMO1**101974 1974-10-29 45 74fc355b25935179803549fd5adceb72 Hombre 2010-01-13 2010-11-30 PG-PAB Si
160,669 2,019 JOVA1**111974 1974-11-06 45 752cadba409e4e17f40b68928ebd20d6 NA Hombre 2019-08-07 NA PG-PAB Si
99,634 2,016 JOVA1**111974 1974-11-06 44 752cadba409e4e17f40b68928ebd20d6 Hombre 2016-07-04 2016-08-16 PG-PAB Si
90,010 2,016 CADI1**111982 1982-11-04 37 75362c80ff4642594ab4f8f6442947f1 Hombre 2015-10-13 2016-01-29 PG-PR Si
82,145 2,015 CADI1**111981 1981-11-04 38 75362c80ff4642594ab4f8f6442947f1 Hombre 2015-09-08 2015-10-09 PG-PAI Si
1,529 2,010 CADI1**111982 1982-11-04 37 75362c80ff4642594ab4f8f6442947f1 Hombre 2009-10-26 2010-04-29 PG-PAB Si
153,187 2,019 FASI1**101981 1981-10-05 38 75b493039df2e22a432d2018da684a25 NA Hombre 2019-01-22 NA PG-PR Si
148,138 2,019 FASI1**101981 1981-10-05 38 75b493039df2e22a432d2018da684a25 NA Hombre 2018-07-03 2019-01-21 PG-PAI Si
112,713 2,017 FASI1**121982 1982-12-05 36 75b493039df2e22a432d2018da684a25 NA Hombre 2017-02-03 2017-10-27 PG-PAB Si
94,191 2,016 FASI1**111981 1981-11-05 38 75b493039df2e22a432d2018da684a25 Hombre 2016-01-04 2016-11-24 PG-PAB Si
59,003 2,014 FASI1**101981 1981-10-05 38 75b493039df2e22a432d2018da684a25 Hombre 2014-05-13 2015-01-29 PG-PAB Si
45,246 2,013 GEMA2**091975 1975-09-07 44 75fddfa96c61291b3ce579e108259f99 Mujer 2013-10-15 2013-10-24 M-PR Si
38,066 2,013 GEMA2**091972 1972-09-07 47 75fddfa96c61291b3ce579e108259f99 Mujer 2013-02-07 2013-06-03 PG-PAI Si
15,546 2,011 DAMO1**101974 1974-10-06 45 7622a4f7234ec787929119546d4d3d62 Hombre 2011-03-09 2011-10-03 PG-PAI Si
5,240 2,010 DAMO1**111974 1974-11-06 44 7622a4f7234ec787929119546d4d3d62 Hombre 2010-05-26 2010-07-09 PG-PAI Si
107,131 2,017 FR-B1**111979 1979-11-20 39 76e02b957001c4782084e263fb2a7536 NA Hombre 2016-05-03 2017-10-01 PG-PAI Si
93,611 2,016 FRBR1**111979 1979-11-20 39 76e02b957001c4782084e263fb2a7536 Hombre 2016-02-16 2016-05-02 PG-PR Si
91,257 2,016 FRBR1**111979 1979-11-11 39 76e02b957001c4782084e263fb2a7536 Hombre 2015-11-27 2016-02-15 PG-PAI Si
20,079 2,011 FRBR1**111980 1980-11-20 38 76e02b957001c4782084e263fb2a7536 Hombre 2011-11-16 2011-11-22 PG-PR Si
141,506 2,018 LUNU1**021984 1984-02-25 35 77283fea574a7ce104c00d83ed10995b NA Hombre 2018-08-10 2018-10-31 PG-PAB Si
92,140 2,016 LUNU1**021984 1984-02-25 35 77283fea574a7ce104c00d83ed10995b Hombre 2016-01-06 2016-04-11 PG-PAI Si
42,786 2,013 LUNU1**081994 1994-08-01 25 77283fea574a7ce104c00d83ed10995b Hombre 2013-08-01 2014-01-13 PG-PAB Si
90,557 2,016 JUMU1**061982 1982-06-24 37 7766a499af4bcfdb421b4d6f71b9e4b0 Hombre 2015-11-03 2016-06-13 PG-PAB Si
77,972 2,015 JUMU1**061982 1982-06-24 37 7766a499af4bcfdb421b4d6f71b9e4b0 Hombre 2015-06-19 2015-07-02 PG-PR Si
73,087 2,015 JUMU1**061981 1981-06-24 38 7766a499af4bcfdb421b4d6f71b9e4b0 Hombre 2015-02-03 2015-06-17 PG-PAB Si
155,696 2,019 CAMA2**041975 1975-04-17 44 77aae0548377430cad987dc039a63840 NA Mujer 2019-04-16 2019-07-24 M-PR Si
92,886 2,016 CAMA2**041975 1975-04-17 44 77aae0548377430cad987dc039a63840 Mujer 2015-12-03 2016-11-10 M-PAI Si
54,412 2,014 CAMA2**041974 1974-04-17 45 77aae0548377430cad987dc039a63840 Mujer 2014-02-05 2014-02-21 M-PR Si
28,679 2,012 CAMA2**041975 1975-04-17 44 77aae0548377430cad987dc039a63840 Mujer 2012-07-09 2012-07-09 Otro No
93,987 2,016 PACA1**091985 1985-09-27 34 77acc833ce78792ea63e3ebab6709451 Hombre 2016-02-16 2016-04-27 PG-PAI Si
46,745 2,013 PACA1**111985 1985-11-27 33 77acc833ce78792ea63e3ebab6709451 Hombre 2013-11-07 2013-12-17 PG-PAI Si
153,811 2,019 EDSO1**111993 1993-11-01 26 77e6a94c7eee342bb5d1a9fcca34014d NA Hombre 2019-02-27 2019-08-21 PG-PAB Si
139,542 2,018 ERSO1**111993 1993-11-11 25 77e6a94c7eee342bb5d1a9fcca34014d NA Hombre 2018-06-19 2018-11-20 PG-PAB Si
147,054 2,019 JOAR1**031986 1986-03-04 33 787709d3fd353f8fd571a75c8f0f0a33 NA Hombre 2018-03-28 2019-04-01 PG-PAI No
129,601 2,018 JOAR1**031999 1999-03-04 20 787709d3fd353f8fd571a75c8f0f0a33 NA Hombre 2017-09-05 2018-05-02 PG-PAB Si
86,977 2,016 JOAR1**031986 1986-03-04 33 787709d3fd353f8fd571a75c8f0f0a33 Hombre 2015-04-07 2016-02-01 PG-PAB Si
49,876 2,014 JOAR1**031986 1986-03-04 33 787709d3fd353f8fd571a75c8f0f0a33 Hombre 2013-07-29 2014-09-22 PG-PAB Si
146,460 2,019 JUES1**111989 1989-11-06 30 78bf259becd84486a56c254fbf877a6d NA Hombre 2018-01-15 2019-01-13 PG-PR Si
110,938 2,017 JUES1**111989 1989-11-08 29 78bf259becd84486a56c254fbf877a6d NA Hombre 2016-10-24 2017-05-10 PG-PAI Si
99,412 2,016 JUES1**111989 1989-11-06 29 78bf259becd84486a56c254fbf877a6d Hombre 2016-06-29 2016-09-22 PG-PAB Si
149,099 2,019 JODI1**061967 1967-06-15 52 78d38feadddd8492175dc81ca5622ade NA Hombre 2018-06-26 2019-01-31 PG-PAB Si
94,587 2,016 JODI1**061967 1967-06-15 52 78d38feadddd8492175dc81ca5622ade Hombre 2016-03-07 2016-06-22 PG-PAB Si
10,325 2,011 JODI1**061965 1965-06-15 54 78d38feadddd8492175dc81ca5622ade Hombre 2010-04-14 2014-01-02 PG-PAB Si
54,773 2,014 WIIN1**121988 1988-12-05 30 78dfa32acce0be73530b79d16f8b94b3 Hombre 2014-02-25 2014-06-09 PG-PR Si
34,475 2,013 WIIN1**121981 1981-12-05 37 78dfa32acce0be73530b79d16f8b94b3 Hombre 2012-10-02 2013-05-31 PG-PAB Si
32,653 2,013 JOME1**021970 1970-02-12 49 78e326a2fa8ddf7653194abb3aa85ac2 Hombre 2012-03-22 2013-07-01 PG-PAI Si
6,075 2,010 JOME1**021991 1991-02-12 28 78e326a2fa8ddf7653194abb3aa85ac2 Hombre 2010-06-05 2010-12-13 PG-PAI Si
99,135 2,016 DERI2**101988 1988-10-12 31 78e53ee1b4f9b39433945dd5959af9ee Mujer 2016-07-04 2016-11-23 M-PAI Si
14,938 2,011 DERI2**121988 1988-12-10 30 78e53ee1b4f9b39433945dd5959af9ee Mujer 2011-03-01 2011-07-30 PG-PAI Si
33,289 2,013 JAMA1**091992 1992-09-10 27 78f29f55bcfb4a680f8bceb90e613ce3 Hombre 2012-07-10 2013-06-03 PG-PR Si
15,320 2,011 JAMA1**091986 1986-09-10 33 78f29f55bcfb4a680f8bceb90e613ce3 Hombre 2011-04-19 2011-12-20 PG-PAB Si
120,792 2,017 INLA2**101994 1994-10-05 25 7912349ec9628c9519fb0afd2d12f52a NA Mujer 2017-08-23 2017-10-05 M-PR Si
116,155 2,017 INLA2**101984 1984-10-05 35 7912349ec9628c9519fb0afd2d12f52a NA Mujer 2017-04-17 2017-08-22 PG-PAI Si
98,309 2,016 INLA1**101994 1994-10-05 25 7912349ec9628c9519fb0afd2d12f52a Hombre 2016-06-07 2016-09-15 PG-PAI Si
148,427 2,019 PACA1**061969 1969-06-30 50 794e9dbc46eabdf8679a7603d2bf84e8 NA Hombre 2018-07-13 NA PG-PAI Si
66,869 2,015 PACA1**061970 1970-06-30 49 794e9dbc46eabdf8679a7603d2bf84e8 Hombre 2014-04-03 2015-11-13 PG-PAI Si
70,208 2,015 HEZE1**111985 1985-11-15 33 7985f3de998eb4f38c5459ca6e470ce2 Hombre 2014-11-10 2015-05-29 PG-PR Si
18,135 2,011 HECE1**111986 1986-11-15 32 7985f3de998eb4f38c5459ca6e470ce2 Hombre 2011-08-26 2011-09-29 PG-PAB Si
11,897 2,011 HECE1**111985 1985-11-15 33 7985f3de998eb4f38c5459ca6e470ce2 Hombre 2010-11-05 2011-05-31 PG-PAB Si
66,976 2,015 PETA1**081960 1960-08-20 59 79988adc284a3066b3bb575596f80f91 Hombre 2014-04-24 2015-03-27 PG-PAB Si
48,818 2,014 PETA1**081958 1958-08-07 61 79988adc284a3066b3bb575596f80f91 Hombre 2013-01-17 2014-03-07 PG-PAI Si
105,389 2,017 ISNA1**051979 1979-05-31 40 79b24f856a5844a20d2f5e44862cbb26 NA Hombre 2014-07-22 2017-02-16 PG-PAI Si
39,035 2,013 ISNA1**051968 1968-05-31 51 79b24f856a5844a20d2f5e44862cbb26 Hombre 2013-04-02 2013-08-12 PG-PAI Si
99,109 2,016 BAPE1**041996 1996-04-22 23 79d003fc83383afb5e9e3846b62c593b Hombre 2016-06-20 2016-08-24 PG-PAI No
94,070 2,016 BAPE1**041995 1995-04-22 24 79d003fc83383afb5e9e3846b62c593b Hombre 2016-02-22 2016-07-08 PG-PAI Si
161,109 2,019 MAMU1**082001 2001-08-06 18 7a4bf59c6210afe06194e942d349b900 NA Hombre 2019-08-13 NA PG-PAB Si
2,443 2,010 MAMU1**081968 1968-08-14 51 7a4bf59c6210afe06194e942d349b900 Hombre 2009-03-15 2010-04-30 PG-PR Si
37,689 2,013 MASA2**071972 1972-07-06 47 7a6c6a1ef6ed2f21b4f79496876c1d93 Mujer 2013-03-04 2013-04-30 M-PAI Si
19,431 2,011 MASA2**101971 1971-10-06 48 7a6c6a1ef6ed2f21b4f79496876c1d93 Mujer 2011-10-03 2011-12-27 M-PAI Si
34,401 2,013 MAHE2**111983 1983-11-19 35 7a712f4dca6952ab32178aa1efc92d99 Mujer 2012-10-31 2013-05-19 M-PR Si
26,435 2,012 MAHE2**061980 1980-06-08 39 7a712f4dca6952ab32178aa1efc92d99 Mujer 2012-04-17 2012-09-30 M-PAI Si
150,483 2,019 MAMA2**111984 1984-11-12 35 7ab9c36de55a0d580aabf40bb469ef44 NA Mujer 2018-11-21 NA PG PAI 2 Si
110,580 2,017 MAMA2**111984 1984-11-12 34 7ab9c36de55a0d580aabf40bb469ef44 NA Mujer 2016-11-04 2017-06-01 PG-PAB Si
103,403 2,016 MAMA2**111984 1984-11-12 34 7ab9c36de55a0d580aabf40bb469ef44 Mujer 2016-10-19 2016-10-31 M-PR Si
161,396 2,019 DAGO2**121998 1998-12-29 20 7ad7446886037ae6cb1e13d49548888a NA Mujer 2019-08-22 2019-09-30 M-PAI Si
116,168 2,017 DAGO1**121988 1988-12-29 30 7ad7446886037ae6cb1e13d49548888a NA Hombre 2017-04-03 2017-05-01 PG-PAI No
35,839 2,013 CRHI1**031975 1975-03-22 44 7b3302233c72ec8e97258a677cb21034 Hombre 2013-01-01 2014-08-01 Otro No
35,841 2,013 RACA1**011989 1989-01-01 30 7b3302233c72ec8e97258a677cb21034 Hombre 2013-01-01 2014-08-01 Otro No
35,831 2,013 RABA1**121980 1980-12-21 38 7b3302233c72ec8e97258a677cb21034 Hombre 2013-01-01 2013-08-01 PG-PAI Si
131,916 2,018 ANLO1**081969 1969-08-09 50 7b3795997d5fc54019d2783e5f145293 NA Hombre 2017-12-18 2018-03-29 PG-PAI Si
106,443 2,017 ANLO1**081964 1964-08-09 55 7b3795997d5fc54019d2783e5f145293 NA Hombre 2016-02-01 2017-03-16 PG-PR Si
90,352 2,016 ANLO1**081964 1964-08-09 55 7b3795997d5fc54019d2783e5f145293 Hombre 2015-10-05 2016-01-29 PG-PAB Si
111,913 2,017 GEGA1**041975 1975-04-10 44 7b6deba5c082b576b79bbdbbf950b48b NA Hombre 2017-01-03 2017-06-01 PG-PAI Si
92,680 2,016 GEGA1**041975 1975-04-10 44 7b6deba5c082b576b79bbdbbf950b48b Hombre 2016-01-01 2017-01-02 PG-PAB Si
37,123 2,013 GEGA1**071974 1974-07-11 45 7b6deba5c082b576b79bbdbbf950b48b Hombre 2013-02-27 2014-08-01 Otro No
109,814 2,017 CLDE1**101982 1982-10-15 37 7b7a401b447c49c4fa2dcb7d6905f546 NA Hombre 2016-10-03 2017-11-01 PG-PAI No
67,272 2,015 CLDE1**101992 1992-10-15 27 7b7a401b447c49c4fa2dcb7d6905f546 Hombre 2014-05-05 2015-05-30 PG-PAI Si
82,221 2,015 GUCA1**091980 1980-09-23 39 7b89b7a63cee4bc130272aab7adafeb3 Hombre 2015-09-11 2015-11-30 PG-PAB Si
66,161 2,015 GUCA1**121980 1980-12-18 38 7b89b7a63cee4bc130272aab7adafeb3 Hombre 2013-12-10 2015-03-31 PG-PAB Si
33,013 2,013 GUCA1**091980 1980-09-23 39 7b89b7a63cee4bc130272aab7adafeb3 Hombre 2012-06-06 2013-01-17 PG-PAB Si
9,528 2,010 GUCA1**091980 1980-09-23 39 7b89b7a63cee4bc130272aab7adafeb3 Hombre 2010-12-06 2010-12-29 PG-PR Si
9,027 2,010 GUCA1**091980 1980-09-23 39 7b89b7a63cee4bc130272aab7adafeb3 Hombre 2010-11-18 2010-12-02 PG-PAB Si
51,733 2,014 LUMU1**101972 1972-10-18 47 7bf382759a9691281b06a2207db63fe4 Hombre 2013-11-06 2015-02-06 PG-PAI Si
33,165 2,013 LUMU1**101972 1972-10-18 47 7bf382759a9691281b06a2207db63fe4 Hombre 2012-06-28 2013-04-18 PG-PAI Si
5,116 2,010 LUMU1**071976 1976-07-16 43 7bf382759a9691281b06a2207db63fe4 Hombre 2010-04-14 2010-09-14 PG-PAI Si
2,208 2,010 LUMU1**101972 1972-10-18 47 7bf382759a9691281b06a2207db63fe4 Hombre 2009-10-05 2010-03-30 PG-PAI Si
19,406 2,011 OCSI1**051989 1989-05-15 30 7bf963085fd02dc35c1aa792cc51afc1 Hombre 2011-10-19 2011-11-30 PG-PAB Si
19,403 2,011 PAAR2**081980 1980-08-30 39 7bf963085fd02dc35c1aa792cc51afc1 Mujer 2011-10-13 2011-11-14 PG-PAB Si
37,155 2,013 RORE1**041992 1992-04-01 27 7bfddefbd610a4e0ff9d7ec44f7fe14a Hombre 2013-02-13 2013-08-01 PG-PR Si
34,891 2,013 RORE1**041983 1983-04-01 36 7bfddefbd610a4e0ff9d7ec44f7fe14a Hombre 2012-11-01 2013-02-01 PG-PAI Si
153,189 2,019 ESLO2**041977 1977-04-08 42 7c03d287c2738b541c04b0a8a2e00159 NA Mujer 2019-01-24 NA PG PAI 2 Si
58,975 2,014 ESLO2**041975 1975-04-07 44 7c03d287c2738b541c04b0a8a2e00159 Mujer 2014-05-26 2014-09-01 PG-PAI Si
25,128 2,012 ESLO2**041975 1975-04-07 44 7c03d287c2738b541c04b0a8a2e00159 Mujer 2012-02-07 2012-08-21 PG-PAI Si
160,906 2,019 CRPE1**111984 1984-11-19 34 7c173ce5f2687cfa98daa69c90e1c88c NA Hombre 2019-08-20 NA PG-PAI Si
128,195 2,018 CRPE1**111985 1985-11-19 33 7c173ce5f2687cfa98daa69c90e1c88c NA Hombre 2017-06-20 2018-04-04 PG-PAI Si
42,527 2,013 GLCA2**071948 1948-07-09 71 7c40cfb8fe28b9482ec5467a3a577f7c Mujer 2013-07-30 2013-11-25 PG-PAB Si
18,322 2,011 GLCA2**081992 1992-08-09 27 7c40cfb8fe28b9482ec5467a3a577f7c Mujer 2011-08-17 2011-12-19 PG-PAB Si
152,775 2,019 MASA2**021991 1991-02-05 28 7c9263a3b09b7f260645b31ba32c5013 NA Mujer 2019-01-28 NA M-PR Si
151,610 2,019 MASA2**021991 1991-02-05 28 7c9263a3b09b7f260645b31ba32c5013 NA Mujer 2018-11-30 2019-01-25 PG-PAI Si
135,257 2,018 MASA2**021990 1990-02-05 29 7c9263a3b09b7f260645b31ba32c5013 NA Mujer 2018-01-17 2018-07-23 PG-PAI Si
147,835 2,019 MAAR2**101989 1989-10-13 30 7ce92165eb54d488f53b87750a2f63bc NA Mujer 2018-06-19 2019-01-30 PG-PAI Si
117,081 2,017 MAAR2**101989 1989-10-13 30 7ce92165eb54d488f53b87750a2f63bc NA Mujer 2017-05-05 2017-06-30 PG-PAI Si
33,958 2,013 MAAR2**101988 1988-10-03 31 7ce92165eb54d488f53b87750a2f63bc Mujer 2012-04-10 2013-05-14 PG-PAI Si
151,232 2,019 HEAR1**061980 1980-06-17 39 7d04c757a6074c006dec7df53fd823a0 NA Hombre 2018-12-13 2019-07-15 PG-PR Si
108,835 2,017 HEAR1**061980 1980-06-17 39 7d04c757a6074c006dec7df53fd823a0 NA Hombre 2016-08-31 2017-05-15 PG-PR Si
739 2,010 HEAR1**061979 1979-06-17 40 7d04c757a6074c006dec7df53fd823a0 Hombre 2010-01-06 2010-11-30 PG-PAI Si
101,859 2,016 MADI1**101990 1990-10-24 29 7d4c1ef3322a23e6e4fe4f8c76e69f9f Hombre 2016-09-21 2016-10-11 PG-PR Si
88,482 2,016 MADI1**101990 1990-10-24 29 7d4c1ef3322a23e6e4fe4f8c76e69f9f Hombre 2015-05-13 2016-03-16 PG-PR Si
65,747 2,015 MADI1**111990 1990-11-24 28 7d4c1ef3322a23e6e4fe4f8c76e69f9f Hombre 2013-07-29 2015-06-26 PG-PR Si
156,676 2,019 GUMA1**111984 1984-11-18 34 7d798ec191363c95bfe698c77577013b NA Hombre 2019-05-08 2019-08-12 PG-PR Si
152,427 2,019 GUMA1**111984 1984-11-18 34 7d798ec191363c95bfe698c77577013b NA Hombre 2019-01-04 2019-01-17 PG-PR Si
129,215 2,018 GUMA1**111984 1984-11-18 34 7d798ec191363c95bfe698c77577013b NA Hombre 2017-08-30 2018-05-22 PG-PR Si
82,496 2,015 GUMA1**101984 1984-10-18 35 7d798ec191363c95bfe698c77577013b Hombre 2015-10-15 2015-10-28 PG-PAI Si
78,737 2,015 GUMA1**111984 1984-11-18 34 7d798ec191363c95bfe698c77577013b Hombre 2015-07-08 2015-08-31 PG-PAI Si
77,006 2,015 GUMA1**111984 1984-11-18 34 7d798ec191363c95bfe698c77577013b Hombre 2015-04-17 2015-07-01 PG-PAI Si
153,734 2,019 MAPE1**031995 1995-03-03 24 7d92e6e8d55a12c1b308c78dbad0f5b9 NA Hombre 2019-01-24 2019-08-27 PG-PAI Si
127,701 2,018 MAPE1**031985 1985-03-03 34 7d92e6e8d55a12c1b308c78dbad0f5b9 NA Hombre 2017-05-10 2018-04-27 PG-PAI Si
82,082 2,015 PERO1**031985 1985-03-03 34 7d92e6e8d55a12c1b308c78dbad0f5b9 Hombre 2015-09-11 2015-11-30 PG-PAB Si
161,026 2,019 ROHE1**111960 1960-11-04 59 7db8e58afd11c6d3eced4eff910fb373 NA Hombre 2019-06-24 2019-08-30 PG-PAB Si
126,414 2,018 ROHE1**111960 1960-11-04 59 7db8e58afd11c6d3eced4eff910fb373 NA Hombre 2016-11-11 2018-03-02 PG-PAI Si
68,290 2,015 ROHE1**111960 1960-11-04 59 7db8e58afd11c6d3eced4eff910fb373 Hombre 2014-08-04 2015-03-31 PG-PAB Si
50,386 2,014 ROHE1**081961 1961-08-28 58 7db8e58afd11c6d3eced4eff910fb373 Hombre 2013-08-08 2014-01-30 PG-PAB Si
155,783 2,019 CAMU2**011981 1981-01-08 38 7e1a37328b0eb785274fa33481176b93 NA Mujer 2019-04-01 NA PG-PAI Si
141,995 2,018 CAMU2**011981 1981-01-08 38 7e1a37328b0eb785274fa33481176b93 NA Mujer 2018-09-14 2018-12-30 M-PR Si
110,400 2,017 CAMU2**011981 1981-01-08 38 7e1a37328b0eb785274fa33481176b93 NA Mujer 2016-11-15 2017-08-25 M-PAI Si
97,820 2,016 CAMU2**011996 1996-01-08 23 7e1a37328b0eb785274fa33481176b93 Mujer 2016-06-01 2016-07-25 M-PR Si
90,495 2,016 CAMU2**011981 1981-01-08 38 7e1a37328b0eb785274fa33481176b93 Mujer 2015-10-05 2016-05-31 M-PAI Si
146,428 2,019 HEVE1**111953 1953-11-08 66 7e35098fa8d8bfe853f55dd23a53736a NA Hombre 2017-12-05 2019-05-06 PG-PAI Si
86,672 2,016 HEVE1**111953 1953-11-08 65 7e35098fa8d8bfe853f55dd23a53736a Hombre 2015-03-09 2016-10-11 PG-PAB Si
71,627 2,015 HEVE1**111953 1953-11-08 65 7e35098fa8d8bfe853f55dd23a53736a Hombre 2015-01-15 2015-03-02 PG-PAI Si
71,557 2,015 MIVA2**111966 1966-11-14 52 7e89f2e9b726160dd043f65cdf105d73 Mujer 2015-01-30 2015-03-13 PG-PAI Si
50,985 2,014 MIVA2**101966 1966-10-14 53 7e89f2e9b726160dd043f65cdf105d73 Mujer 2013-10-04 2015-01-29 PG-PAI Si
25,192 2,012 MIVA2**111966 1966-11-14 52 7e89f2e9b726160dd043f65cdf105d73 Mujer 2012-02-01 2012-08-27 PG-PAB Si
31,576 2,012 IVOL1**061987 1987-06-19 32 7ead68bf9eb6d118c9afc8e8f022769d Hombre 2012-11-05 2012-11-10 PG-PR Si
24,858 2,012 IVOL1**061987 1987-06-19 32 7ead68bf9eb6d118c9afc8e8f022769d Hombre 2012-02-23 2012-05-28 PG-PR Si
18,700 2,011 IVOL1**061992 1992-06-19 27 7ead68bf9eb6d118c9afc8e8f022769d Hombre 2011-09-01 2012-02-06 PG-PR Si
14,223 2,011 IVOL1**061987 1987-06-19 32 7ead68bf9eb6d118c9afc8e8f022769d Hombre 2011-02-21 2011-05-24 PG-PR No
394 2,010 IVOL1**061987 1987-06-19 32 7ead68bf9eb6d118c9afc8e8f022769d Hombre 2009-09-14 2010-04-30 PG-PAI Si
116,591 2,017 ARSA1**091989 1989-09-04 30 7ebe33015f1d140605a4f6e319e78c65 NA Hombre 2017-05-11 2018-01-01 PG-PAI Si
93,850 2,016 ARSA1**091989 1989-09-04 30 7ebe33015f1d140605a4f6e319e78c65 Hombre 2016-02-25 2016-06-25 PG-PR Si
91,242 2,016 ARSA1**091982 1982-09-04 37 7ebe33015f1d140605a4f6e319e78c65 Hombre 2015-11-01 2016-02-24 PG-PAI Si
139,605 2,018 GABA1**121962 1962-12-09 56 7ee4a8051952e8c7fcd20dcda8799258 NA Hombre 2018-06-18 2018-10-01 PG-PAI Si
61,671 2,014 GABA1**121962 1962-12-09 56 7ee4a8051952e8c7fcd20dcda8799258 Hombre 2014-08-22 2014-12-05 PG-PAI Si
43,200 2,013 GABA1**091962 1962-09-09 57 7ee4a8051952e8c7fcd20dcda8799258 Hombre 2013-08-20 2014-02-07 PG-PAB Si
36,112 2,013 ADGO1**011985 1985-01-04 34 7efbb01941b67168c0f8577ed312c7ce Hombre 2013-01-15 2013-08-12 PG-PAB Si
26,561 2,012 ADGO1**011993 1993-01-04 26 7efbb01941b67168c0f8577ed312c7ce Hombre 2012-04-12 2012-08-30 PG-PAB Si
145,749 2,019 MAUR1**111973 1973-11-12 46 7f056d646d8b09fded9c7de235d2418b NA Hombre 2016-06-28 2019-02-01 PG-PAB Si
95,533 2,016 MAUR1**111973 1973-11-12 45 7f056d646d8b09fded9c7de235d2418b Hombre 2016-02-08 2016-06-27 PG-PAI Si
52,065 2,014 MAUR1**111973 1973-11-13 45 7f056d646d8b09fded9c7de235d2418b Hombre 2013-11-28 2014-02-25 PG-PAB Si
130,305 2,018 KACA2**061982 1982-06-02 37 7f058d0c08ccbbef4f7d773bd65cb033 NA Mujer 2017-09-29 2018-04-27 PG-PAI Si
66,308 2,015 KACA2**121982 1982-12-02 36 7f058d0c08ccbbef4f7d773bd65cb033 Mujer 2014-01-09 2015-04-21 PG-PAI Si
24,144 2,012 KACA1**061982 1982-06-02 37 7f058d0c08ccbbef4f7d773bd65cb033 Hombre 2012-01-02 2012-04-13 PG-PAI Si
17,182 2,011 KACA2**061982 1982-06-02 37 7f058d0c08ccbbef4f7d773bd65cb033 Mujer 2011-07-01 2012-01-02 M-PAI Si
27,258 2,012 JUCA1**091969 1969-09-17 50 7f2f4d16ef1e42caaf1d484e0fec91fc Hombre 2012-05-16 2012-12-19 PG-PAI Si
14,494 2,011 JUCA1**091968 1968-09-17 51 7f2f4d16ef1e42caaf1d484e0fec91fc Hombre 2011-03-24 2011-04-08 PG-PR Si
151,340 2,019 MAPE2**111975 1975-11-11 44 7f7af02b8c925fc5fbea240a0e1588fd NA Mujer 2018-12-07 2019-03-01 PG-PAI Si
122,836 2,017 MAPE2**111975 1975-11-11 43 7f7af02b8c925fc5fbea240a0e1588fd NA Mujer 2017-10-11 2018-01-01 M-PR Si
67,267 2,015 MAPE2**111975 1975-11-11 43 7f7af02b8c925fc5fbea240a0e1588fd Mujer 2014-05-26 2015-04-01 PG-PAI Si
89,343 2,016 CRMO1**121987 1987-12-29 31 7f9dbed4d11d1ab3608079ef7a04f63e Hombre 2015-08-27 2016-02-29 PG-PR Si
53,554 2,014 CRMO1**121986 1986-12-28 32 7f9dbed4d11d1ab3608079ef7a04f63e Hombre 2014-01-19 2014-02-05 PG-PR No
24,378 2,012 CRMO1**121987 1987-12-28 31 7f9dbed4d11d1ab3608079ef7a04f63e Hombre 2012-01-11 2012-11-26 PG-PR Si
128,864 2,018 DOBA2**071965 1965-07-01 54 7fa667208183819eec3cf70d18334f63 NA Mujer 2017-08-07 2018-03-05 PG-PAI Si
77,329 2,015 DOBA1**071964 1964-07-01 55 7fa667208183819eec3cf70d18334f63 Hombre 2015-06-03 2015-07-22 PG-PAI Si
13,181 2,011 MAMU2**121987 1987-12-23 31 7fb1d4b58666b99c79240e383ff8f0dc Mujer 2011-01-03 2011-03-31 PG-PAI Si
16,324 2,011 MAMU2**051987 1987-05-23 32 7fb1d4b58666b99c79240e383ff8f0dc Mujer 2010-12-21 2011-09-16 PG-PAB Si
116,885 2,017 MAZA2**051999 1999-05-22 20 7fbc4c4ec5f8762f9af7f6e5cf98a6cc NA Mujer 2017-05-22 2017-06-05 PG-PAI Si
113,945 2,017 MAZA2**071980 1980-07-07 39 7fbc4c4ec5f8762f9af7f6e5cf98a6cc NA Mujer 2017-02-27 2017-04-03 PG-PAI Si
110,601 2,017 CABR1**061990 1990-06-01 29 7fce87cd9b07336d35f0c8e39acbe31c NA Hombre 2016-11-28 2017-05-31 PG-PR Si
70,929 2,015 CABR1**061999 1999-06-01 20 7fce87cd9b07336d35f0c8e39acbe31c Hombre 2015-01-12 2015-03-30 PG-PAB Si
51,174 2,014 ALAL1**121975 1975-12-12 43 7fced0f894e710f36dbb3d837188ca82 Hombre 2013-10-22 2014-02-28 PG-PAB Si
11,698 2,011 ALAL1**121985 1985-12-18 33 7fced0f894e710f36dbb3d837188ca82 Hombre 2010-11-01 2011-07-01 PG-PAB Si
49,491 2,014 JUFI1**011962 1962-01-04 57 7feb76f9ec7b34f0b2e8c5c52a56dced Hombre 2013-06-27 2014-06-16 PG-PAI Si
4,390 2,010 JUFI1**011972 1972-01-04 47 7feb76f9ec7b34f0b2e8c5c52a56dced Hombre 2010-03-01 2010-09-30 PG-PAI Si
92,813 2,016 GUBR1**121974 1974-12-24 44 802b98b3feed7bae1908c32a42965aea Hombre 2016-01-16 2016-03-23 PG-PR Si
85,883 2,016 GUBR1**121973 1973-12-24 45 802b98b3feed7bae1908c32a42965aea Hombre 2014-09-02 2016-01-15 PG-PAB Si
113,330 2,017 EDHE1**091948 1948-09-18 71 8055b860982936f7201bd607803c54d3 NA Hombre 2017-02-13 2017-12-01 PG-PAI Si
87,646 2,016 EDHE1**091949 1949-09-18 70 8055b860982936f7201bd607803c54d3 Hombre 2015-05-20 2016-05-20 PG-PAI Si
37,202 2,013 CRVA1**111982 1982-11-16 36 8074963d3860cce4abef913b1b074d30 Hombre 2013-02-08 2013-05-20 PG-PAB Si
23,010 2,012 CRVA1**111992 1992-11-16 26 8074963d3860cce4abef913b1b074d30 Hombre 2011-11-03 2012-07-31 PG-PAB Si
76,977 2,015 GACA1**101967 1967-10-21 52 8082981f2de11a4951f654ebdf3800e5 Hombre 2015-05-04 2015-09-01 PG-PAB Si
13,141 2,011 GACA1**101967 1967-10-21 52 8082981f2de11a4951f654ebdf3800e5 Hombre 2010-12-27 2011-04-07 PG-PAI Si
11,336 2,011 GACA1**101960 1960-10-21 59 8082981f2de11a4951f654ebdf3800e5 Hombre 2010-08-30 2011-01-04 PG-PAB Si
160,451 2,019 LUVE1**111971 1971-11-03 48 80908ed8e37806d95649dacad8bfc085 NA Hombre 2019-08-19 NA PG-PAB Si
59,280 2,014 LUVE1**111971 1971-11-11 47 80908ed8e37806d95649dacad8bfc085 Hombre 2014-06-11 2014-11-28 PG-PAB Si
137,320 2,018 JURE1**051980 1980-05-05 39 80a3453a3083fd91f438f36066759eb1 NA Hombre 2018-05-03 2018-06-29 PG-PAI Si
116,756 2,017 JURE1**051983 1983-05-05 36 80a3453a3083fd91f438f36066759eb1 NA Hombre 2017-05-16 2017-11-01 PG-PAB Si
94,140 2,016 CRAL1**011980 1980-01-26 39 80e0c1187da0abc82409f95f241e2350 Hombre 2016-02-17 2016-09-01 PG-PAI Si
91,202 2,016 CRAL1**041979 1979-04-25 40 80e0c1187da0abc82409f95f241e2350 Hombre 2015-11-04 2016-02-16 PG-PAB Si
68,437 2,015 LUJE1**091987 1987-09-06 32 80fb49405b6aa76a3406ae7b7cc33cc7 Hombre 2014-08-21 2015-02-06 PG-PR Si
58,209 2,014 LUJE1**021989 1989-02-25 30 80fb49405b6aa76a3406ae7b7cc33cc7 Hombre 2014-05-07 2014-08-29 PG-PAI Si
54,420 2,014 LUJE1**091987 1987-09-06 32 80fb49405b6aa76a3406ae7b7cc33cc7 Hombre 2014-02-03 2014-02-28 PG-PAI Si
51,756 2,014 LUJE1**091987 1987-09-06 32 80fb49405b6aa76a3406ae7b7cc33cc7 Hombre 2013-11-18 2014-01-31 PG-PR Si
44,152 2,013 LUJE1**091987 1987-09-06 32 80fb49405b6aa76a3406ae7b7cc33cc7 Hombre 2013-09-06 2013-11-01 PG-PR Si
48,786 2,014 LOOR2**011994 1994-01-23 25 80ff7ce3611b1244edde94498bef6f3f Mujer 2013-04-22 2014-05-02 PG-PR Si
35,040 2,013 IROR2**011971 1971-01-23 48 80ff7ce3611b1244edde94498bef6f3f Mujer 2011-11-29 2013-05-29 PG-PAB Si
27,222 2,012 IROR2**011971 1971-01-23 48 80ff7ce3611b1244edde94498bef6f3f Mujer 2011-11-29 2012-10-31 PG-PAI Si
16,986 2,011 NEGO1**121980 1980-12-24 38 813a63201654b6bf14fe6b60ca337422 Hombre 2011-05-02 2011-09-30 PG-PAI Si
15,688 2,011 NEGO1**051992 1992-05-02 27 813a63201654b6bf14fe6b60ca337422 Hombre 2011-05-02 2011-06-06 PG-PAB Si
93,981 2,016 GIBR2**091975 1975-09-06 44 813c205f166f98abc19f65b62fbfd103 Mujer 2015-12-29 2016-05-31 M-PAI Si
23,318 2,012 GIBR2**091977 1977-09-06 42 813c205f166f98abc19f65b62fbfd103 Mujer 2011-11-14 2012-02-01 M-PAI Si
79,356 2,015 JUGU1**021960 1960-02-22 59 8153adad8f356b63b13a03de47602540 Hombre 2015-07-22 2015-10-01 PG-PAI Si
69,348 2,015 JUGU1**051969 1969-05-09 50 8153adad8f356b63b13a03de47602540 Hombre 2014-09-17 2015-06-24 PG-PAI Si
35,050 2,013 FEZU1**011977 1977-01-22 42 815971a821a8d0e0ab0c5fa7e2f0d6eb Hombre 2012-12-13 2013-03-18 PG-PR Si
31,601 2,012 FEZU1**011976 1976-01-22 43 815971a821a8d0e0ab0c5fa7e2f0d6eb Hombre 2012-11-26 2012-12-13 PG-PAI Si
61,319 2,014 JOGU1**121981 1981-12-01 37 81ab2e9233e4802818d08547892520e3 Hombre 2014-08-18 2014-09-18 PG-PR Si
20,860 2,012 JOGU1**121982 1982-12-01 36 81ab2e9233e4802818d08547892520e3 Hombre 2011-01-11 2012-01-11 PG-PR Si
411 2,010 JOGU1**121982 1982-12-01 36 81ab2e9233e4802818d08547892520e3 Hombre 2009-06-03 2010-02-26 PG-PAI Si
31,582 2,012 HEVI1**071957 1957-07-16 62 81db9a093bd2011abc74b232ceccb14c Hombre 2012-11-16 2012-12-30 PG-PR Si
28,458 2,012 HEVI1**061957 1957-06-16 62 81db9a093bd2011abc74b232ceccb14c Hombre 2012-05-10 2012-10-16 PG-PR Si
20,529 2,011 HEVI1**121957 1957-12-16 61 81db9a093bd2011abc74b232ceccb14c Hombre 2011-12-19 2011-12-21 PG-PR Si
34,938 2,013 PALE1**051980 1980-05-21 39 823dcf183768c9eff2ebeaacce5aa6dd Hombre 2012-11-15 2013-06-05 PG-PAB Si
3,256 2,010 PALE1**081976 1976-08-20 43 823dcf183768c9eff2ebeaacce5aa6dd Hombre 2009-12-14 2010-12-30 PG-PAB Si
102,049 2,016 GUCA1**071967 1967-07-15 52 82c1308daf883286e43cff5cb2491425 Hombre 2016-09-07 2016-10-27 PG-PAB Si
95,228 2,016 GUCA1**071965 1965-07-15 54 82c1308daf883286e43cff5cb2491425 Hombre 2016-03-15 2016-08-23 PG-PR No
74,139 2,015 CRMU1**071978 1978-07-31 41 82d737b82d6561071f0f311b37874fae Hombre 2015-02-02 2015-07-01 PG-PAI Si
68,594 2,015 CRMU1**071978 1978-07-31 41 82d737b82d6561071f0f311b37874fae Hombre 2014-09-17 2015-02-24 PG-PR Si
53,222 2,014 CRMU1**071998 1998-07-31 21 82d737b82d6561071f0f311b37874fae Hombre 2014-01-21 2014-06-20 PG-PAB Si
147,154 2,019 LUVA1**111964 1964-11-16 54 830b2e20ddcb67fc3c01101c8cbc065d NA Hombre 2018-04-04 2019-07-10 PG-PAB Si
93,194 2,016 LUVA1**121962 1962-12-25 56 830b2e20ddcb67fc3c01101c8cbc065d Hombre 2016-01-04 2016-08-01 PG-PAI Si
141,900 2,018 MATO1**091969 1969-09-22 50 835a5b95bbe4e77c1aa029d3005c72b2 NA Hombre 2018-07-18 2018-11-20 PG-PAB No
107,924 2,017 MATO1**091968 1968-09-22 51 835a5b95bbe4e77c1aa029d3005c72b2 NA Hombre 2016-07-06 2017-03-01 PG-PAB Si
89,976 2,016 MATO1**091968 1968-09-22 51 835a5b95bbe4e77c1aa029d3005c72b2 Hombre 2015-10-16 2016-05-02 PG-PAB Si
38,399 2,013 NEVE1**071971 1971-07-23 48 836311baae5bc4997cdfc55e4fd1c0ab Hombre 2012-03-14 2013-08-01 PG-PR No
13,498 2,011 NEVE1**061990 1990-06-23 29 836311baae5bc4997cdfc55e4fd1c0ab Hombre 2010-12-02 2011-04-30 PG-PAI Si
107,358 2,017 MAVI2**051981 1981-05-06 38 83e1f2097f359ed3ddb41e9ec41b2dbf NA Mujer 2016-05-16 2017-04-12 PG-PAB Si
96,971 2,016 MAVI2**121982 1982-12-09 36 83e1f2097f359ed3ddb41e9ec41b2dbf Mujer 2016-05-16 2016-05-24 PG-PAB No
65,608 2,015 FAAN2**121976 1976-12-16 42 842052ebaea63fe49cc63010bc0644d8 Mujer 2013-05-08 2016-01-05 PG-PAI Si
36,916 2,013 FAAN2**121977 1977-12-16 41 842052ebaea63fe49cc63010bc0644d8 Mujer 2013-02-13 2013-05-23 PG-PAI Si
160,416 2,019 ALCO1**061985 1985-06-17 34 8486e0be1cc2e63d6acde089c7468030 NA Hombre 2019-08-13 2019-10-11 PG-PR Si
69,758 2,015 ALCO1**061983 1983-06-17 36 8486e0be1cc2e63d6acde089c7468030 Hombre 2014-11-07 2015-02-06 PG-PAB Si
58,504 2,014 ALCO1**061985 1985-06-17 34 8486e0be1cc2e63d6acde089c7468030 Hombre 2014-06-10 2014-11-03 PG-PR Si
58,397 2,014 ALCO1**061985 1985-06-17 34 8486e0be1cc2e63d6acde089c7468030 Hombre 2014-05-29 2014-06-09 PG-PR Si
56,799 2,014 ALCO1**061985 1985-06-17 34 8486e0be1cc2e63d6acde089c7468030 Hombre 2014-04-07 2014-05-29 PG-PAB Si
93,415 2,016 XIHE2**051955 1955-05-29 64 8487bd56f2ad6eefbb74d59038058557 Mujer 2016-01-06 2016-12-26 PG-PAB Si
52,817 2,014 XIHE2**051959 1959-05-29 60 8487bd56f2ad6eefbb74d59038058557 Mujer 2013-10-03 2014-06-18 PG-PAB Si
108,608 2,017 JACA1**101976 1976-10-21 43 848c7948217bcd59bc6d7bcee796cb98 NA Hombre 2016-08-25 2017-04-21 PG-PAI Si
59,749 2,014 JACA1**101978 1978-10-21 41 848c7948217bcd59bc6d7bcee796cb98 Hombre 2014-07-21 2014-11-12 PG-PAI Si
142,849 2,018 HEBR1**061994 1994-06-18 25 8492e8655189acb939406b1eded1ebf2 NA Hombre 2018-10-02 2018-12-20 PG-PAB Si
134,157 2,018 HEBR1**061994 1994-06-18 25 8492e8655189acb939406b1eded1ebf2 NA Hombre 2018-02-26 2018-03-27 PG-PAB Si
36,047 2,013 HEBR1**061991 1991-06-18 28 8492e8655189acb939406b1eded1ebf2 Hombre 2013-01-02 2013-07-31 PG-PAI Si
121,223 2,017 SAFI2**101976 1976-10-10 43 84e01c039886d4a5d6d669d703e77272 NA Mujer 2017-08-10 2017-12-18 PG-PAI Si
76,559 2,015 SAFI2**101978 1978-10-10 41 84e01c039886d4a5d6d669d703e77272 Mujer 2015-05-15 2015-06-25 Otro No
149,094 2,019 LUVI1**082000 2000-08-08 19 84f3286a03fcf39e430b9afeeb69f422 NA Hombre 2018-08-06 2019-02-25 PG-PAB No
28,663 2,012 LUVI1**051970 1970-05-30 49 84f3286a03fcf39e430b9afeeb69f422 Hombre 2012-07-25 2012-11-23 PG-PAB No
131,671 2,018 JOBU1**081995 1995-08-28 24 8571bf9534897a5482aa007ddb2540ad NA Hombre 2017-12-05 2018-03-01 PG-PAI Si
107,536 2,017 JOBU1**081975 1975-08-28 44 8571bf9534897a5482aa007ddb2540ad NA Hombre 2016-06-01 2017-04-13 PG-PAB Si
34,293 2,013 INSC2**121986 1986-12-09 32 85bbd702c2cf277e54c343f46b3899ea Mujer 2010-03-24 2013-05-27 PG-PAB Si
4,735 2,010 INSC2**121985 1985-12-09 33 85bbd702c2cf277e54c343f46b3899ea Mujer 2010-03-24 2010-11-30 PG-PAB Si
157,618 2,019 PAMA1**061989 1989-06-17 30 85be0c1c012681f21d4da017a2681ed6 NA Hombre 2019-05-20 NA PG-PR Si
155,358 2,019 PAMA1**061989 1989-06-17 30 85be0c1c012681f21d4da017a2681ed6 NA Hombre 2019-04-01 2019-05-20 PG-PAB No
111,570 2,017 PAMA1**071988 1988-07-17 31 85be0c1c012681f21d4da017a2681ed6 NA Hombre 2017-01-24 2017-03-31 PG-PAI Si
115,295 2,017 PAMA1**061989 1989-06-19 30 85be0c1c012681f21d4da017a2681ed6 NA Hombre 2016-03-31 2017-07-28 PG-PR Si
90,418 2,016 BAGA1**061993 1993-06-02 26 85c862ae0104e7737f352302fa78e05b Hombre 2015-10-27 2016-06-10 PG-PR Si
77,525 2,015 BAGA1**061993 1993-06-02 26 85c862ae0104e7737f352302fa78e05b Hombre 2015-06-08 2015-10-27 PG-PAI Si
74,812 2,015 BAGA1**061983 1983-06-02 36 85c862ae0104e7737f352302fa78e05b Hombre 2015-04-02 2015-06-11 PG-PAB Si
108,493 2,017 ANSI1**031983 1983-03-24 36 85d346f51f251acb9195cfd24d9776bf NA Hombre 2015-08-20 NA PG-PAB No
10,534 2,011 ANSI1**041985 1985-04-10 34 85d346f51f251acb9195cfd24d9776bf Hombre 2008-12-06 2011-08-30 PG-PAI Si
132,907 2,018 ALGU1**091991 1991-09-02 28 8618a712b43c6e7ee20222a4fd25060f NA Hombre 2018-01-05 2018-03-27 PG-PAI Si
103,097 2,016 ALGU1**091992 1992-09-02 27 8618a712b43c6e7ee20222a4fd25060f Hombre 2016-10-18 2016-12-13 PG-PAI Si
51,624 2,014 JISA1**041977 1977-04-29 42 862cfdf610525383d0694fa81fe395c9 Hombre 2013-10-11 2014-05-08 PG-PAB No
35,648 2,013 JISA1**091987 1987-09-24 32 862cfdf610525383d0694fa81fe395c9 Hombre 2013-01-23 2013-07-02 PG-PAI Si
34,074 2,013 JISA1**041977 1977-04-29 42 862cfdf610525383d0694fa81fe395c9 Hombre 2012-10-04 2013-01-23 PG-PAB Si
79,600 2,015 ORPE2**071975 1975-07-31 44 86336bb5bb11a730008514dd3ed8690d Mujer 2015-07-20 2015-08-27 PG-PAI Si
29,090 2,012 ORPE2**071974 1974-07-31 45 86336bb5bb11a730008514dd3ed8690d Mujer 2012-06-05 2013-01-28 PG-PAB Si
130,850 2,018 PAAV2**101997 1997-10-19 22 865d8750fff6ca0711f52527bcd70b96 NA Mujer 2017-10-31 2018-07-02 PG-PAI Si
52,771 2,014 PAAV2**101977 1977-10-19 42 865d8750fff6ca0711f52527bcd70b96 Mujer 2013-12-04 2014-02-28 PG-PAB Si
29,912 2,012 PAAV2**101977 1977-10-19 42 865d8750fff6ca0711f52527bcd70b96 Mujer 2012-08-27 2012-11-12 PG-PAI Si
36,446 2,013 CRCO1**051979 1979-05-23 40 8674147dacd409cadae927788a76ddb8 Hombre 2012-11-01 2013-03-28 PG-PAI Si
31,424 2,012 CRCO1**051993 1993-05-23 26 8674147dacd409cadae927788a76ddb8 Hombre 2012-11-01 2012-12-31 PG-PAI Si
37,076 2,013 YEMA1**021994 1994-02-04 25 8726256265d84df49249e0f0b26f195e Hombre 2013-01-08 2013-03-01 PG-PAI Si
16,664 2,011 YEMA1**091984 1984-09-13 35 8726256265d84df49249e0f0b26f195e Hombre 2011-05-02 2011-07-14 PG-PAI Si
5,598 2,010 YEMA2**091984 1984-09-13 35 8726256265d84df49249e0f0b26f195e Mujer 2010-05-28 2010-10-29 PG-PAI Si
111,932 2,017 TAVA2**081971 1971-08-20 48 8757f231ddf4793554c903b4731eaf15 NA Mujer 2017-01-03 2017-07-11 M-PAI Si
103,425 2,016 TAVA2**081961 1961-08-20 58 8757f231ddf4793554c903b4731eaf15 Mujer 2016-10-20 2016-12-20 PG-PR Si
100,630 2,016 TAVA2**081971 1971-08-20 48 8757f231ddf4793554c903b4731eaf15 Mujer 2016-07-01 2016-10-19 PG-PAB Si
87,068 2,016 TAVA2**081971 1971-08-20 48 8757f231ddf4793554c903b4731eaf15 Mujer 2015-04-16 2016-04-25 M-PR Si
46,078 2,013 MABO2**091979 1979-09-20 40 879a19a32a5259edb6cae9fe888baf64 Mujer 2013-10-14 2013-11-29 M-PR Si
18,411 2,011 MABO2**121979 1979-12-12 39 879a19a32a5259edb6cae9fe888baf64 Mujer 2011-09-14 2011-12-01 PG-PAB Si
148,119 2,019 RABU1**091994 1994-09-27 25 87efaabac9feb3e3c0be83d46594c409 NA Hombre 2018-07-04 2019-03-20 PG-PAB Si
131,605 2,018 RABU1**091999 1999-09-27 20 87efaabac9feb3e3c0be83d46594c409 NA Hombre 2017-12-04 2018-03-05 PG-PAB No
77,383 2,015 RABU1**091994 1994-09-27 25 87efaabac9feb3e3c0be83d46594c409 Hombre 2015-06-02 2015-12-15 PG-PAB Si
153,197 2,019 CRAL1**111987 1987-11-07 32 87f18cb238fda1c0bbe92395f9b252d1 NA Hombre 2019-01-11 NA PG-PR Si
79,459 2,015 CRAL1**111987 1987-11-07 31 87f18cb238fda1c0bbe92395f9b252d1 Hombre 2015-07-28 2015-08-21 PG-PR Si
48,629 2,014 CRAL1**111987 1987-11-11 31 87f18cb238fda1c0bbe92395f9b252d1 Hombre 2013-03-15 2014-03-19 PG-PR Si
141,563 2,018 HURO1**041975 1975-04-28 44 880b8ef593c93590de005b78490801da NA Hombre 2018-08-13 2018-12-20 PG-PAI Si
32,237 2,013 HURO1**041976 1976-04-28 43 880b8ef593c93590de005b78490801da Hombre 2011-08-29 2013-08-20 PG-PAI Si
87,132 2,016 JOTO1**081978 1978-08-24 41 880bd5b87071a6c084ca6c129ba70010 Hombre 2015-04-20 2016-11-14 PG-PAI Si
65,017 2,014 JOTO1**081972 1972-08-24 47 880bd5b87071a6c084ca6c129ba70010 Hombre 2014-12-16 2015-01-09 PG-PAI Si
114,411 2,017 JOCI1**051993 1993-05-21 26 8885d3e3f457e4842b0f18951590bf14 NA Hombre 2017-03-13 2017-08-30 PG-PAB Si
59,086 2,014 JOCI1**051983 1983-05-21 36 8885d3e3f457e4842b0f18951590bf14 Hombre 2014-06-30 2015-02-04 PG-PAB Si
33,203 2,013 JOCI1**051983 1983-05-21 36 8885d3e3f457e4842b0f18951590bf14 Hombre 2012-06-12 2013-05-07 PG-PAB Si
24,148 2,012 VICA1**021977 1977-02-01 42 88aeb00e9bce5906701ec06a3c219771 Hombre 2012-01-30 2012-11-30 PG-PAI Si
14,036 2,011 VICA1**021975 1975-02-01 44 88aeb00e9bce5906701ec06a3c219771 Hombre 2011-02-10 2011-04-26 PG-PAI Si
93,184 2,016 SABA2**011996 1996-01-02 23 88b8e9880d4eb0de0f2f844e80c4d0d5 Mujer 2016-01-30 2016-08-27 PG-PAB Si
36,480 2,013 SABA2**111976 1976-11-02 43 88b8e9880d4eb0de0f2f844e80c4d0d5 Mujer 2013-01-02 2014-01-02 PG-PAB Si
106,296 2,017 CIBI1**111953 1953-11-05 66 8908871912b72c6e9d1a4ac1378956da NA Hombre 2016-01-04 2017-02-01 PG-PAI Si
77,042 2,015 CIBI1**111953 1953-11-15 65 8908871912b72c6e9d1a4ac1378956da Hombre 2015-05-26 2016-01-01 PG-PAB Si
95,960 2,016 SATO1**031996 1996-03-07 23 891b060f5c97fed92c0b29a96ce41130 Hombre 2016-04-21 2016-11-30 PG-PAB No
45,005 2,013 SATO1**051987 1987-05-21 32 891b060f5c97fed92c0b29a96ce41130 Hombre 2013-10-01 2014-03-25 PG-PAB Si
41,868 2,013 MAAR1**011975 1975-01-09 44 89330775e65bde866816f203ae2e069f Hombre 2013-07-15 2013-09-09 PG-PAI Si
40,368 2,013 MAAR1**011994 1994-01-09 25 89330775e65bde866816f203ae2e069f Hombre 2013-05-24 2013-07-15 PG-PAB Si
160,348 2,019 MAZU1**071982 1982-07-18 37 8986d5a0c48569dfe6b8e041b4ff9a73 NA Hombre 2019-08-13 2019-10-11 PG-PR Si
159,193 2,019 MAZU1**071980 1980-07-18 39 8986d5a0c48569dfe6b8e041b4ff9a73 NA Hombre 2019-07-01 2019-08-12 PG-PAI Si
84,117 2,015 MAZU1**071982 1982-07-18 37 8986d5a0c48569dfe6b8e041b4ff9a73 Hombre 2015-10-26 2016-01-01 PG-PAI Si
81,322 2,015 MAZU1**071982 1982-07-18 37 8986d5a0c48569dfe6b8e041b4ff9a73 Hombre 2015-09-02 2015-11-04 PG-PAB Si
36,049 2,013 EDAR1**111980 1980-11-11 38 899145d4e6d8989d7de8c70919ddf64f Hombre 2013-01-01 2014-08-01 Otro No
21,639 2,012 EDAR1**111980 1980-11-03 39 899145d4e6d8989d7de8c70919ddf64f Hombre 2011-06-01 2012-04-02 PG-PAI Si
147,590 2,019 LURA1**111951 1951-11-13 68 89a6010471b72de92a5b55c049b2cc7b NA Hombre 2018-04-16 2019-01-09 PG-PAI Si
34,573 2,013 LURA1**111951 1951-11-13 67 89a6010471b72de92a5b55c049b2cc7b Hombre 2012-10-24 2013-07-17 PG-PAI Si
100,869 2,016 JERO2**121964 1964-12-09 54 89de8046f2d77738ff27b5c5b2e3ccf0 Mujer 2016-08-25 2016-10-01 M-PAI Si
73,118 2,015 JERO2**121969 1969-12-09 49 89de8046f2d77738ff27b5c5b2e3ccf0 Mujer 2015-02-20 2015-11-02 M-PAI Si
69,132 2,015 JERO2**121964 1964-12-09 54 89de8046f2d77738ff27b5c5b2e3ccf0 Mujer 2014-10-15 2015-02-03 PG-PAI Si
52,352 2,014 JERO2**121969 1969-12-09 49 89de8046f2d77738ff27b5c5b2e3ccf0 Mujer 2013-10-29 2014-06-02 PG-PAI Si
118,436 2,017 JOAH1**111992 1992-11-05 27 89f1d151b9185e1d474c86dd6b147378 NA Hombre 2017-06-01 2017-11-01 PG-PAB Si
63,644 2,014 JOAH1**111992 1992-11-08 26 89f1d151b9185e1d474c86dd6b147378 Hombre 2014-10-16 2014-11-12 PG-PR Si
129,888 2,018 MAGU1**101988 1988-10-18 31 89f62bfdac85416857926ed9c82fb033 NA Hombre 2017-07-26 2018-03-30 PG-PAI Si
111,594 2,017 MAGU1**101968 1968-10-18 51 89f62bfdac85416857926ed9c82fb033 NA Hombre 2017-01-11 2017-07-21 PG-PAI Si
162,247 2,019 ROVI1**011984 1984-01-22 35 89f84dd885338483ef055db7bc74b150 NA Hombre 2019-10-01 NA PG-PAI Si
152,017 2,019 ROVI1**011984 1984-01-22 35 89f84dd885338483ef055db7bc74b150 NA Hombre 2019-01-02 2019-04-30 PG-PAI Si
112,647 2,017 ROVI1**011984 1984-01-22 35 89f84dd885338483ef055db7bc74b150 NA Hombre 2017-01-11 2017-07-01 PG-PAI Si
79,760 2,015 ROVI1**011989 1989-01-22 30 89f84dd885338483ef055db7bc74b150 Hombre 2015-07-09 2015-09-28 PG-PAB Si
153,588 2,019 HURO1**111971 1971-11-17 47 8a2deaa283c91386186637ca7b3857d4 NA Hombre 2019-02-15 2019-05-15 PG-PAB Si
129,728 2,018 HURO1**111972 1972-11-17 46 8a2deaa283c91386186637ca7b3857d4 NA Hombre 2017-09-14 2018-05-17 PG-PAB Si
163,007 2,019 BALE1**021989 1989-02-12 30 8abd86772a97e2294eefcbe98d4fe087 NA Hombre 2019-10-01 NA PG-PAI Si
80,469 2,015 BALE1**121989 1989-12-02 29 8abd86772a97e2294eefcbe98d4fe087 Hombre 2015-07-01 2015-10-01 PG-PAI Si
49,486 2,014 BALE1**021989 1989-02-12 30 8abd86772a97e2294eefcbe98d4fe087 Hombre 2013-06-03 2014-01-31 PG-PAB Si
12,273 2,011 HEPI1**121982 1982-12-31 36 8af7ac34df3a2c765dc67e0d3516216d Hombre 2010-10-14 2011-03-03 PG-PAB Si
4,232 2,010 HEPI1**011982 1982-01-31 37 8af7ac34df3a2c765dc67e0d3516216d Hombre 2010-03-11 2010-05-31 PG-PAB Si
72,316 2,015 PAGO1**111985 1985-11-05 34 8b0446b7ce0371bc777ce7c86f8eebd9 Hombre 2014-10-16 2015-08-12 PG-PAI Si
61,829 2,014 PAGO1**111989 1989-11-05 30 8b0446b7ce0371bc777ce7c86f8eebd9 Hombre 2014-08-12 2014-12-01 PG-PAB Si
42,158 2,013 PAGO1**111989 1989-11-05 30 8b0446b7ce0371bc777ce7c86f8eebd9 Hombre 2013-07-08 2014-07-30 PG-PAB Si
161,291 2,019 NAGA2**111985 1985-11-07 34 8b2b3cd05b8247f728afce208e580642 NA Mujer 2019-08-29 NA M-PAI Si
71,641 2,015 NAGA2**111985 1985-11-11 33 8b2b3cd05b8247f728afce208e580642 Mujer 2014-12-29 2015-04-24 M-PAI Si
158,992 2,019 ANLI1**111986 1986-11-10 33 8b3123c463211b298aacb910d6491e3c NA Hombre 2019-07-02 NA PG-PR Si
46,688 2,013 ANLI1**111966 1966-11-03 53 8b3123c463211b298aacb910d6491e3c Hombre 2013-11-04 2013-12-31 PG-PAI Si
24,041 2,012 ANLI1**111986 1986-11-10 32 8b3123c463211b298aacb910d6491e3c Hombre 2012-01-16 2012-02-28 PG-PAI Si
16,013 2,011 ANEN1**111986 1986-11-10 32 8b3123c463211b298aacb910d6491e3c Hombre 2011-05-25 2011-06-21 PG-PAI Si
120,139 2,017 MICA1**091991 1991-09-09 28 8b88b2aa718344659aab7f8bf71e8942 NA Hombre 2017-07-31 2017-11-01 PG-PAB Si
50,015 2,014 MICA1**091981 1981-09-09 38 8b88b2aa718344659aab7f8bf71e8942 Hombre 2013-07-18 2014-05-16 PG-PAB Si
53,348 2,014 DASO1**071982 1982-07-22 37 8b939c5a0d211d894ad5636526e80134 Hombre 2014-01-20 2014-09-05 PG-PR Si
13,528 2,011 DASO1**071981 1981-07-22 38 8b939c5a0d211d894ad5636526e80134 Hombre 2011-02-07 2011-09-10 PG-PR Si
150,567 2,019 MIPE1**041983 1983-04-19 36 8b9be11632bc73ec04e5cb50745ebb7f NA Hombre 2018-11-19 2019-06-28 PG-PAI Si
68,010 2,015 MIPE1**041983 1983-04-19 36 8b9be11632bc73ec04e5cb50745ebb7f Hombre 2014-07-04 2015-11-04 PG-PAI Si
19,197 2,011 MIPE1**041983 1983-04-19 36 8b9be11632bc73ec04e5cb50745ebb7f Hombre 2011-10-21 2011-12-16 PG-PR Si
1,566 2,010 MIPE1**041981 1981-04-19 38 8b9be11632bc73ec04e5cb50745ebb7f Hombre 2009-08-12 2010-03-06 PG-PR Si
36,883 2,013 JOPE1**111991 1991-11-02 28 8b9c1413c353a32e7f1e302eb34601e6 Hombre 2013-02-15 2013-09-04 PG-PAI Si
31,412 2,012 JOPE1**111991 1991-11-22 27 8b9c1413c353a32e7f1e302eb34601e6 Hombre 2012-11-22 2012-12-12 PG-PR Si
43,806 2,013 SAVA2**101993 1993-10-06 26 8c79a3d2f65922210fa3c0791360bc21 Mujer 2013-08-30 2013-10-30 PG-PAB Si
10,825 2,011 SAVA2**101969 1969-10-06 50 8c79a3d2f65922210fa3c0791360bc21 Mujer 2010-07-19 2011-03-31 PG-PAB Si
18,051 2,011 SELU1**091982 1982-09-08 37 8c9998b704bd99e85c3c05d901f9b100 Hombre 2011-08-02 2011-10-10 PG-PAI Si
5,302 2,010 SELU1**041991 1991-04-16 28 8c9998b704bd99e85c3c05d901f9b100 Hombre 2010-05-16 2010-09-21 PG-PAB Si
38,734 2,013 JUFL1**101979 1979-10-12 40 8c9c9ccd33895ec600f987a448281ef5 Hombre 2013-04-19 2013-07-01 PG-PAI Si
34,439 2,013 JUFL2**101978 1978-10-12 41 8c9c9ccd33895ec600f987a448281ef5 Mujer 2012-10-01 2013-03-23 PG-PR Si
24,636 2,012 JUFL1**101979 1979-10-12 40 8c9c9ccd33895ec600f987a448281ef5 Hombre 2011-12-27 2012-08-06 PG-PAI Si
10,799 2,011 JUFL1**101979 1979-10-12 40 8c9c9ccd33895ec600f987a448281ef5 Hombre 2010-07-09 2011-01-06 PG-PR Si
158,999 2,019 JUPE1**041966 1966-04-27 53 8ce296ee7fb3d41201519eb29dfe0b81 NA Hombre 2019-06-20 NA PG-PAI No
71,402 2,015 JUPE1**041960 1960-04-27 59 8ce296ee7fb3d41201519eb29dfe0b81 Hombre 2015-01-09 2015-06-26 PG-PAI Si
50,003 2,014 GERO1**091979 1979-09-11 40 8cea88fbe2365961b8ff7a439f83acd3 Hombre 2013-05-09 2014-03-31 PG-PAI Si
23,129 2,012 GERO1**111979 1979-11-11 39 8cea88fbe2365961b8ff7a439f83acd3 Hombre 2011-11-30 2012-01-30 PG-PR Si
74,652 2,015 JUSE1**051989 1989-05-12 30 8cfdf701e1e45c7a4ed9c0084244d760 Hombre 2015-04-01 2015-09-01 PG-PAI Si
22,089 2,012 JUSE1**051985 1985-05-12 34 8cfdf701e1e45c7a4ed9c0084244d760 Hombre 2011-08-10 2012-03-28 PG-PAI Si
26,340 2,012 LUDI1**071968 1968-07-21 51 8d3868f12695dccd5822f6be067e9304 Hombre 2011-05-06 2012-10-31 PG-PAI Si
16,907 2,011 LUDI1**071978 1978-07-21 41 8d3868f12695dccd5822f6be067e9304 Hombre 2011-05-05 2011-08-31 PG-PAI Si
140,335 2,018 JOSA1**111981 1981-11-01 38 8d97c28a102887e15b5d4256c380a6f0 NA Hombre 2018-07-09 2018-10-30 PG-PAI Si
48,041 2,014 JOSA1**111981 1981-11-11 37 8d97c28a102887e15b5d4256c380a6f0 Hombre 2012-11-08 2014-08-01 PG-PAB Si
158,179 2,019 MALA2**121974 1974-12-24 44 8da8f3c2c68f113344083dbdcd7d3887 NA Mujer 2019-06-17 NA PG-PAI Si
152,918 2,019 MALA2**121974 1974-12-24 44 8da8f3c2c68f113344083dbdcd7d3887 NA Mujer 2019-01-16 2019-06-13 M-PR Si
473 2,010 MALA2**121973 1973-12-04 45 8da8f3c2c68f113344083dbdcd7d3887 Mujer 2009-12-07 2010-12-22 PG-PAI Si
161,267 2,019 STRO2**111988 1988-11-13 31 8deac2a034cbef01498569ae00444d00 NA Mujer 2019-08-26 NA PG-PAI Si
131,970 2,018 STRO2**111988 1988-11-13 30 8deac2a034cbef01498569ae00444d00 NA Mujer 2017-12-15 2018-04-26 M-PR Si
124,393 2,017 STRO2**111988 1988-11-13 30 8deac2a034cbef01498569ae00444d00 NA Mujer 2017-11-02 2017-12-14 PG-PAI Si
125,165 2,017 ROCA1**071975 1975-07-15 44 8df628979a3ba1d6cf468d49a07446ee NA Hombre 2017-12-01 2018-02-01 PG-PAI Si
121,499 2,017 ROCA1**071976 1976-07-15 43 8df628979a3ba1d6cf468d49a07446ee NA Hombre 2017-08-31 2017-11-13 PG-PR Si
120,515 2,017 ROCA1**071976 1976-07-15 43 8df628979a3ba1d6cf468d49a07446ee NA Hombre 2017-07-25 2017-08-30 PG-PAI Si
26,652 2,012 RIAR1**041982 1982-04-29 37 8df6ee9fc39eed04d797ef6405c283b9 Hombre 2012-04-16 2012-06-28 PG-PAI Si
23,789 2,012 RIAR1**041982 1982-04-29 37 8df6ee9fc39eed04d797ef6405c283b9 Hombre 2012-01-09 2012-04-11 PG-PR Si
20,188 2,011 RIAR1**041992 1992-04-29 27 8df6ee9fc39eed04d797ef6405c283b9 Hombre 2011-10-24 2012-01-02 PG-PAI Si
135,379 2,018 ERHE1**081962 1962-08-20 57 8e76d2860ca7e90f9aef0bacbefc2e28 NA Hombre 2018-03-01 2018-07-02 PG-PAI Si
129,195 2,018 ERHE1**081963 1963-08-20 56 8e76d2860ca7e90f9aef0bacbefc2e28 NA Hombre 2017-07-17 2018-02-01 PG-PAB Si
83,958 2,015 PAMI1**071968 1968-07-09 51 8eb218621fa6f7f6e2537a0c533170f1 Hombre 2015-11-10 2015-12-21 PG-PR Si
81,879 2,015 PAMI1**071948 1948-07-07 71 8eb218621fa6f7f6e2537a0c533170f1 Hombre 2015-09-22 2015-11-24 PG-PAI Si
78,294 2,015 PAMI1**071948 1948-07-18 71 8eb218621fa6f7f6e2537a0c533170f1 Hombre 2015-06-10 2015-08-25 PG-PAI Si
52,968 2,014 PAMI1**071968 1968-07-09 51 8eb218621fa6f7f6e2537a0c533170f1 Hombre 2013-12-26 2014-02-27 PG-PAI Si
87,929 2,016 OSFL1**021966 1966-02-08 53 8f067e24e7edd6f34a3ff722ce5c5ab3 Hombre 2015-06-03 2016-01-15 PG-PR Si
67,188 2,015 OSFL1**021976 1976-02-08 43 8f067e24e7edd6f34a3ff722ce5c5ab3 Hombre 2014-05-30 2015-05-28 PG-PAI Si
138,552 2,018 JURA1**121981 1981-12-25 37 8f0ab17d09bf9c70ca43a60100d86289 NA Hombre 2018-04-03 2018-08-01 PG-PAB Si
76,582 2,015 JURA1**091981 1981-09-25 38 8f0ab17d09bf9c70ca43a60100d86289 Hombre 2015-05-01 2015-11-24 PG-PAB Si
27,108 2,012 EDCA1**051978 1978-05-09 41 8f146298b3ba67104c518e9a71a91099 Hombre 2012-05-25 2012-06-30 PG-PAI Si
24,142 2,012 EDCA1**061974 1974-06-03 45 8f146298b3ba67104c518e9a71a91099 Hombre 2012-01-02 2012-03-30 PG-PAI Si
66,114 2,015 DABE1**041983 1983-04-06 36 8f507441a266ca342455f4ecc33f4a3f Hombre 2013-12-06 2015-05-04 PG-PAI Si
37,043 2,013 DABE1**041993 1993-04-06 26 8f507441a266ca342455f4ecc33f4a3f Hombre 2012-12-19 2013-07-01 PG-PAI Si
51,727 2,014 MIUR1**121976 1976-12-20 42 8fdc6ee5249b68449d4744a3e3aa9199 Hombre 2013-10-29 2014-02-28 PG-PAI Si
32,243 2,013 MIUR1**121977 1977-12-12 41 8fdc6ee5249b68449d4744a3e3aa9199 Hombre 2011-08-31 2013-06-27 PG-PAI Si
21,062 2,012 SOAR2**111977 1977-11-21 41 8ffd8a1d4dd743dd4e7dd9f4c8759e4f Mujer 2011-03-01 2012-02-16 M-PR Si
11,191 2,011 SOAR2**091977 1977-09-21 42 8ffd8a1d4dd743dd4e7dd9f4c8759e4f Mujer 2010-08-12 2011-03-03 PG-PAI Si
57,239 2,014 JULA1**031969 1969-03-29 50 9026885f260654e17f28ce5104ef08e6 Hombre 2014-04-28 2014-08-14 PG-PAB Si
41,269 2,013 JULA1**031970 1970-03-28 49 9026885f260654e17f28ce5104ef08e6 Hombre 2013-06-03 2013-09-27 PG-PAB Si
129,205 2,018 SHNO1**061990 1990-06-12 29 90269c7fe3d91ad8122f5a2dbdebbf9d NA Hombre 2017-09-01 2018-08-31 PG-PAB Si
109,239 2,017 SHNO2**061996 1996-06-12 23 90269c7fe3d91ad8122f5a2dbdebbf9d NA Mujer 2016-09-01 2017-05-30 PG-PAB Si
30,814 2,012 JOSA1**051985 1985-05-30 34 90432776067ec00996da9a4f0b254772 Hombre 2012-10-12 2013-01-29 PG-PAB Si
16,748 2,011 JOSA1**051982 1982-05-30 37 90432776067ec00996da9a4f0b254772 Hombre 2011-02-11 2011-09-06 PG-PAB Si
12,872 2,011 GUOL1**081991 1991-08-19 28 906554f396c72cea82f006e63bc4b9b8 Hombre 2010-09-27 2011-04-26 PG-PR Si
6,352 2,010 GUOL1**081984 1984-08-19 35 906554f396c72cea82f006e63bc4b9b8 Hombre 2010-04-22 2010-09-01 PG-PAI Si
55,849 2,014 MAHU2**101992 1992-10-12 27 907e85236bd590e53cfc5556b9875e77 Mujer 2014-03-04 2014-04-10 M-PR Si
44,527 2,013 MAHU2**101982 1982-10-12 37 907e85236bd590e53cfc5556b9875e77 Mujer 2013-09-05 2013-10-27 M-PR Si
41,096 2,013 MAHU2**061994 1994-06-01 25 907e85236bd590e53cfc5556b9875e77 Mujer 2013-06-01 2013-08-23 M-PAI Si
38,172 2,013 MAHU2**101992 1992-10-12 27 907e85236bd590e53cfc5556b9875e77 Mujer 2013-03-01 2013-05-30 M-PAI Si
54,554 2,014 ALQU1**041973 1973-04-20 46 90c5d9af89683624bd05cc802f0456ab Hombre 2014-01-20 2014-06-12 PG-PAB No
36,892 2,013 ALQU1**041953 1953-04-20 66 90c5d9af89683624bd05cc802f0456ab Hombre 2013-02-14 2013-07-26 PG-PAB No
97,032 2,016 CAPI1**081981 1981-08-21 38 90d25e17efd5a1c4ac6086b2a1f1afbc Hombre 2016-04-19 2016-09-28 PG-PAB Si
44,250 2,013 CAPI1**081989 1989-08-21 30 90d25e17efd5a1c4ac6086b2a1f1afbc Hombre 2013-09-24 2013-10-30 PG-PAI Si
107,392 2,017 LURO1**111982 1982-11-25 36 910579823dca11a209c3fed7af813ca6 NA Hombre 2016-05-27 2017-01-30 PG-PR Si
70,483 2,015 LURO1**111983 1983-11-25 35 910579823dca11a209c3fed7af813ca6 Hombre 2014-12-11 2015-03-11 PG-PAI Si
38,835 2,013 LURO1**111982 1982-11-25 36 910579823dca11a209c3fed7af813ca6 Hombre 2013-04-29 2013-06-03 PG-PAI Si
12,336 2,011 LURO1**111982 1982-11-25 36 910579823dca11a209c3fed7af813ca6 Hombre 2010-12-15 2011-02-15 PG-PR Si
8,806 2,010 LURO1**111982 1982-11-25 36 910579823dca11a209c3fed7af813ca6 Hombre 2010-10-06 2010-11-22 PG-PAI Si
154,041 2,019 ROSO1**071951 1951-07-05 68 9118d5c3bc3d5ed4d2e48fb2422c4e90 NA Hombre 2019-02-19 NA PG-PAI Si
109,356 2,017 ROSO1**071951 1951-07-05 68 9118d5c3bc3d5ed4d2e48fb2422c4e90 NA Hombre 2016-07-28 2017-06-27 PG-PAB Si
92,684 2,016 ROSO1**071951 1951-07-05 68 9118d5c3bc3d5ed4d2e48fb2422c4e90 Hombre 2016-01-02 2016-07-27 PG-PR Si
74,329 2,015 ROSO1**031952 1952-03-06 67 9118d5c3bc3d5ed4d2e48fb2422c4e90 Hombre 2015-02-13 2016-01-01 PG-PAB Si
14,228 2,011 ROSO1**071951 1951-07-05 68 9118d5c3bc3d5ed4d2e48fb2422c4e90 Hombre 2010-10-20 2011-10-03 PG-PAI Si
51,745 2,014 CRHE1**091977 1977-09-14 42 913f04c7f20f51e199c3282a4ffd72bd Hombre 2013-11-11 2014-04-28 PG-PAB Si
3,913 2,010 CRHE1**011973 1973-01-27 46 913f04c7f20f51e199c3282a4ffd72bd Hombre 2010-03-22 2010-05-26 PG-PAB Si
140,724 2,018 ARCA1**042000 2000-04-03 19 913f4c1fcfd5a1805eadddefadb6935a NA Hombre 2018-08-07 2018-12-12 PG-PAI Si
135,797 2,018 ARCA1**041989 1989-04-03 30 913f4c1fcfd5a1805eadddefadb6935a NA Hombre 2018-03-27 2018-07-18 PG-PAI Si
53,677 2,014 VIRI1**051989 1989-05-05 30 9155114c1bcfe7d222cb5e8728b8aedd Hombre 2013-07-22 2014-01-22 PG-PAB Si
42,627 2,013 VIRI1**051984 1984-05-05 35 9155114c1bcfe7d222cb5e8728b8aedd Hombre 2013-07-22 2014-01-29 PG-PAB Si
153,742 2,019 JUPI1**041986 1986-04-29 33 9197b8b93db7747462915c6d33a3a88c NA Hombre 2019-01-17 2019-07-01 PG-PAI Si
149,197 2,019 JUPI1**041986 1986-04-29 33 9197b8b93db7747462915c6d33a3a88c NA Hombre 2018-09-14 2019-01-10 PG-PR Si
132,772 2,018 JAPI1**041988 1988-04-29 31 9197b8b93db7747462915c6d33a3a88c NA Hombre 2018-01-23 2018-05-17 PG-PAI Si
100,380 2,016 MAMA1**041975 1975-04-09 44 919f336f95e51d0e918fc47e552cdbf4 Hombre 2016-08-02 2016-12-13 PG-PR Si
96,246 2,016 MAMA1**041971 1971-04-09 48 919f336f95e51d0e918fc47e552cdbf4 Hombre 2016-03-07 2016-08-01 PG-PAI Si
7,566 2,010 JUTI1**071982 1982-07-09 37 91d2b53989232617a76554f9df52348c Hombre 2010-07-06 2011-07-16 PG-PAI Si
6,868 2,010 JUTI1**071981 1981-07-09 38 91d2b53989232617a76554f9df52348c Hombre 2010-07-01 NA PG-PAI Si
149,342 2,019 TEOL2**091965 1965-09-06 54 91e55138a2504223ad84987d2e96f972 NA Mujer 2018-09-10 2019-02-06 PG-PAB Si
129,188 2,018 TEOL2**121965 1965-12-24 53 91e55138a2504223ad84987d2e96f972 NA Mujer 2017-08-07 2018-08-02 M-PR Si
91,700 2,016 TEOL2**121965 1965-12-24 53 91e55138a2504223ad84987d2e96f972 Mujer 2015-12-15 2016-05-23 M-PR Si
126,912 2,018 CEGU1**021981 1981-02-21 38 923255148fa58e243693a0ee233ad716 NA Hombre 2017-03-16 2018-09-28 PG-PAB Si
33,773 2,013 CEGU1**021980 1980-02-21 39 923255148fa58e243693a0ee233ad716 Hombre 2012-08-22 2013-06-11 PG-PAB Si
86,654 2,016 IVMA1**021969 1969-02-17 50 92462c404f8bd01020e821e28406548c Hombre 2015-03-05 2016-06-30 PG-PAI Si
6,587 2,010 IVMA1**021962 1962-02-17 57 92462c404f8bd01020e821e28406548c Hombre 2010-07-22 2010-12-01 PG-PR No
14,323 2,011 MAIB2**081984 1984-08-12 35 928b073a7c2affa7a755a0a6dda692e0 Mujer 2011-02-21 2011-06-10 M-PAI Si
8,678 2,010 MAIB2**081974 1974-08-12 45 928b073a7c2affa7a755a0a6dda692e0 Mujer 2010-10-12 2010-11-05 M-PR Si
2,254 2,010 MAIB2**081974 1974-08-12 45 928b073a7c2affa7a755a0a6dda692e0 Mujer 2009-09-01 2010-06-29 M-PR Si
160,302 2,019 PAPO2**091969 1969-09-19 50 928ee33bcb4d093f07462391af31b37d NA Mujer 2019-08-05 NA PG-PAB Si
72,371 2,015 PAPO2**091968 1968-09-19 51 928ee33bcb4d093f07462391af31b37d Mujer 2014-12-29 2015-07-13 PG-PAB Si
98,370 2,016 BOOL1**071981 1981-07-06 38 92bf792ee8df17fcc9279a3550bd687d Hombre 2016-06-01 2016-08-11 PG-PR Si
86,294 2,016 BOOL1**071987 1987-07-06 32 92bf792ee8df17fcc9279a3550bd687d Hombre 2015-01-19 2016-01-26 PG-PR Si
67,341 2,015 BOOL1**071981 1981-07-06 38 92bf792ee8df17fcc9279a3550bd687d Hombre 2014-06-02 2015-01-28 PG-PAB Si
61,640 2,014 JOAC1**111976 1976-11-22 42 92cb229dbd7bf83703e7169027f654e6 Hombre 2014-08-01 2014-11-25 PG-PAI Si
50,052 2,014 JOAC1**111975 1975-11-22 43 92cb229dbd7bf83703e7169027f654e6 Hombre 2013-07-12 2014-06-24 PG-PAI Si
10,856 2,011 REGU2**071991 1991-07-26 28 92eeb937e616f54ecf9a2f9551e4e0fe Mujer 2010-07-26 2011-08-23 M-PAI Si
164 2,010 REGU2**031971 1971-03-01 48 92eeb937e616f54ecf9a2f9551e4e0fe Mujer 2009-07-14 2010-05-31 M-PR Si
131,512 2,018 ANRI1**061971 1971-06-11 48 9314bb549bc810f7d6f9a8311c9fa358 NA Hombre 2017-12-01 2018-06-01 PG-PAB Si
112,722 2,017 ANRI1**061969 1969-06-11 50 9314bb549bc810f7d6f9a8311c9fa358 NA Hombre 2017-01-25 2017-10-23 PG-PAB Si
100,955 2,016 ANRI1**061971 1971-06-11 48 9314bb549bc810f7d6f9a8311c9fa358 Hombre 2016-08-14 2016-12-13 PG-PR Si
98,512 2,016 ANRI1**061996 1996-06-11 23 9314bb549bc810f7d6f9a8311c9fa358 Hombre 2016-06-25 2016-08-13 PG-PAB Si
45,207 2,013 ROPE1**061993 1993-06-30 26 934c355eeb9ca45fb4f40190d05da7a7 Hombre 2013-10-22 2013-11-01 PG-PAI Si
14,173 2,011 ROPE1**011991 1991-01-30 28 934c355eeb9ca45fb4f40190d05da7a7 Hombre 2011-02-25 2011-04-28 PG-PAI Si
135,034 2,018 JORE2**091986 1986-09-13 33 9353afb480e046e47fd9027d75cbe6a4 NA Mujer 2018-03-22 2018-10-02 M-PAI Si
120,348 2,017 JORE2**081987 1987-08-03 32 9353afb480e046e47fd9027d75cbe6a4 NA Mujer 2017-08-02 2017-08-31 M-PR Si
156,583 2,019 ELSI2**061975 1975-06-01 44 9389e541badc7302fcff46b872a6dc2d NA Mujer 2019-04-01 2019-08-01 PG-PAB Si
151,905 2,019 ELSI2**051979 1979-05-02 40 9389e541badc7302fcff46b872a6dc2d NA Mujer 2019-01-07 2019-02-04 M-PR Si
93,858 2,016 ELSI2**051979 1979-05-02 40 9389e541badc7302fcff46b872a6dc2d Mujer 2015-12-14 2016-10-28 PG-PAB Si
28,126 2,012 YA-B1**061993 1993-06-30 26 93c2446bf734ba29905d0c01d4c9fe51 Hombre 2012-06-12 2012-11-14 PG-PAB Si
23,380 2,012 YABU2**081985 1985-08-30 34 93c2446bf734ba29905d0c01d4c9fe51 Mujer 2011-09-13 2012-01-31 PG-PAI Si
159,945 2,019 FASA1**061986 1986-06-18 33 93e19b8bc87bb74d24d069ec40d73792 NA Hombre 2019-07-24 2019-09-23 PG-PAB Si
114,602 2,017 FASA1**061986 1986-06-18 33 93e19b8bc87bb74d24d069ec40d73792 NA Hombre 2017-02-21 2017-12-13 PG-PAB Si
75,011 2,015 FASA1**061983 1983-06-18 36 93e19b8bc87bb74d24d069ec40d73792 Hombre 2015-04-15 2015-10-29 PG-PAB Si
112,620 2,017 ISUR2**091957 1957-09-16 62 9444e41312b2a78232871c0afd41a206 NA Mujer 2017-01-19 2017-10-30 M-PAI Si
86,345 2,016 ISUR2**091957 1957-09-16 62 9444e41312b2a78232871c0afd41a206 Mujer 2015-01-16 2016-02-19 M-PR Si
53,235 2,014 ISUR2**091957 1957-09-16 62 9444e41312b2a78232871c0afd41a206 Mujer 2014-01-07 2014-04-18 M-PAI Si
38,086 2,013 ISUR2**031994 1994-03-17 25 9444e41312b2a78232871c0afd41a206 Mujer 2013-03-25 2013-07-02 PG-PAI Si
121,688 2,017 MAMO1**041973 1973-04-06 46 9452855d36e162173a401415cc0e4139 NA Hombre 2017-09-02 2017-12-19 PG-PAB Si
108,044 2,017 MAMO1**041996 1996-04-06 23 9452855d36e162173a401415cc0e4139 NA Hombre 2016-07-08 2017-09-01 PG-PAI Si
147,908 2,019 LOHU2**121981 1981-12-06 37 946ec79d6eccedfdbe2568a8e3be5a0e NA Mujer 2018-06-11 2019-05-02 PG-PAB Si
132,683 2,018 LOHU2**021981 1981-02-04 38 946ec79d6eccedfdbe2568a8e3be5a0e NA Mujer 2017-12-29 2018-05-18 M-PR Si
117,480 2,017 FEEW1**091989 1989-09-09 30 9534ccf59cfe0aa9eb2c7634e72927c8 NA Hombre 2017-05-03 2017-12-20 PG-PAI Si
65,512 2,015 FEEW1**091986 1986-09-09 33 9534ccf59cfe0aa9eb2c7634e72927c8 Hombre 2013-04-10 2015-02-06 PG-PAI Si
22,509 2,012 FEEW1**081986 1986-08-09 33 9534ccf59cfe0aa9eb2c7634e72927c8 Hombre 2011-10-11 2012-04-05 PG-PAI Si
48,824 2,014 CAFL2**031983 1983-03-25 36 95468cec4388cfa1a6d66ee24d10a98d Mujer 2013-04-12 2014-06-02 M-PR Si
36,838 2,013 CAFL2**031982 1982-03-25 37 95468cec4388cfa1a6d66ee24d10a98d Mujer 2012-11-15 2013-04-12 M-PAI Si
30,160 2,012 CAFL2**031982 1982-03-25 37 95468cec4388cfa1a6d66ee24d10a98d Mujer 2012-08-09 2012-11-30 M-PR Si
22,793 2,012 CAFL2**031982 1982-03-25 37 95468cec4388cfa1a6d66ee24d10a98d Mujer 2011-07-07 2012-03-16 M-PR Si
990 2,010 CAFL2**031982 1982-03-25 37 95468cec4388cfa1a6d66ee24d10a98d Mujer 2010-01-26 2010-03-22 M-PR Si
107,293 2,017 HEGO1**121969 1969-12-04 49 95651248c8df8b9408f0628496baaa74 NA Hombre 2016-05-11 2017-02-01 PG-PR Si
91,982 2,016 HEGO1**121970 1970-12-08 48 95651248c8df8b9408f0628496baaa74 Hombre 2015-12-01 2016-05-10 PG-PAI Si
91,393 2,016 JOGO1**061990 1990-06-11 29 957922de114e4dca0cb741b8a7471ddc Hombre 2015-12-01 2016-04-25 PG-PR Si
79,282 2,015 JOGO1**061990 1990-06-11 29 957922de114e4dca0cb741b8a7471ddc Hombre 2015-06-01 2015-11-24 PG-PAI Si
74,494 2,015 JOGO1**061990 1990-06-11 29 957922de114e4dca0cb741b8a7471ddc Hombre 2015-03-25 2015-04-10 PG-PR Si
70,808 2,015 JOGO1**061990 1990-06-11 29 957922de114e4dca0cb741b8a7471ddc Hombre 2014-12-15 2015-03-24 PG-PAI Si
64,093 2,014 JOGO1**101988 1988-10-12 31 957922de114e4dca0cb741b8a7471ddc Hombre 2014-11-05 2014-12-05 PG-PR Si
62,314 2,014 JOGO1**061990 1990-06-11 29 957922de114e4dca0cb741b8a7471ddc Hombre 2014-09-11 2014-11-05 PG-PAI Si
15,189 2,011 JOGO1**061990 1990-06-11 29 957922de114e4dca0cb741b8a7471ddc Hombre 2011-04-25 2011-10-14 PG-PAI Si
70,485 2,015 PEWI1**041962 1962-04-05 57 968690c85719acb70c114b0cf815dd79 Hombre 2014-12-01 2015-07-01 PG-PAI Si
32,263 2,013 PEWI1**041962 1962-04-05 57 968690c85719acb70c114b0cf815dd79 Hombre 2011-09-06 2013-03-11 PG-PAI Si
3,271 2,010 PEWI1**041965 1965-04-05 54 968690c85719acb70c114b0cf815dd79 Hombre 2010-01-01 2010-06-04 PG-PAI Si
50,261 2,014 KARI2**051990 1990-05-08 29 968eab799492c6c1007638061539842d Mujer 2013-08-21 2014-04-30 PG-PR No
31,127 2,012 KARI2**051990 1990-05-08 29 968eab799492c6c1007638061539842d Mujer 2012-11-06 2012-12-26 M-PR Si
24,574 2,012 KARI2**051990 1990-05-08 29 968eab799492c6c1007638061539842d Mujer 2012-01-02 2012-09-28 M-PR Si
18,707 2,011 KARI2**051980 1980-05-08 39 968eab799492c6c1007638061539842d Mujer 2011-08-10 2011-12-31 M-PR Si
145,619 2,018 GEHE1**081995 1995-08-28 24 96d08bc970629f80061b1f99f9ae5112 NA Hombre 2018-12-17 2018-12-30 PG-PR Si
129,881 2,018 GEHE1**081999 1999-08-28 20 96d08bc970629f80061b1f99f9ae5112 NA Hombre 2017-09-05 2018-07-05 PG-PAI Si
107,462 2,017 JUBA1**031988 1988-03-17 31 9721065626efda8a6aa9b1c257291de1 NA Hombre 2016-05-12 2017-02-01 PG-PAI Si
27,137 2,012 JUBA1**031987 1987-03-17 32 9721065626efda8a6aa9b1c257291de1 Hombre 2012-05-24 2012-09-26 PG-PAB Si
52,108 2,014 PAVA2**071980 1980-07-19 39 9738815164e23a98b978877997ed1744 Mujer 2013-11-11 2014-02-28 PG-PAI Si
35,130 2,013 PAVA2**071986 1986-07-19 33 9738815164e23a98b978877997ed1744 Mujer 2012-12-06 2013-02-26 PG-PAI Si
38,605 2,013 ESAR2**051983 1983-05-14 36 973d25b553519c63366157ce27d867a7 Mujer 2013-04-02 2013-07-01 PG-PAI Si
35,385 2,013 ESAR2**111983 1983-11-14 35 973d25b553519c63366157ce27d867a7 Mujer 2012-11-06 2013-04-01 PG-PAI Si
129,768 2,018 JAVA2**071982 1982-07-06 37 9765543013bb3e4a287723a6b034e3e8 NA Mujer 2017-09-01 2018-02-09 PG-PAI No
109,933 2,017 JAVA2**071982 1982-07-06 37 9765543013bb3e4a287723a6b034e3e8 NA Mujer 2016-10-25 2017-08-30 M-PR Si
98,724 2,016 JAVA2**061988 1988-06-06 31 9765543013bb3e4a287723a6b034e3e8 Mujer 2016-05-31 2016-07-07 M-PR Si
95,826 2,016 JAVA2**071982 1982-07-06 37 9765543013bb3e4a287723a6b034e3e8 Mujer 2016-04-15 2016-05-26 PG-PAI Si
93,830 2,016 JAVA1**071982 1982-07-06 37 9765543013bb3e4a287723a6b034e3e8 Hombre 2016-02-24 2016-04-07 PG-PAI Si
152,357 2,019 JOCA1**071981 1981-07-23 38 976dc6ea364c0e2ba7decc74c634291d NA Hombre 2019-01-09 2019-07-19 PG-PR Si
149,670 2,019 JOCA1**071981 1981-07-23 38 976dc6ea364c0e2ba7decc74c634291d NA Hombre 2018-10-03 2019-01-08 PG-PAI No
142,875 2,018 JOCA1**071981 1981-07-23 38 976dc6ea364c0e2ba7decc74c634291d NA Hombre 2018-10-03 2018-11-30 PG-PAI Si
89,520 2,016 JOCA1**071981 1981-07-23 38 976dc6ea364c0e2ba7decc74c634291d Hombre 2015-09-03 2016-09-21 PG-PAI Si
67,461 2,015 JOCA1**071981 1981-07-23 38 976dc6ea364c0e2ba7decc74c634291d Hombre 2014-06-16 2015-09-03 PG-PR Si
58,303 2,014 JOCA1**071982 1982-07-23 37 976dc6ea364c0e2ba7decc74c634291d Hombre 2014-05-22 2014-06-12 PG-PAI Si
40,853 2,013 JOCA1**071981 1981-07-23 38 976dc6ea364c0e2ba7decc74c634291d Hombre 2013-06-04 2013-10-04 PG-PAI Si
146,087 2,019 JURO1**111964 1964-11-11 55 977aa02b93860116936f8d908d5a0f6f NA Hombre 2017-08-08 2019-06-14 PG-PAB Si
12,036 2,011 JURO1**111964 1964-11-11 54 977aa02b93860116936f8d908d5a0f6f Hombre 2010-11-15 2011-12-26 PG-PAB Si
157,138 2,019 OROR1**081968 1968-08-27 51 979e2473097fc5ff0da98dae25ca9ae6 NA Hombre 2019-05-09 2019-06-20 PG-PAI Si
149,882 2,019 OROR1**081958 1958-08-27 61 979e2473097fc5ff0da98dae25ca9ae6 NA Hombre 2018-10-18 2019-01-31 PG-PAI Si
109,634 2,017 DODI1**011966 1966-01-02 53 97f2e4bdb1051eadcc3de5bc7b14d25d NA Hombre 2016-10-12 2017-03-21 PG-PAB Si
41,906 2,013 DODI1**011994 1994-01-02 25 97f2e4bdb1051eadcc3de5bc7b14d25d Hombre 2013-07-01 2013-11-29 PG-PAB Si
146,967 2,019 OLGU2**081959 1959-08-07 60 98274e3737db01c310fdbd5431dfd665 NA Mujer 2018-03-01 NA M-PAI Si
32,225 2,013 OLGU2**081992 1992-08-07 27 98274e3737db01c310fdbd5431dfd665 Mujer 2011-04-06 2013-05-31 PG-PAB No
10,049 2,011 OLGU2**081959 1959-08-07 60 98274e3737db01c310fdbd5431dfd665 Mujer 2007-10-10 2011-07-29 PG-PAB Si
156,291 2,019 ALVI2**021993 1993-02-07 26 985f9ab6f9a665c9a052f01b5842976f NA Mujer 2019-03-13 2019-07-01 M-PAI Si
39,721 2,013 ALVI2**051994 1994-05-07 25 985f9ab6f9a665c9a052f01b5842976f Mujer 2013-05-16 2013-10-24 PG-PAI Si
128,867 2,018 JUMO1**101960 1960-10-02 59 9884e7500498092b162a99069ae9d71a NA Hombre 2017-08-09 2018-03-08 PG-PAI Si
26,991 2,012 JUMO1**051993 1993-05-02 26 9884e7500498092b162a99069ae9d71a Hombre 2012-05-03 2012-08-27 PG-PAI Si
159,119 2,019 ELRU2**121988 1988-12-05 30 988df577984b08f604a37d4a99c21654 NA Mujer 2019-06-11 NA M-PAI Si
74,580 2,015 ELRU2**121988 1988-12-05 30 988df577984b08f604a37d4a99c21654 Mujer 2015-03-02 2015-07-06 PG-PAI Si
58,180 2,014 ELRU2**051988 1988-05-12 31 988df577984b08f604a37d4a99c21654 Mujer 2014-05-26 2015-02-02 PG-PR Si
48,822 2,014 HEAY1**101971 1971-10-27 48 988f10805d6491c2ff929a921788741f Hombre 2013-04-09 2014-07-01 PG-PR Si
34,570 2,013 HEAY1**101972 1972-10-27 47 988f10805d6491c2ff929a921788741f Hombre 2012-10-18 2013-04-09 PG-PAI Si
26,668 2,012 HEAY1**101972 1972-10-27 47 988f10805d6491c2ff929a921788741f Hombre 2012-03-05 2012-06-25 PG-PAI Si
124,256 2,017 DAGO2**111983 1983-11-16 35 98a8a9f94fe22f7769d71f950cacbd6a NA Mujer 2017-11-15 2017-12-08 M-PR Si
115,382 2,017 DAGO2**081983 1983-08-16 36 98a8a9f94fe22f7769d71f950cacbd6a NA Mujer 2017-04-04 2017-05-01 M-PR Si
92,192 2,016 DAGO2**081983 1983-08-16 36 98a8a9f94fe22f7769d71f950cacbd6a Mujer 2015-12-21 2016-06-30 PG-PAB Si
67,771 2,015 JEDU2**121973 1973-12-20 45 98d1dc22e5198e49118b4d0510d8f65d Mujer 2014-07-08 2015-02-27 PG-PAB Si
24,806 2,012 JEDU2**021993 1993-02-20 26 98d1dc22e5198e49118b4d0510d8f65d Mujer 2012-02-10 2012-12-04 M-PAI Si
139,421 2,018 CLCA1**051963 1963-05-26 56 98fb0ff6482e2ceffa17150626d39986 NA Hombre 2018-04-09 2018-12-01 PG-PAI Si
117,234 2,017 CLCA1**051963 1963-05-26 56 98fb0ff6482e2ceffa17150626d39986 NA Hombre 2017-04-21 2017-10-31 PG-PAI No
110,166 2,017 CLCA1**051953 1953-05-28 66 98fb0ff6482e2ceffa17150626d39986 NA Hombre 2016-09-13 2017-03-01 PG-PAB Si
77,364 2,015 CLCA1**051963 1963-05-23 56 98fb0ff6482e2ceffa17150626d39986 Hombre 2015-06-01 2015-09-01 PG-PAI Si
11,974 2,011 DIGR1**061985 1985-06-13 34 9942e1707f76a584469ca90d292b69df Hombre 2010-11-30 2011-04-25 PG-PR Si
618 2,010 DIGA1**111985 1985-11-13 33 9942e1707f76a584469ca90d292b69df Hombre 2009-01-23 2010-03-29 PG-PAI Si
150,499 2,019 MAGA1**111976 1976-11-26 42 9962cb9d3217f2d2c219d2b5a6c9ac46 NA Hombre 2018-11-01 NA PG-PAI Si
48,165 2,014 MAGA1**091976 1976-09-26 43 9962cb9d3217f2d2c219d2b5a6c9ac46 Hombre 2013-01-23 2014-09-02 PG-PAB Si
34,168 2,013 MAGA1**091976 1976-09-26 43 9962cb9d3217f2d2c219d2b5a6c9ac46 Hombre 2012-10-15 2013-01-23 PG-PAI Si
27,491 2,012 MAGA1**091976 1976-09-26 43 9962cb9d3217f2d2c219d2b5a6c9ac46 Hombre 2012-06-16 2012-10-12 PG-PAI Si
36,723 2,013 FRAG1**021994 1994-02-01 25 99874339b6b461aae75f4fd524e5367b Hombre 2012-02-10 NA PG-PAB Si
12,224 2,011 RIDE1**021957 1957-02-11 62 99874339b6b461aae75f4fd524e5367b Hombre 2010-10-13 2011-06-29 PG-PR No
141,825 2,018 ROMA1**061990 1990-06-30 29 9a0119508e52e24971b0bd197d350af1 NA Hombre 2018-09-01 2018-10-31 PG-PR Si
136,988 2,018 ROMA1**061990 1990-06-30 29 9a0119508e52e24971b0bd197d350af1 NA Hombre 2018-04-25 2018-07-25 PG-PAI Si
108,370 2,017 ROMA1**061990 1990-06-30 29 9a0119508e52e24971b0bd197d350af1 NA Hombre 2016-08-01 2017-08-31 PG-PAI Si
61,747 2,014 ROMA1**061990 1990-06-30 29 9a0119508e52e24971b0bd197d350af1 Hombre 2014-09-02 2014-12-17 PG-PAI Si
26,081 2,012 ROMA1**061990 1990-06-30 29 9a0119508e52e24971b0bd197d350af1 Hombre 2012-04-13 2012-08-16 PG-PR Si
12,126 2,011 ROMA1**061990 1990-06-30 29 9a0119508e52e24971b0bd197d350af1 Hombre 2010-10-07 2011-03-16 PG-PAB No
6,037 2,010 ROMA1**061991 1991-06-30 28 9a0119508e52e24971b0bd197d350af1 Hombre 2010-06-22 2010-09-20 PG-PR Si
142,886 2,018 RALA1**051969 1969-05-01 50 9a0cb699f794460e535ca9af1efd702b NA Hombre 2018-10-04 2019-01-02 PG-PAI Si
66,125 2,015 RALA1**051969 1969-05-01 50 9a0cb699f794460e535ca9af1efd702b Hombre 2013-12-11 2015-05-04 PG-PR Si
45,232 2,013 RALA1**061963 1963-06-26 56 9a0cb699f794460e535ca9af1efd702b Hombre 2013-10-03 2013-12-12 PG-PAI Si
7,707 2,010 RICR1**051991 1991-05-15 28 9a348fa7c811f1fab9b3b7bd9fa5fd95 Hombre 2010-08-10 2010-11-02 PG-PR Si
746 2,010 RICR1**051989 1989-05-15 30 9a348fa7c811f1fab9b3b7bd9fa5fd95 Hombre 2009-07-01 2010-08-16 PG-PAI Si
148,048 2,019 GUCO1**081968 1968-08-13 51 9a78e94909c71b23fa7f7f980d0a03c1 NA Hombre 2017-12-20 2019-05-01 PG-PAI Si
112,253 2,017 GUCO1**081968 1968-08-13 51 9a78e94909c71b23fa7f7f980d0a03c1 NA Hombre 2017-01-26 2017-04-01 PG-PAI Si
61,397 2,014 GUCO1**081971 1971-08-13 48 9a78e94909c71b23fa7f7f980d0a03c1 Hombre 2014-08-06 2015-01-16 PG-PAB No
160,089 2,019 PACA2**011990 1990-01-12 29 9aaa9aa5194cb84a0741ea49b74d8787 NA Mujer 2019-07-29 NA M-PR Si
146,984 2,019 PACA2**011990 1990-01-12 29 9aaa9aa5194cb84a0741ea49b74d8787 NA Mujer 2018-03-14 2019-02-07 M-PAI Si
115,829 2,017 PACA2**011990 1990-01-12 29 9aaa9aa5194cb84a0741ea49b74d8787 NA Mujer 2017-03-30 2017-06-30 M-PAI Si
81,821 2,015 PACA2**011990 1990-01-12 29 9aaa9aa5194cb84a0741ea49b74d8787 Mujer 2015-08-05 2015-12-01 M-PAI Si
17,208 2,011 PACA2**011990 1990-01-12 29 9aaa9aa5194cb84a0741ea49b74d8787 Mujer 2011-07-01 2011-10-20 M-PAI Si
7,251 2,010 KADI2**061970 1970-06-30 49 9aaa9aa5194cb84a0741ea49b74d8787 Mujer 2010-08-18 2011-05-17 M-PAI No
7,250 2,010 PACA2**011990 1990-01-12 29 9aaa9aa5194cb84a0741ea49b74d8787 Mujer 2010-08-18 2011-01-31 M-PAI No
88,394 2,016 MARA1**111950 1950-11-29 68 9aca73b5c90daa0433f6d8c754fe8b21 Hombre 2015-06-17 2016-07-01 PG-PAB Si
49,293 2,014 MARA1**061950 1950-06-29 69 9aca73b5c90daa0433f6d8c754fe8b21 Hombre 2013-06-04 2014-11-03 PG-PAB Si
27,811 2,012 MARA1**111950 1950-11-29 68 9aca73b5c90daa0433f6d8c754fe8b21 Hombre 2012-06-25 2012-12-31 PG-PR Si
66,444 2,015 REYA1**071986 1986-07-26 33 9ae781b325bb8f2d4a7c49eadbc6b971 Hombre 2014-02-04 2015-06-01 PG-PAI Si
33,861 2,013 REYA1**071976 1976-07-25 43 9ae781b325bb8f2d4a7c49eadbc6b971 Hombre 2012-09-04 2013-02-26 PG-PAB Si
7,579 2,010 REYA1**071976 1976-07-16 43 9ae781b325bb8f2d4a7c49eadbc6b971 Hombre 2010-08-10 2011-01-03 PG-PAB Si
133,639 2,018 JATR1**091992 1992-09-10 27 9afb0816c4d8f0cd034b987783392fa7 NA Hombre 2018-01-26 2018-10-18 PG-PAI Si
71,400 2,015 JATR1**111992 1992-11-10 26 9afb0816c4d8f0cd034b987783392fa7 Hombre 2015-01-27 2015-04-29 PG-PAI Si
61,461 2,014 JATR1**091992 1992-09-10 27 9afb0816c4d8f0cd034b987783392fa7 Hombre 2014-08-21 2015-01-02 PG-PAB Si
133,026 2,018 JOCO1**011991 1991-01-03 28 9b008b7683d9c22ff1587228d18c97ad NA Hombre 2018-01-26 2018-04-30 M-PR Si
52,291 2,014 JOCO1**011990 1990-01-03 29 9b008b7683d9c22ff1587228d18c97ad Hombre 2013-11-27 2014-10-10 M-PR Si
69,030 2,015 VARO2**041985 1985-04-26 34 9b1c5e723c60590c3e547c2e42c6d369 Mujer 2014-09-29 2015-04-24 M-PR Si
11,695 2,011 VARO2**041988 1988-04-26 31 9b1c5e723c60590c3e547c2e42c6d369 Mujer 2010-10-07 2011-03-31 PG-PAB Si
161,182 2,019 NIAL2**111972 1972-11-24 46 9b521c02f0e9c09c688d88e6f740a1f2 NA Mujer 2019-08-30 NA M-PAI Si
129,935 2,018 NI-A2**111972 1972-11-24 46 9b521c02f0e9c09c688d88e6f740a1f2 NA Mujer 2017-09-14 2018-02-06 M-PR Si
111,283 2,017 NIAL2**111996 1996-11-24 22 9b521c02f0e9c09c688d88e6f740a1f2 NA Mujer 2016-12-19 2017-09-13 M-PAI Si
50,846 2,014 NIAL2**111972 1972-11-24 46 9b521c02f0e9c09c688d88e6f740a1f2 Mujer 2013-09-30 2014-11-28 M-PAI Si
155,034 2,019 FECO1**111990 1990-11-13 29 9b6f1484841012babeb2a0a2542759c3 NA Hombre 2019-01-15 2019-06-01 PG-PAB Si
140,088 2,018 FECO1**111990 1990-11-13 28 9b6f1484841012babeb2a0a2542759c3 NA Hombre 2018-06-12 2019-01-01 PG-PAB Si
119,841 2,017 FECO1**111990 1990-11-13 28 9b6f1484841012babeb2a0a2542759c3 NA Hombre 2017-07-19 2017-08-01 PG-PAI Si
156,331 2,019 ANTA1**101972 1972-10-09 47 9baf06ffe50dc63fb6e27bc298746fc5 NA Hombre 2019-03-11 2019-08-05 PG-PAI Si
131,732 2,018 ANTA1**101977 1977-10-09 42 9baf06ffe50dc63fb6e27bc298746fc5 NA Hombre 2017-12-01 2018-02-05 PG-PAI Si
34,783 2,013 OSVE1**101993 1993-10-20 26 9bc6034348234dae7b0af0bc845fac5e Hombre 2012-11-29 2013-08-12 PG-PAI Si
28,817 2,012 OSVE1**101980 1980-10-20 39 9bc6034348234dae7b0af0bc845fac5e Hombre 2012-07-12 2012-11-29 PG-PAB Si
4,017 2,010 JUBR1**031991 1991-03-18 28 9bda977ed3dec2c6d6cdbe7cad32e2d0 Hombre 2010-03-18 2010-05-11 PG-PAI Si
917 2,010 JUBR1**041970 1970-04-20 49 9bda977ed3dec2c6d6cdbe7cad32e2d0 Hombre 2009-07-09 2010-02-10 PG-PAB Si
36,518 2,013 ITOR1**081984 1984-08-22 35 9bf82bd6c7ae01973df90c82cf1847c1 Hombre 2013-01-17 2013-05-01 PG-PR Si
28,093 2,012 ITOR1**081989 1989-08-22 30 9bf82bd6c7ae01973df90c82cf1847c1 Hombre 2012-07-03 2013-01-09 PG-PAB Si
22,653 2,012 ITOR1**081984 1984-08-22 35 9bf82bd6c7ae01973df90c82cf1847c1 Hombre 2011-10-26 2012-01-02 PG-PAI Si
44,500 2,013 MAZE1**011977 1977-01-11 42 9c1611274aeedb4c66cc6aaed7573a38 Hombre 2013-09-02 2014-01-27 PG-PAB Si
16,501 2,011 MAZE1**061992 1992-06-10 27 9c1611274aeedb4c66cc6aaed7573a38 Hombre 2011-06-10 2011-10-04 PG-PAI Si
155,025 2,019 MACO1**111985 1985-11-07 34 9c36c967bb4862f5522e7e4a711dfc02 NA Hombre 2019-03-08 2019-05-31 PG-PAI Si
145,204 2,018 MACO1**111985 1985-11-07 33 9c36c967bb4862f5522e7e4a711dfc02 NA Hombre 2018-12-11 2019-01-04 PG-PAI Si
160,005 2,019 YAHE2**121987 1987-12-19 31 9c50c47d5f1223313e3ddf30f1ca9542 NA Mujer 2019-07-25 NA M-PAI Si
131,352 2,018 YAHE2**121985 1985-12-19 33 9c50c47d5f1223313e3ddf30f1ca9542 NA Mujer 2017-11-02 2018-07-26 M-PAI Si
112,815 2,017 YAHE2**121987 1987-12-19 31 9c50c47d5f1223313e3ddf30f1ca9542 NA Mujer 2016-12-23 2017-07-01 M-PAI Si
91,401 2,016 YAHE2**121985 1985-12-19 33 9c50c47d5f1223313e3ddf30f1ca9542 Mujer 2015-11-27 2016-07-31 M-PAI Si
137,369 2,018 JOME1**091952 1952-09-26 67 9c6dea6ab47526c73c1bb7c059d5ff94 NA Hombre 2018-05-03 2018-12-20 PG-PR Si
130,545 2,018 JOME1**091952 1952-09-26 67 9c6dea6ab47526c73c1bb7c059d5ff94 NA Hombre 2017-09-20 2018-05-02 PG-PAI Si
72,912 2,015 JOME1**091962 1962-09-26 57 9c6dea6ab47526c73c1bb7c059d5ff94 Hombre 2015-02-03 2015-08-21 PG-PAB Si
136,229 2,018 ROCA1**041981 1981-04-10 38 9c83dd9e5be6ca4d269812e576d609c9 NA Hombre 2018-03-21 2018-11-05 PG-PAB Si
4,441 2,010 ROCA1**021982 1982-02-10 37 9c83dd9e5be6ca4d269812e576d609c9 Hombre 2010-03-02 2010-09-30 PG-PAB Si
6,177 2,010 FRRO1**021987 1987-02-19 32 9c87de5821d412940eba6da6b9b25165 Hombre 2010-06-01 2010-12-15 PG-PR No
5,572 2,010 FRRO1**121987 1987-12-19 31 9c87de5821d412940eba6da6b9b25165 Hombre 2010-01-25 2011-06-02 PG-PAB Si
3,854 2,010 FRRO1**121987 1987-12-19 31 9c87de5821d412940eba6da6b9b25165 Hombre 2010-01-25 2010-04-30 PG-PAI Si
161,779 2,019 KAAC2**011980 1980-01-28 39 9cc80f63f456ae41d8b72145fe673b3c NA Mujer 2019-09-17 NA M-PAI Si
92,809 2,016 KAAC2**011980 1980-01-28 39 9cc80f63f456ae41d8b72145fe673b3c Mujer 2015-11-27 2016-04-30 PG-PAB Si
68,387 2,015 KAAC2**011998 1998-01-28 21 9cc80f63f456ae41d8b72145fe673b3c Mujer 2014-08-08 2015-08-31 M-PR Si
26,052 2,012 KAAC2**011980 1980-01-28 39 9cc80f63f456ae41d8b72145fe673b3c Mujer 2012-04-03 2012-11-16 M-PR Si
132,968 2,018 MACA2**081959 1959-08-22 60 9d205b7173f2a71b5928d005c69a040c NA Mujer 2017-12-27 2018-08-29 PG-PAB No
132,268 2,018 MACA2**101962 1962-10-18 57 9d205b7173f2a71b5928d005c69a040c NA Mujer 2017-12-27 2018-01-02 PG-PAI Si
145,821 2,019 BOCA1**021974 1974-02-10 45 9d4067490872679cabd325391f43973a NA Hombre 2016-12-05 NA PG-PAI Si
68,241 2,015 BOCA1**021974 1974-02-10 45 9d4067490872679cabd325391f43973a Hombre 2014-03-24 2015-02-25 PG-PAI Si
45,258 2,013 BOCA1**081971 1971-08-11 48 9d4067490872679cabd325391f43973a Hombre 2013-09-27 2014-03-04 PG-PAB Si
156,637 2,019 CAPE1**061969 1969-06-14 50 9d469f572ca5bc07606d562f32d4e7f4 NA Hombre 2019-05-06 2019-06-03 PG-PAI Si
142,953 2,018 CAPE1**061969 1969-06-14 50 9d469f572ca5bc07606d562f32d4e7f4 NA Hombre 2018-10-10 2018-11-28 PG-PAB Si
128,065 2,018 CAPE1**061988 1988-06-14 31 9d469f572ca5bc07606d562f32d4e7f4 NA Hombre 2017-06-27 2018-03-05 PG-PAB Si
113,500 2,017 ANGR1**021974 1974-02-08 45 9d5640242538b437cd280f4148f409c2 NA Hombre 2017-01-10 2017-06-01 PG-PAB No
69,600 2,015 ANGR1**021974 1974-02-08 45 9d5640242538b437cd280f4148f409c2 Hombre 2014-11-03 2015-04-20 PG-PAB No
14,069 2,011 ANGR1**021974 1974-02-08 45 9d5640242538b437cd280f4148f409c2 Hombre 2010-11-25 2011-04-04 PG-PAI Si
12,193 2,011 JOCA1**011983 1983-01-28 36 9d5640242538b437cd280f4148f409c2 Hombre 2010-11-02 2011-02-02 PG-PAI Si
146,413 2,019 JOOR1**121970 1970-12-24 48 9d63425c769cfdcf7f62e323e0a627ff NA Hombre 2017-12-14 NA PG-PAI Si
117,668 2,017 JOOR1**121970 1970-12-24 48 9d63425c769cfdcf7f62e323e0a627ff NA Hombre 2017-05-17 2017-12-01 PG-PR Si
101,977 2,016 JOOR1**121973 1973-12-24 45 9d63425c769cfdcf7f62e323e0a627ff Hombre 2016-09-26 2017-02-01 PG-PAI Si
152,118 2,019 JOCO1**101989 1989-10-10 30 9d7be4d946430501e4c64c47b9cb456b NA Hombre 2018-12-17 2019-03-26 PG-PAI Si
134,254 2,018 JOCO1**101989 1989-10-10 30 9d7be4d946430501e4c64c47b9cb456b NA Hombre 2017-12-29 2018-05-02 PG-PAB Si
22,834 2,012 JOCO1**101988 1988-10-10 31 9d7be4d946430501e4c64c47b9cb456b Hombre 2011-11-10 2012-05-31 PG-PAI Si
12,386 2,011 ALME1**121991 1991-12-10 27 9d8b1eb87394c8ee43b49a2aed5b450c Hombre 2010-12-10 2011-08-17 PG-PAB Si
7,379 2,010 ALME1**071973 1973-07-02 46 9d8b1eb87394c8ee43b49a2aed5b450c Hombre 2010-08-30 2010-11-02 PG-PAB Si
140,362 2,018 MISA2**021992 1992-02-26 27 9d9d24fdfa92dbbf78066eb548a071cf NA Mujer 2018-07-23 2018-09-12 M-PAI Si
24,165 2,012 MISA2**021992 1992-02-26 27 9d9d24fdfa92dbbf78066eb548a071cf Mujer 2012-01-02 2012-02-06 PG-PAI Si
19,934 2,011 MISA2**111992 1992-11-29 26 9d9d24fdfa92dbbf78066eb548a071cf Mujer 2011-11-29 2011-12-19 PG-PAI Si
88,170 2,016 CRMI1**071977 1977-07-09 42 9dd7741a8bf6e4d3724a9909568e322f Hombre 2015-07-10 2016-03-01 PG-PR Si
56,283 2,014 CRMI1**121977 1977-12-09 41 9dd7741a8bf6e4d3724a9909568e322f Hombre 2014-03-31 2014-12-01 PG-PAB Si
106,589 2,017 CYMI2**111980 1980-11-09 38 9e06871d982546d078729e6154d285ba NA Mujer 2016-01-08 2018-01-01 PG-PAB Si
36,474 2,013 CIMI2**091980 1980-09-11 39 9e06871d982546d078729e6154d285ba Mujer 2013-01-02 2013-05-02 PG-PAI Si
157,142 2,019 PACO1**021974 1974-02-07 45 9e153690f84f91a211d152784e136bd2 NA Hombre 2019-05-13 2019-08-23 PG-PR Si
23,066 2,012 PACO1**111992 1992-11-07 26 9e153690f84f91a211d152784e136bd2 Hombre 2011-11-28 2012-05-03 PG-PAI Si
10,466 2,011 PACO1**021974 1974-02-07 45 9e153690f84f91a211d152784e136bd2 Hombre 2010-05-03 2011-07-11 PG-PR Si
39,909 2,013 CLRO1**091980 1980-09-15 39 9e3731ba836a986a05ad706e250fa52c Hombre 2013-05-01 2013-07-31 PG-PAI Si
33,058 2,013 CLRO1**091982 1982-09-15 37 9e3731ba836a986a05ad706e250fa52c Hombre 2012-06-01 2013-04-29 PG-PAB Si
113,183 2,017 SEAR1**011986 1986-01-06 33 9e4b827a3a0a8e2e827d5fb2af5c23bb NA Hombre 2017-02-13 2017-11-17 PG-PR Si
111,435 2,017 SEAR1**071996 1996-07-05 23 9e4b827a3a0a8e2e827d5fb2af5c23bb NA Hombre 2016-08-17 2017-02-10 PG-PAB Si
160,004 2,019 LUCO1**111984 1984-11-10 35 9e66cc522bb209911a6a155ef3c45c96 NA Hombre 2019-05-27 NA PG-PAI Si
70,966 2,015 LUCO1**111984 1984-11-10 34 9e66cc522bb209911a6a155ef3c45c96 Hombre 2014-12-30 2015-01-27 PG-PAI Si
39,052 2,013 LESA2**071981 1981-07-01 38 9e6e002357a29c8e2ab1d132f8d52b5a Mujer 2013-04-01 2013-08-21 PG-PAI Si
36,207 2,013 LESA2**121981 1981-12-15 37 9e6e002357a29c8e2ab1d132f8d52b5a Mujer 2013-01-14 2013-04-18 PG-PAI Si
3,331 2,010 VESE2**021973 1973-02-02 46 9e85181d37efbdb04556dce6eafabd7b Mujer 2009-11-16 2010-06-01 M-PR Si
196 2,010 VESE2**121976 1976-12-21 42 9e85181d37efbdb04556dce6eafabd7b Mujer 2009-11-16 2010-01-28 M-PR Si
145,974 2,019 GIGO2**101966 1966-10-06 53 9e8b4ea065d6fbf66f63813ee5d9eb7b NA Mujer 2017-06-28 NA PG-PAI Si
70,831 2,015 GIGO2**101966 1966-10-06 53 9e8b4ea065d6fbf66f63813ee5d9eb7b Mujer 2014-12-01 2015-06-30 PG-PAI Si
22,501 2,012 GIGO2**101964 1964-10-06 55 9e8b4ea065d6fbf66f63813ee5d9eb7b Mujer 2011-07-27 2012-07-31 PG-PAI Si
87,568 2,016 MAAL1**021988 1988-02-09 31 9f1ae6476e9bb24b337aeade4fc3e713 Hombre 2015-05-01 2016-02-09 PG-PAI Si
69,306 2,015 MAAL1**021988 1988-02-09 31 9f1ae6476e9bb24b337aeade4fc3e713 Hombre 2014-10-02 2015-03-11 PG-PAI Si
34,065 2,013 MAAL1**021989 1989-02-09 30 9f1ae6476e9bb24b337aeade4fc3e713 Hombre 2012-10-08 2013-08-01 PG-PAB Si
28,097 2,012 MAAL1**021989 1989-02-09 30 9f1ae6476e9bb24b337aeade4fc3e713 Hombre 2012-07-04 2012-10-05 PG-PAI Si
142,506 2,018 SELA1**081996 1996-08-13 23 9f5c1e2ba343614324b4d1caab052c6f NA Hombre 2018-09-20 2018-12-18 PG-PAI Si
112,795 2,017 SELA1**081996 1996-08-13 23 9f5c1e2ba343614324b4d1caab052c6f NA Hombre 2016-12-26 2017-07-03 PG-PAB Si
97,980 2,016 SELA1**081994 1994-08-13 25 9f5c1e2ba343614324b4d1caab052c6f Hombre 2016-06-01 2016-10-25 PG-PAI Si
76,063 2,015 LECA1**051989 1989-05-03 30 9f8c7aec0e18cc02aca801a709eb0a1d Hombre 2015-04-08 2015-07-01 PG-PR Si
71,134 2,015 LECA1**081988 1988-08-18 31 9f8c7aec0e18cc02aca801a709eb0a1d Hombre 2015-01-27 2015-03-31 PG-PAI Si
58,673 2,014 MAVI2**091980 1980-09-18 39 9fed372032308c300b4fc7df0034abf8 Mujer 2014-06-19 2014-10-02 M-PAI Si
29,611 2,012 MAVI2**121980 1980-12-18 38 9fed372032308c300b4fc7df0034abf8 Mujer 2012-08-28 2012-09-11 M-PR Si
26,752 2,012 MAVI2**121980 1980-12-18 38 9fed372032308c300b4fc7df0034abf8 Mujer 2012-05-17 2012-08-17 PG-PAI Si
159,445 2,019 MAES2**072001 2001-07-15 18 a0eee7839dc689824f91b86db156f82f NA Mujer 2019-07-25 NA PG-PAB Si
126,236 2,018 MAES2**091960 1960-09-15 59 a0eee7839dc689824f91b86db156f82f NA Mujer 2016-09-16 2018-01-17 PG-PAB Si
65,761 2,015 MAES2**091960 1960-09-15 59 a0eee7839dc689824f91b86db156f82f Mujer 2013-08-12 2015-09-10 PG-PAB Si
158,160 2,019 PABI2**111967 1967-11-09 52 a0fede99cd0b64fc656449da20c9fdc2 NA Mujer 2019-06-06 NA PG-PAI Si
150,999 2,019 PABI2**111967 1967-11-09 52 a0fede99cd0b64fc656449da20c9fdc2 NA Mujer 2018-11-06 2019-04-02 PG-PAB Si
116,251 2,017 PABI2**111967 1967-11-09 51 a0fede99cd0b64fc656449da20c9fdc2 NA Mujer 2017-04-20 2017-12-29 PG-PAB Si
92,788 2,016 YAVI1**061980 1980-06-24 39 a154f719c97c4dbc978740610c2e3140 Hombre 2016-01-05 2016-02-21 PG-PR Si
82,702 2,015 YAVI1**061980 1980-06-24 39 a154f719c97c4dbc978740610c2e3140 Hombre 2015-10-07 2016-01-04 PG-PAI Si
70,530 2,015 YAVI1**061980 1980-06-24 39 a154f719c97c4dbc978740610c2e3140 Hombre 2014-12-02 2015-03-27 PG-PAB Si
60,899 2,014 YAVI1**061979 1979-06-24 40 a154f719c97c4dbc978740610c2e3140 Hombre 2014-08-18 2014-09-15 PG-PR Si
35,778 2,013 EDRA1**101990 1990-10-21 29 a1663c004007e45d02a2a23e16b59666 Hombre 2013-01-11 2013-03-15 PG-PR Si
35,158 2,013 EDRA1**111990 1990-11-19 28 a1663c004007e45d02a2a23e16b59666 Hombre 2012-10-29 2013-01-11 PG-PAB Si
107,292 2,017 EVPA2**061984 1984-06-11 35 a18b2c0a001e7d305e9c31df47add6c2 NA Mujer 2016-04-06 2017-06-27 PG-PAI Si
93,889 2,016 EVPA2**021996 1996-02-05 23 a18b2c0a001e7d305e9c31df47add6c2 Mujer 2016-02-05 2016-04-05 M-PAI Si
88,217 2,016 EVPA2**061984 1984-06-11 35 a18b2c0a001e7d305e9c31df47add6c2 Mujer 2015-07-03 2016-01-05 M-PAI Si
74,203 2,015 EVPA2**061984 1984-06-11 35 a18b2c0a001e7d305e9c31df47add6c2 Mujer 2015-03-09 2015-05-20 M-PAI Si
54,203 2,014 EVPA2**061984 1984-06-11 35 a18b2c0a001e7d305e9c31df47add6c2 Mujer 2014-02-05 2014-07-09 PG-PAI Si
43,553 2,013 EVPA2**061984 1984-06-11 35 a18b2c0a001e7d305e9c31df47add6c2 Mujer 2013-08-23 2013-11-25 PG-PAI Si
93,674 2,016 URRO2**021983 1983-02-25 36 a1eb48696897f5d7c8370d0a8a5956d7 Mujer 2016-01-23 2016-11-18 M-PR Si
14,438 2,011 URRO2**021984 1984-02-25 35 a1eb48696897f5d7c8370d0a8a5956d7 Mujer 2011-03-16 2011-11-30 PG-PAI Si
116,328 2,017 JEPI1**111986 1986-11-24 32 a22e12deb8268b3a449d262ed15cc816 NA Hombre 2017-04-25 2017-06-05 PG-PAI Si
115,958 2,017 JEPI1**111986 1986-11-04 33 a22e12deb8268b3a449d262ed15cc816 NA Hombre 2017-04-17 2017-04-24 PG-PAB Si
38,494 2,013 JOME1**091965 1965-09-19 54 a27098f3a7c39a94da3e138244aaa5f9 Hombre 2013-03-27 2013-12-02 PG-PAI Si
2,260 2,010 JOME1**091964 1964-09-19 55 a27098f3a7c39a94da3e138244aaa5f9 Hombre 2009-12-14 2010-10-04 PG-PAI Si
102,543 2,016 HUMI1**031985 1985-03-23 34 a27b7b49cf3d18f9cda0791393552b3b Hombre 2016-09-28 2017-01-01 PG-PAI Si
58,761 2,014 HUMI1**031985 1985-03-27 34 a27b7b49cf3d18f9cda0791393552b3b Hombre 2014-06-04 2014-11-28 PG-PAB Si
41,791 2,013 HUMI1**071994 1994-07-01 25 a27b7b49cf3d18f9cda0791393552b3b Hombre 2013-07-01 2014-01-20 PG-PAB Si
4,818 2,010 HUMI1**031985 1985-03-23 34 a27b7b49cf3d18f9cda0791393552b3b Hombre 2010-05-03 2010-07-01 PG-PAI Si
136,573 2,018 JADO1**081983 1983-08-11 36 a2b6427160333ace569b09be9c711635 NA Hombre 2018-04-24 2018-11-16 PG-PAI Si
97,832 2,016 JADO1**081983 1983-08-11 36 a2b6427160333ace569b09be9c711635 Hombre 2016-05-16 2016-06-30 PG-PAI Si
90,709 2,016 JADO1**081983 1983-08-11 36 a2b6427160333ace569b09be9c711635 Hombre 2015-11-03 2016-02-29 PG-PAI Si
83,118 2,015 JADO1**081983 1983-08-11 36 a2b6427160333ace569b09be9c711635 Hombre 2015-05-04 2015-10-30 PG-PAB Si
76,210 2,015 JADO1**081993 1993-08-11 26 a2b6427160333ace569b09be9c711635 Hombre 2015-05-04 2015-06-30 PG-PAI Si
115,902 2,017 HEZE2**051976 1976-05-25 43 a2e724fb22cff2f0289206beddabf892 NA Mujer 2017-04-26 2017-08-24 M-PAI Si
109,764 2,017 HEZE2**051975 1975-05-25 44 a2e724fb22cff2f0289206beddabf892 NA Mujer 2016-10-06 2017-04-20 PG-PAI Si
158,885 2,019 CLNI2**111973 1973-11-11 46 a31911bb2a15b7f6da3d3103adcc0f1c NA Mujer 2019-06-05 2019-09-01 PG-PAI Si
98,640 2,016 CLNI2**111973 1973-11-11 45 a31911bb2a15b7f6da3d3103adcc0f1c Mujer 2016-06-02 2016-10-14 PG-PAB Si
130,650 2,018 JUSU1**101982 1982-10-28 37 a31ea30b9baf74b8f79242856e03083a NA Hombre 2017-09-07 2018-03-01 PG-PAI Si
104,912 2,016 JUSU1**101982 1982-10-28 37 a31ea30b9baf74b8f79242856e03083a Hombre 2016-11-15 2017-02-01 PG-PAI Si
56,780 2,014 JUSU1**111982 1982-11-11 36 a31ea30b9baf74b8f79242856e03083a Hombre 2014-04-08 2014-09-17 PG-PAI Si
107,248 2,017 SARO1**101979 1979-10-19 40 a338d82ad183bf09153952310c30a2e2 NA Hombre 2016-05-02 2017-01-25 PG-PAB Si
74,582 2,015 SARO1**101979 1979-10-19 40 a338d82ad183bf09153952310c30a2e2 Hombre 2015-03-16 2015-10-28 PG-PAB No
73,896 2,015 SARO1**101997 1997-10-19 22 a338d82ad183bf09153952310c30a2e2 Hombre 2015-03-06 2015-03-10 PG-PAI Si
103,032 2,016 JOMA1**061976 1976-06-29 43 a36055cd3dc35f67cbcaebabea0c0286 Hombre 2016-10-11 2016-11-02 PG-PAI Si
7,865 2,010 JOMA1**061979 1979-06-29 40 a36055cd3dc35f67cbcaebabea0c0286 Hombre 2010-09-22 2010-10-29 PG-PAI Si
76,915 2,015 CAAR2**041998 1998-04-29 21 a3cf1a0d20de1d67b0d57ead69d39f03 Mujer 2015-05-12 2015-05-17 M-PR Si
71,831 2,015 CAAR2**041988 1988-04-29 31 a3cf1a0d20de1d67b0d57ead69d39f03 Mujer 2015-01-19 2015-05-12 M-PAI Si
57,528 2,014 CAAR2**041988 1988-04-29 31 a3cf1a0d20de1d67b0d57ead69d39f03 Mujer 2014-05-14 2014-10-31 M-PR Si
54,874 2,014 CAAR2**041988 1988-04-26 31 a3cf1a0d20de1d67b0d57ead69d39f03 Mujer 2014-02-14 2014-05-12 PG-PAB Si
130,978 2,018 ROBA2**031967 1967-03-14 52 a3f933adfed44a7c012462a252534ca0 NA Mujer 2017-11-14 2018-02-28 M-PAI Si
122,359 2,017 ROBA2**031968 1968-03-14 51 a3f933adfed44a7c012462a252534ca0 NA Mujer 2017-02-20 2017-11-13 PG-PAB Si
112,074 2,017 ROBA2**031967 1967-03-14 52 a3f933adfed44a7c012462a252534ca0 NA Mujer 2017-01-18 2017-02-17 M-PR Si
95,587 2,016 ROBA2**031967 1967-03-14 52 a3f933adfed44a7c012462a252534ca0 Mujer 2016-04-04 2016-12-16 M-PAI Si
43,140 2,013 ROBA2**031967 1967-03-14 52 a3f933adfed44a7c012462a252534ca0 Mujer 2013-08-19 2013-11-06 M-PR Si
37,038 2,013 ROBA2**031967 1967-03-14 52 a3f933adfed44a7c012462a252534ca0 Mujer 2012-10-20 2013-05-30 PG-PAB Si
30,713 2,012 ROBA2**031967 1967-03-14 52 a3f933adfed44a7c012462a252534ca0 Mujer 2012-10-20 2012-11-28 PG-PAB Si
89,517 2,016 MALA2**011965 1965-01-02 54 a40ad27528c1644fbae1e67954896ea1 Mujer 2015-09-23 2016-02-02 M-PR Si
75,426 2,015 MALA2**011965 1965-01-02 54 a40ad27528c1644fbae1e67954896ea1 Mujer 2015-04-02 2015-09-23 PG-PAI Si
34,812 2,013 MALA2**011955 1955-01-02 64 a40ad27528c1644fbae1e67954896ea1 Mujer 2012-11-05 2013-05-09 PG-PAB Si
111,775 2,017 VIMU1**031974 1974-03-13 45 a40e2c8a2c7ed05d59f81b7c2af07824 NA Hombre 2016-12-20 2017-04-01 PG-PAI Si
97,868 2,016 VIMU1**031974 1974-03-13 45 a40e2c8a2c7ed05d59f81b7c2af07824 Hombre 2016-05-31 2016-08-18 PG-PAI Si
76,474 2,015 VIMU1**031974 1974-03-13 45 a40e2c8a2c7ed05d59f81b7c2af07824 Hombre 2015-05-19 2016-01-21 PG-PAB Si
13,989 2,011 VIMU1**031973 1973-03-13 46 a40e2c8a2c7ed05d59f81b7c2af07824 Hombre 2011-02-23 2011-06-01 PG-PAI Si
153,102 2,019 PRAR2**041990 1990-04-05 29 a41dd7a7f6f386aae89c2b80396c1e7c NA Mujer 2019-01-21 2019-02-04 M-PR Si
74,225 2,015 PRAR2**041990 1990-04-04 29 a41dd7a7f6f386aae89c2b80396c1e7c Mujer 2015-03-25 2015-12-17 M-PR Si
71,977 2,015 PRAR2**041990 1990-04-05 29 a41dd7a7f6f386aae89c2b80396c1e7c Mujer 2015-01-28 2015-02-19 M-PR No
57,803 2,014 PRAR2**031994 1994-03-05 25 a41dd7a7f6f386aae89c2b80396c1e7c Mujer 2014-05-22 2014-12-29 PG-PAI Si
94,628 2,016 PAMA1**071976 1976-07-25 43 a447bd1e9bf4d06196fa5831d4f0a0fc Hombre 2016-03-14 2016-04-28 PG-PAI Si
52,238 2,014 PAMA1**061976 1976-06-25 43 a447bd1e9bf4d06196fa5831d4f0a0fc Hombre 2013-11-12 2014-02-28 PG-PAI Si
22,600 2,012 PAMA1**121987 1987-12-06 31 a447bd1e9bf4d06196fa5831d4f0a0fc Hombre 2011-10-03 2012-05-30 PG-PAI Si
158,532 2,019 OSAE1**031972 1972-03-23 47 a47f95e459f1ed604f08b34259cce763 NA Hombre 2019-02-19 2019-07-24 PG-PAI Si
131,522 2,018 OSAE1**031972 1972-03-21 47 a47f95e459f1ed604f08b34259cce763 NA Hombre 2017-10-16 2018-04-24 PG-PAI Si
108,544 2,017 OSAE1**031972 1972-03-23 47 a47f95e459f1ed604f08b34259cce763 NA Hombre 2016-06-16 2017-04-03 PG-PAB Si
48,131 2,014 OSAE1**031973 1973-03-23 46 a47f95e459f1ed604f08b34259cce763 Hombre 2011-03-09 2014-03-26 PG-PAB No
118,511 2,017 ALME1**101986 1986-10-13 33 a4910dd0cf3daec8a1ed27e853cdaeeb NA Hombre 2017-06-12 2017-10-10 PG-PAB Si
78,611 2,015 ALME1**071987 1987-07-01 32 a4910dd0cf3daec8a1ed27e853cdaeeb Hombre 2015-07-01 2015-08-04 PG-PAB Si
96,297 2,016 LUCI1**091972 1972-09-04 47 a53cf18eb22d9ae435478cb34a687fbe Hombre 2016-04-18 2016-11-29 PG-PAI Si
67,857 2,015 LUCI1**091973 1973-09-04 46 a53cf18eb22d9ae435478cb34a687fbe Hombre 2014-07-22 2015-03-13 PG-PR Si
22,406 2,012 LUCI1**091973 1973-09-04 46 a53cf18eb22d9ae435478cb34a687fbe Hombre 2011-09-07 2012-05-02 PG-PR Si
21,447 2,012 MARE2**051954 1954-05-08 65 a57188f65c8295a8af0e970779339bb8 Mujer 2011-05-02 2012-07-31 PG-PAB Si
4,715 2,010 MARE2**051956 1956-05-08 63 a57188f65c8295a8af0e970779339bb8 Mujer 2009-01-29 2010-06-30 PG-PAB Si
148,945 2,019 IVAL1**011962 1962-01-17 57 a601672869ea418bf94fc64bb4be28d4 NA Hombre 2017-02-15 NA PG-PAI Si
107,563 2,017 IV-A1**011996 1996-01-17 23 a601672869ea418bf94fc64bb4be28d4 NA Hombre 2016-04-27 2017-02-10 PG-PAI Si
130,817 2,018 EDTO1**071988 1988-07-29 31 a655b0dde09b864c310a4820dd5448c3 NA Hombre 2017-11-08 2018-02-01 PG-PR Si
122,726 2,017 EDTO1**071999 1999-07-29 20 a655b0dde09b864c310a4820dd5448c3 NA Hombre 2017-10-02 2017-11-07 PG-PAI Si
150,485 2,019 MAHE1**011974 1974-01-21 45 a66b544a00272ff21158f230bdea96b0 NA Hombre 2018-11-22 2019-05-08 PG-PAI Si
100,999 2,016 MAHE1**011974 1974-01-21 45 a66b544a00272ff21158f230bdea96b0 Hombre 2016-08-29 2016-10-20 PG-PAI Si
49,373 2,014 MAHE1**011984 1984-01-21 35 a66b544a00272ff21158f230bdea96b0 Hombre 2013-06-10 2014-11-25 PG-PAI Si
72,516 2,015 RIDU1**021980 1980-02-02 39 a66f99f488780a547787079f4d817596 Hombre 2015-02-09 2015-06-01 PG-PAI Si
49,492 2,014 RIDU1**121980 1980-12-02 38 a66f99f488780a547787079f4d817596 Hombre 2013-06-03 2014-08-14 PG-PAI Si
70,201 2,015 LOLA2**111977 1977-11-25 41 a7170e374e09617bc63c79ec61ee575d Mujer 2014-09-09 2015-03-20 M-PAI Si
28,448 2,012 LOLA2**111975 1975-11-25 43 a7170e374e09617bc63c79ec61ee575d Mujer 2012-06-01 2012-12-20 M-PAI Si
161,334 2,019 CLAN1**051982 1982-05-23 37 a717d6e72aa0e41d61f24091832d1ddf NA Hombre 2019-09-02 2019-10-03 PG-PR Si
160,720 2,019 CLAN1**051983 1983-05-23 36 a717d6e72aa0e41d61f24091832d1ddf NA Hombre 2019-07-03 2019-08-30 PG-PAI No
142,752 2,018 CLAN1**051982 1982-05-23 37 a717d6e72aa0e41d61f24091832d1ddf NA Hombre 2018-09-05 2018-10-22 PG-PAI Si
82,938 2,015 CLAN1**051982 1982-05-23 37 a717d6e72aa0e41d61f24091832d1ddf Hombre 2015-10-01 2016-04-01 PG-PAI Si
122,566 2,017 JOSE1**041996 1996-04-11 23 a74f40bff841d347c351895e2b0b068d NA Hombre 2017-09-25 2017-12-01 PG-PAI Si
58,465 2,014 JOSE1**041986 1986-04-11 33 a74f40bff841d347c351895e2b0b068d Hombre 2014-06-10 2014-11-24 PG-PAI Si
53,575 2,014 JOSE1**041986 1986-04-11 33 a74f40bff841d347c351895e2b0b068d Hombre 2014-01-06 2014-06-11 PG-PAB Si
64,607 2,014 ALAM1**121970 1970-12-26 48 a755c8b66a9d2164b5793e77234a3bb5 Hombre 2014-10-23 2015-02-02 PG-PAB Si
35,768 2,013 ALAM1**021970 1970-02-28 49 a755c8b66a9d2164b5793e77234a3bb5 Hombre 2013-01-01 2013-08-01 PG-PAB Si
49,629 2,014 MAOR1**081972 1972-08-15 47 a801e6aac193eedb61e9f20daaf9ad0f Hombre 2013-05-29 2014-03-20 PG-PAB Si
18,344 2,011 MAOR1**081975 1975-08-15 44 a801e6aac193eedb61e9f20daaf9ad0f Hombre 2011-08-23 2011-08-26 PG-PR Si
136,217 2,018 GAOL1**011985 1985-01-26 34 a82d37e1aab4c33eb4b139ccce4b5e40 NA Hombre 2018-04-16 2018-11-30 PG-PR Si
135,577 2,018 GAOL1**011985 1985-01-26 34 a82d37e1aab4c33eb4b139ccce4b5e40 NA Hombre 2018-02-20 2018-04-11 PG-PAI Si
130,185 2,018 GAOL1**011995 1995-01-26 24 a82d37e1aab4c33eb4b139ccce4b5e40 NA Hombre 2017-10-23 2018-02-06 PG-PR Si
122,392 2,017 GAOL1**021985 1985-02-26 34 a82d37e1aab4c33eb4b139ccce4b5e40 NA Hombre 2017-08-18 2017-10-18 PG-PAI Si
80,985 2,015 GAOL1**011985 1985-01-26 34 a82d37e1aab4c33eb4b139ccce4b5e40 Hombre 2015-08-19 2016-01-05 PG-PAI No
12,909 2,011 GAOL1**011985 1985-01-26 34 a82d37e1aab4c33eb4b139ccce4b5e40 Hombre 2011-01-13 2011-08-09 PG-PAI Si
127,382 2,018 LEMU1**091980 1980-09-16 39 a867251a0c1ff3f3df8ba369802445d5 NA Hombre 2017-04-28 2018-07-04 PG-PAI Si
28,418 2,012 LEMU1**091982 1982-09-16 37 a867251a0c1ff3f3df8ba369802445d5 Hombre 2012-07-19 2012-08-01 PG-PR Si
89,531 2,016 GLGL2**091943 1943-09-25 76 a8f5b8267c42e558757e7e6ef8695c7c Mujer 2015-09-03 2016-10-04 M-PAI Si
975 2,010 GLGL2**091949 1949-09-25 70 a8f5b8267c42e558757e7e6ef8695c7c Mujer 2008-01-02 2010-03-30 M-PAI Si
94,274 2,016 BACA1**071992 1992-07-03 27 a91ebc49e725f0638be44c6e17445adb Hombre 2015-10-01 2016-04-15 PG-PR Si
89,750 2,016 BACA1**071992 1992-07-03 27 a91ebc49e725f0638be44c6e17445adb Hombre 2015-09-23 NA PG-PR Si
54,834 2,014 VACA1**071994 1994-07-03 25 a91ebc49e725f0638be44c6e17445adb Hombre 2014-01-30 2014-02-07 PG-PR Si
66,688 2,015 GUFE2**111982 1982-11-02 37 a94db572ca3f117291a1c43cab850e18 Mujer 2014-03-17 2015-03-12 M-PR Si
51,081 2,014 GIFE2**111982 1982-11-11 36 a94db572ca3f117291a1c43cab850e18 Mujer 2013-10-04 2014-03-18 M-PR Si
153,462 2,019 RESO1**051998 1998-05-22 21 a9789849315bbf06aeb7c51895d16953 NA Hombre 2019-02-14 NA PG-PAI Si
111,075 2,017 RESO1**051996 1996-05-22 23 a9789849315bbf06aeb7c51895d16953 NA Hombre 2016-11-11 2017-12-12 PG-PAI Si
58,736 2,014 JUSE1**071988 1988-07-21 31 a98bbb2a4a0e9796441a3ed5d24cfe8d Hombre 2014-06-20 2014-09-17 PG-PR No
33,507 2,013 JUSE1**071983 1983-07-21 36 a98bbb2a4a0e9796441a3ed5d24cfe8d Hombre 2012-08-03 2013-09-24 PG-PR Si
98,147 2,016 JOMO1**011971 1971-01-30 48 a99ffd68cc0f8887c09631c52de3e2bf Hombre 2016-06-02 2016-12-01 PG-PAI Si
81,478 2,015 JOMO1**011979 1979-01-30 40 a99ffd68cc0f8887c09631c52de3e2bf Hombre 2015-09-16 2016-01-13 PG-PAI Si
35,861 2,013 STVI2**121987 1987-12-15 31 a9a2f7f65e7daa65da2edaca0fa427a5 Mujer 2012-11-29 2013-01-31 M-PAI Si
31,950 2,012 STVI2**121983 1983-12-15 35 a9a2f7f65e7daa65da2edaca0fa427a5 Mujer 2012-11-29 2013-01-02 M-PAB Si
159,678 2,019 CROR1**081974 1974-08-10 45 a9e8b7ca1b7cc2d0dcb6389f42fcabaf NA Hombre 2019-07-23 NA PG-PAI Si
109,825 2,017 CROR1**081974 1974-08-10 45 a9e8b7ca1b7cc2d0dcb6389f42fcabaf NA Hombre 2016-08-23 2017-03-16 PG-PAB Si
4,494 2,010 CROR1**121974 1974-12-10 44 a9e8b7ca1b7cc2d0dcb6389f42fcabaf Hombre 2010-03-22 2010-09-07 Otro No
32,879 2,013 ANFU2**081962 1962-08-26 57 a9ef733713e00c63cdd2cf2f9b411f33 Mujer 2012-05-09 2013-02-19 PG-PAI Si
17,492 2,011 ANFU2**081962 1962-08-26 57 a9ef733713e00c63cdd2cf2f9b411f33 Mujer 2011-07-15 2012-01-05 PG-PAI Si
11,762 2,011 ANFU2**081962 1962-08-26 57 a9ef733713e00c63cdd2cf2f9b411f33 Mujer 2010-10-25 2011-06-30 M-PR Si
4,336 2,010 ANFU2**081963 1963-08-25 56 a9ef733713e00c63cdd2cf2f9b411f33 Mujer 2010-03-22 2010-10-22 PG-PAI Si
146,503 2,019 GACO1**091981 1981-09-30 38 aa0616a6c0999907cddf981587736fb4 NA Hombre 2018-01-24 2019-03-29 PG-PAI Si
94,059 2,016 GACO1**091982 1982-09-30 37 aa0616a6c0999907cddf981587736fb4 Hombre 2016-02-24 2016-12-14 PG-PAI Si
60,948 2,014 JUHI1**031978 1978-03-23 41 aa0a2d8d5b657729eaedd5984662f5d2 Hombre 2014-08-04 2015-01-30 PG-PAB Si
34,766 2,013 JUHI1**031979 1979-03-26 40 aa0a2d8d5b657729eaedd5984662f5d2 Hombre 2012-11-05 2013-08-26 PG-PAB No
54,160 2,014 DAGU1**091961 1961-09-17 58 aa0ae37c7f0eaffce61dd6833a07948b Hombre 2014-02-03 2014-06-30 PG-PAI Si
41,817 2,013 DAGU1**071962 1962-07-02 57 aa0ae37c7f0eaffce61dd6833a07948b Hombre 2013-07-08 2013-10-14 PG-PAI Si
132,027 2,018 MALA1**021999 1999-02-08 20 aa292146719cc76bea2786b6895da37a NA Hombre 2017-11-20 2018-05-14 PG-PAB Si
122,575 2,017 MALA1**021975 1975-02-08 44 aa292146719cc76bea2786b6895da37a NA Hombre 2017-09-06 2017-11-03 PG-PR Si
112,047 2,017 MALA1**021975 1975-02-08 44 aa292146719cc76bea2786b6895da37a NA Hombre 2017-01-16 2017-08-02 PG-PR Si
90,422 2,016 MALA1**021975 1975-02-08 44 aa292146719cc76bea2786b6895da37a Hombre 2015-10-09 2017-01-09 PG-PAB Si
77,587 2,015 MALA1**021975 1975-02-02 44 aa292146719cc76bea2786b6895da37a Hombre 2015-05-20 2015-10-02 PG-PR Si
66,706 2,015 MALA1**021975 1975-02-08 44 aa292146719cc76bea2786b6895da37a Hombre 2014-03-19 2015-06-01 PG-PAI Si
81,963 2,015 LUMO1**051981 1981-05-15 38 aa2bd1020e900fbcd439f081ae2b5ad8 Hombre 2015-09-29 2015-11-16 PG-PR Si
56,877 2,014 LUMO1**051980 1980-05-15 39 aa2bd1020e900fbcd439f081ae2b5ad8 Hombre 2014-04-16 2014-11-14 PG-PAI Si
149,312 2,019 CAGA2**061976 1976-06-12 43 aa610b8def576e0cd6cb73e6a9f8228b NA Mujer 2018-09-04 2019-07-01 M-PR Si
132,792 2,018 CAGA2**061976 1976-06-12 43 aa610b8def576e0cd6cb73e6a9f8228b NA Mujer 2018-01-02 2018-09-03 PG-PAI Si
131,971 2,018 CAGA2**061978 1978-06-12 41 aa610b8def576e0cd6cb73e6a9f8228b NA Mujer 2017-12-01 2018-01-01 PG-PAB Si
26,929 2,012 MACA2**121982 1982-12-05 36 aa705475add7ddddc3af02709dd03189 Mujer 2012-05-15 2012-10-31 PG-PAI Si
23,093 2,012 MACA2**121989 1989-12-05 29 aa705475add7ddddc3af02709dd03189 Mujer 2011-11-10 2012-03-05 M-PAI Si
137,781 2,018 CAAL2**041985 1985-04-02 34 aa868b50834eb0c56328f93dbbbeaf76 NA Mujer 2018-05-03 2018-07-12 M-PAI Si
131,833 2,018 CAAL2**041988 1988-04-02 31 aa868b50834eb0c56328f93dbbbeaf76 NA Mujer 2017-12-04 2018-03-28 PG-PAB Si
114,898 2,017 LURO1**071957 1957-07-22 62 aa869cab089d0db2c64bb18fe3a4dc9d NA Hombre 2017-03-28 2017-12-19 PG-PR Si
81,680 2,015 LURO1**071959 1959-07-22 60 aa869cab089d0db2c64bb18fe3a4dc9d Hombre 2015-09-16 2015-10-15 PG-PR Si
33,384 2,013 LURO1**071959 1959-07-22 60 aa869cab089d0db2c64bb18fe3a4dc9d Hombre 2012-07-03 2013-01-03 PG-PR Si
129,177 2,018 GUTE1**021999 1999-02-15 20 aab9137100f67cf8d78e917bdac8673d NA Hombre 2017-08-28 2018-06-13 PG-PAI Si
39,192 2,013 GUTE1**021963 1963-02-14 56 aab9137100f67cf8d78e917bdac8673d Hombre 2013-04-23 2013-07-01 PG-PR Si
25,443 2,012 MACA2**021972 1972-02-05 47 aadc1ce089dbccb436705c5785bf35d6 Mujer 2012-03-05 2012-09-20 M-PR Si
25,002 2,012 MACA2**061973 1973-06-06 46 aadc1ce089dbccb436705c5785bf35d6 Mujer 2012-02-13 2012-03-05 M-PAI Si
13,296 2,011 MACA2**021972 1972-02-05 47 aadc1ce089dbccb436705c5785bf35d6 Mujer 2011-01-21 2011-05-31 M-PAI Si
2,337 2,010 MACA2**021972 1972-02-05 47 aadc1ce089dbccb436705c5785bf35d6 Mujer 2009-07-02 2010-11-30 PG-PAI Si
162,951 2,019 GAWH1**081989 1989-08-17 30 ab18a4cecb5a0773ae5455777f161691 NA Hombre 2019-10-15 NA PG-PAI Si
123,433 2,017 GAWH1**081999 1999-08-17 20 ab18a4cecb5a0773ae5455777f161691 NA Hombre 2017-09-26 2017-12-20 PG-PAI Si
57,129 2,014 MAVA1**031979 1979-03-13 40 ab3b763401bb5abaac26c0a22956ea82 Hombre 2014-04-23 2014-10-01 PG-PAI Si
35,094 2,013 ALCO1**121977 1977-12-12 41 ab3b763401bb5abaac26c0a22956ea82 Hombre 2012-12-03 2013-07-25 PG-PAI Si
76,907 2,015 GUVA1**111974 1974-11-20 44 ab51b2e5b339854f6dda7983aa5b1eab Hombre 2015-05-18 2015-11-19 PG-PR Si
48,877 2,014 GUVA1**111976 1976-11-20 42 ab51b2e5b339854f6dda7983aa5b1eab Hombre 2013-04-22 2014-04-16 PG-PR Si
34,241 2,013 GUVA1**111976 1976-11-20 42 ab51b2e5b339854f6dda7983aa5b1eab Hombre 2012-10-01 2013-04-19 PG-PAI Si
28,856 2,012 GUVA1**111976 1976-11-20 42 ab51b2e5b339854f6dda7983aa5b1eab Hombre 2012-07-09 2012-09-22 PG-PR Si
23,951 2,012 GUVA1**111976 1976-11-20 42 ab51b2e5b339854f6dda7983aa5b1eab Hombre 2012-01-04 2012-07-03 PG-PAI Si
140,689 2,018 JOCA1**061986 1986-06-28 33 ab571bfd444067b696242ab08400646f NA Hombre 2018-08-02 2018-10-08 PG-PAB Si
19,661 2,011 JOCA1**111992 1992-11-10 26 ab571bfd444067b696242ab08400646f Hombre 2011-10-24 2012-01-23 PG-PAB Si
122,362 2,017 BEFL1**071987 1987-07-16 32 ab5b7477c8e50d15b2864c089575569b NA Hombre 2017-09-16 2017-11-01 PG-PR Si
119,660 2,017 BEFL1**071999 1999-07-16 20 ab5b7477c8e50d15b2864c089575569b NA Hombre 2017-07-26 2017-09-15 PG-PAI Si
29,755 2,012 MACA2**121985 1985-12-31 33 abae71b5e45b660fe38ae8f396a434e9 Mujer 2012-09-04 2012-12-07 PG-PAB Si
24,879 2,012 MACA2**121986 1986-12-31 32 abae71b5e45b660fe38ae8f396a434e9 Mujer 2012-02-13 2012-06-25 PG-PAB Si
14,090 2,011 MACA2**121986 1986-12-31 32 abae71b5e45b660fe38ae8f396a434e9 Mujer 2011-01-24 2011-08-19 M-PR Si
1,239 2,010 MACA2**121986 1986-12-31 32 abae71b5e45b660fe38ae8f396a434e9 Mujer 2009-09-23 2010-03-03 M-PR Si
149,428 2,019 YECH2**011983 1983-01-13 36 abe310c84a4fc081f4eedf8004680207 NA Mujer 2018-09-28 2019-03-09 M-PR Si
129,059 2,018 YECH2**011983 1983-01-13 36 abe310c84a4fc081f4eedf8004680207 NA Mujer 2017-08-30 2018-06-25 M-PAI Si
116,427 2,017 JECH2**011983 1983-01-13 36 abe310c84a4fc081f4eedf8004680207 NA Mujer 2017-04-28 2017-08-29 PG-PAB Si
90,353 2,016 YECH2**011982 1982-01-13 37 abe310c84a4fc081f4eedf8004680207 Mujer 2015-10-26 2016-12-09 PG-PAI Si
29,623 2,012 YECH2**011983 1983-01-13 36 abe310c84a4fc081f4eedf8004680207 Mujer 2012-08-06 2012-11-09 M-PAB Si
112,715 2,017 JUOR1**041961 1961-04-11 58 ac3f7708920e85017399664213d4cc9b NA Hombre 2017-01-09 2017-07-01 PG-PR Si
98,975 2,016 JUOR1**061996 1996-06-03 23 ac3f7708920e85017399664213d4cc9b Hombre 2016-06-15 2016-12-01 PG-PAI Si
43,988 2,013 PACA2**071994 1994-07-28 25 ac4e1b1c7674a39ed1b3a885db2d953d Mujer 2013-08-02 2013-12-10 PG-PAB Si
42,208 2,013 PACA2**071990 1990-07-28 29 ac4e1b1c7674a39ed1b3a885db2d953d Mujer 2013-07-22 2013-07-31 M-PR Si
34,487 2,013 PACA2**071990 1990-07-28 29 ac4e1b1c7674a39ed1b3a885db2d953d Mujer 2012-10-08 2013-05-28 PG-PAB Si
27,899 2,012 PACA2**071990 1990-07-28 29 ac4e1b1c7674a39ed1b3a885db2d953d Mujer 2012-06-25 2012-10-05 M-PR Si
27,360 2,012 PACA2**071990 1990-07-28 29 ac4e1b1c7674a39ed1b3a885db2d953d Mujer 2012-04-04 2012-06-22 PG-PAB Si
109,477 2,017 FRRE1**011976 1976-01-21 43 ac96e82ed140076547cd59ce765e74cc NA Hombre 2016-09-20 2017-04-01 PG-PAI Si
64,623 2,014 FRRE1**011976 1976-01-21 43 ac96e82ed140076547cd59ce765e74cc Hombre 2014-11-14 2014-12-19 PG-PAI Si
44,922 2,013 FRRE1**011977 1977-01-21 42 ac96e82ed140076547cd59ce765e74cc Hombre 2013-10-07 2013-12-03 PG-PAI Si
107,086 2,017 JUCA1**111972 1972-11-27 46 aca2eab5a84d888e6a4463cbabd4da4d NA Hombre 2015-10-22 2017-01-02 PG-PR Si
76,752 2,015 JUCA1**111979 1979-11-27 39 aca2eab5a84d888e6a4463cbabd4da4d Hombre 2015-05-04 2015-10-21 PG-PAI Si
110,346 2,017 CRGA1**101996 1996-10-19 23 acac1fe4b6d7991c2a8d4cc0b911554d NA Hombre 2016-11-14 2017-01-31 PG-PAB Si
82,427 2,015 CRGA1**101978 1978-10-19 41 acac1fe4b6d7991c2a8d4cc0b911554d Hombre 2015-10-13 2016-01-04 PG-PAB Si
61,370 2,014 CRGA1**101978 1978-10-19 41 acac1fe4b6d7991c2a8d4cc0b911554d Hombre 2014-08-26 2014-12-11 PG-PAB Si
60,131 2,014 LERO1**051985 1985-05-02 34 acb63474ec2046167d73c2a9cb1fa948 Hombre 2014-07-01 2014-09-30 PG-PAB Si
42,712 2,013 LERO1**041986 1986-04-29 33 acb63474ec2046167d73c2a9cb1fa948 Hombre 2013-07-24 2013-10-30 PG-PAB Si
130,662 2,018 TASA2**101971 1971-10-26 48 acc0bbaea24fb48c65a49b9d7df7348b NA Mujer 2017-10-25 2018-05-11 M-PR Si
92,394 2,016 TASA2**101971 1971-10-26 48 acc0bbaea24fb48c65a49b9d7df7348b Mujer 2016-01-05 2016-08-09 M-PR Si
74,120 2,015 TASA2**101971 1971-10-26 48 acc0bbaea24fb48c65a49b9d7df7348b Mujer 2015-02-09 2015-06-12 M-PR Si
66,457 2,015 TASA2**101971 1971-10-26 48 acc0bbaea24fb48c65a49b9d7df7348b Mujer 2014-02-20 2014-08-12 M-PR Si
21,782 2,012 TASA2**101972 1972-10-26 47 acc0bbaea24fb48c65a49b9d7df7348b Mujer 2011-06-29 2013-01-23 M-PR Si
141,604 2,018 FAQU1**121986 1986-12-23 32 acc20a62d40cb17f81e1469ffc7fa130 NA Hombre 2018-08-22 2018-09-28 PG-PAI Si
98,773 2,016 FAQU1**061986 1986-06-23 33 acc20a62d40cb17f81e1469ffc7fa130 Hombre 2016-06-16 2016-06-30 PG-PR Si
92,036 2,016 FAQU1**121986 1986-12-23 32 acc20a62d40cb17f81e1469ffc7fa130 Hombre 2015-12-22 2016-03-07 PG-PAI Si
30,064 2,012 FAQU1**121986 1986-12-23 32 acc20a62d40cb17f81e1469ffc7fa130 Hombre 2012-07-19 2012-12-03 PG-PAI Si
98,960 2,016 MARE1**051975 1975-05-29 44 acd2a7c8088d1fe8e22b3fc5dd01bfc1 Hombre 2016-06-15 2016-08-01 PG-PAB Si
37,912 2,013 MARE2**051975 1975-05-29 44 acd2a7c8088d1fe8e22b3fc5dd01bfc1 Mujer 2013-03-04 2013-05-31 PG-PAI Si
18,246 2,011 MARE2**071992 1992-07-05 27 acd2a7c8088d1fe8e22b3fc5dd01bfc1 Mujer 2011-07-07 2011-11-30 M-PAI Si
95,993 2,016 JOBA1**041977 1977-04-03 42 ad089b3476d83a9bc52b098f16a5e736 Hombre 2016-04-20 2016-05-17 PG-PAI Si
95,173 2,016 JOBA1**041978 1978-04-02 41 ad089b3476d83a9bc52b098f16a5e736 Hombre 2016-02-05 2016-04-19 PG-PAI Si
148,943 2,019 MAGA2**101980 1980-10-23 39 ad2fdc81e082adeb100fdb98376d9014 NA Mujer 2018-07-27 2019-01-28 PG-PAI Si
81,645 2,015 MAGA2**101990 1990-10-23 29 ad2fdc81e082adeb100fdb98376d9014 Mujer 2015-08-24 2016-03-18 PG-PAI Si
76,417 2,015 VIOL1**101989 1989-10-09 30 ad60cf50ca6ec5ea2721497bd4568d46 Hombre 2015-05-07 2015-06-10 PG-PR Si
72,178 2,015 VIOL1**101998 1998-10-09 21 ad60cf50ca6ec5ea2721497bd4568d46 Hombre 2015-01-20 2015-05-05 PG-PAI Si
119,969 2,017 ELRO2**101974 1974-10-30 45 ad9865591fda0c5cee4e863de96bc4fd NA Mujer 2017-07-27 2017-12-13 M-PAI Si
118,121 2,017 ELRO2**101974 1974-10-30 45 ad9865591fda0c5cee4e863de96bc4fd NA Mujer 2017-05-15 2017-07-20 PG-PAI Si
48,593 2,014 ELRO2**101971 1971-10-30 48 ad9865591fda0c5cee4e863de96bc4fd Mujer 2013-03-01 2014-07-01 PG-PAI Si
53,541 2,014 CALA1**101976 1976-10-29 43 ade9d947db9e6c5f04613fb8b1eb0ab1 Hombre 2013-12-28 2014-01-18 PG-PR Si
24,303 2,012 CALA1**101977 1977-10-29 42 ade9d947db9e6c5f04613fb8b1eb0ab1 Hombre 2012-01-09 2012-05-16 PG-PR Si
11,121 2,011 CALA1**101977 1977-10-29 42 ade9d947db9e6c5f04613fb8b1eb0ab1 Hombre 2010-08-06 2011-07-20 PG-PR No
56,747 2,014 MAME2**061972 1972-06-06 47 ae1b59c707816d86c1a1a092b6e3ca55 Mujer 2014-02-28 2014-06-27 PG-PAI Si
48,383 2,014 MAME2**021971 1971-02-06 48 ae1b59c707816d86c1a1a092b6e3ca55 Mujer 2013-02-14 2014-02-28 PG-PAI Si
128,824 2,018 PASE1**081995 1995-08-16 24 ae27221992a581d65aac405403f995e8 NA Hombre 2017-08-17 2018-05-31 PG-PAI Si
118,496 2,017 PASE1**101995 1995-10-16 24 ae27221992a581d65aac405403f995e8 NA Hombre 2017-06-21 2017-07-31 PG-PAI Si
115,422 2,017 PASE1**101993 1993-10-16 26 ae27221992a581d65aac405403f995e8 NA Hombre 2017-04-06 2017-05-01 PG-PR Si
107,088 2,017 PASE1**101995 1995-10-16 24 ae27221992a581d65aac405403f995e8 NA Hombre 2016-04-20 2017-04-05 PG-PAI Si
91,386 2,016 EROR2**051965 1965-05-13 54 ae549bf0ddb41f22492ad9cb4d6c0a79 Mujer 2015-10-27 2016-10-13 M-PR Si
78,837 2,015 EROR2**051962 1962-05-13 57 ae549bf0ddb41f22492ad9cb4d6c0a79 Mujer 2015-06-30 2015-10-26 M-PAI Si
76,022 2,015 EROR2**041965 1965-04-13 54 ae549bf0ddb41f22492ad9cb4d6c0a79 Mujer 2015-03-02 2015-07-10 PG-PAI Si
120,896 2,017 CAKR1**051991 1991-05-20 28 ae56515e741d7eb927aefcd60f852a6c NA Hombre 2017-08-24 2017-09-22 PG-PAB Si
111,266 2,017 CAKR1**121991 1991-12-20 27 ae56515e741d7eb927aefcd60f852a6c NA Hombre 2016-12-07 2017-03-06 PG-PAI Si
131,045 2,018 JOGO1**021999 1999-02-05 20 ae57063712121f0ae7946c5b8caec739 NA Hombre 2017-11-15 2018-07-31 PG-PR Si
120,853 2,017 JOGO1**021987 1987-02-05 32 ae57063712121f0ae7946c5b8caec739 NA Hombre 2017-08-21 2017-11-14 PG-PAI Si
147,375 2,019 NIHE2**111991 1991-11-24 27 ae9a8c0c9f1a9c40e3897604c179653b NA Mujer 2018-05-16 2019-05-31 PG-PAI Si
3,395 2,010 NIHE2**021991 1991-02-24 28 ae9a8c0c9f1a9c40e3897604c179653b Mujer 2010-02-16 2010-06-08 PG-PAI Si
65,727 2,015 ATTO1**101954 1954-10-29 65 aeb4966cbd330bf0f9fc11449dec8884 Hombre 2013-07-09 2015-08-26 PG-PAB Si
29,109 2,012 ATTO1**101957 1957-10-29 62 aeb4966cbd330bf0f9fc11449dec8884 Hombre 2012-08-13 2012-09-05 PG-PR Si
38,141 2,013 LUMA1**121974 1974-12-14 44 aebf3fe8142a561f76686985a1652ebb Hombre 2013-03-05 2013-06-04 PG-PR Si
28,052 2,012 LUMA1**121964 1964-12-14 54 aebf3fe8142a561f76686985a1652ebb Hombre 2012-06-27 2012-12-03 PG-PR Si
75,636 2,015 NEME1**031968 1968-03-27 51 af026a63f84b23dc91db8c257e10825f Hombre 2015-04-22 2015-08-01 PG-PR Si
66,636 2,015 NEME1**121968 1968-12-27 50 af026a63f84b23dc91db8c257e10825f Hombre 2014-03-27 2015-04-17 PG-PAI Si
49,529 2,014 PAGA1**081982 1982-08-06 37 af079772789f8af495ebbea0acc25c30 Hombre 2013-06-12 2014-05-30 PG-PAI Si
21,863 2,012 PAGA1**081982 1982-08-06 37 af079772789f8af495ebbea0acc25c30 Hombre 2011-08-01 2012-06-04 PG-PAI Si
16,170 2,011 PAGA1**081982 1982-08-06 37 af079772789f8af495ebbea0acc25c30 Hombre 2011-05-13 2011-07-29 PG-PR Si
15,540 2,011 PAGA1**081982 1982-08-06 37 af079772789f8af495ebbea0acc25c30 Hombre 2011-04-08 2011-05-12 PG-PAI Si
222 2,010 PAGA1**061981 1981-06-06 38 af079772789f8af495ebbea0acc25c30 Hombre 2009-07-02 2010-06-25 PG-PAB Si
78,920 2,015 NASI2**081995 1995-08-17 24 af31a24fbd7abc1cc2506b27f176bcb0 Mujer 2015-07-07 2015-08-10 M-PAI Si
30,391 2,012 NHSI2**081985 1985-08-17 34 af31a24fbd7abc1cc2506b27f176bcb0 Mujer 2012-10-08 2012-10-29 M-PR Si
131,447 2,018 JARO1**081984 1984-08-04 35 af4447f8450791fd08c6bd2197242956 NA Hombre 2017-11-27 2018-03-09 PG-PR Si
122,496 2,017 JARO1**081988 1988-08-04 31 af4447f8450791fd08c6bd2197242956 NA Hombre 2017-09-05 2017-10-26 PG-PAI Si
112,768 2,017 ELDI2**121974 1974-12-28 44 afacbc955da48f4b447f3c63a097da93 NA Mujer 2017-01-20 2017-11-27 M-PAI Si
95,212 2,016 ELDI2**061974 1974-06-28 45 afacbc955da48f4b447f3c63a097da93 Mujer 2016-03-28 2016-12-31 M-PAI Si
76,151 2,015 JOQU1**021986 1986-02-21 33 b05ef1e00d4cae0868dea43a07bd75fe Hombre 2015-05-04 2015-06-19 PG-PAI Si
13,415 2,011 JOQU1**021985 1985-02-21 34 b05ef1e00d4cae0868dea43a07bd75fe Hombre 2011-01-18 2011-04-01 PG-PAB Si
107,029 2,017 CLHE2**091983 1983-09-19 36 b0702637d3110152bcddc2dec88b63dc NA Mujer 2016-04-01 2017-05-25 PG-PAB Si
89,055 2,016 CLHE2**091984 1984-09-19 35 b0702637d3110152bcddc2dec88b63dc Mujer 2015-08-25 2016-03-24 M-PAI Si
117,539 2,017 SEAR1**031985 1985-03-04 34 b083a5dab19cd3d85b502d472484d893 NA Hombre 2017-05-15 2017-08-16 PG-PAI Si
90,586 2,016 SEAR1**031989 1989-03-04 30 b083a5dab19cd3d85b502d472484d893 Hombre 2015-11-05 2016-05-27 PG-PAI Si
70,908 2,015 SEAR1**031985 1985-03-04 34 b083a5dab19cd3d85b502d472484d893 Hombre 2015-01-02 2015-09-14 PG-PAB No
160,606 2,019 GUMU1**101983 1983-10-13 36 b0a7513dd54ea723439284dd9bfd647c NA Hombre 2019-08-12 NA PG PAI 2 Si
10,636 2,011 GUMU1**101983 1983-10-13 36 b0a7513dd54ea723439284dd9bfd647c Hombre 2010-06-02 2011-04-25 PG-PAI Si
3,113 2,010 GUMU1**101981 1981-10-13 38 b0a7513dd54ea723439284dd9bfd647c Hombre 2010-01-08 2010-02-22 PG-PAI Si
116,484 2,017 ROGA1**011983 1983-01-12 36 b0cbb7eab5781860885051f5caf7c356 NA Hombre 2017-05-01 2017-07-20 PG-PR Si
115,996 2,017 ROGA1**101981 1981-10-09 38 b0cbb7eab5781860885051f5caf7c356 NA Hombre 2017-04-17 2017-04-28 PG-PAI Si
85,062 2,015 ANMO2**111971 1971-11-19 47 b0f58a11b9a9ae46f44d2e3e57120269 Mujer 2015-12-01 2016-01-01 PG-PAB Si
67,438 2,015 ANMO2**111975 1975-11-15 43 b0f58a11b9a9ae46f44d2e3e57120269 Mujer 2014-06-17 2015-12-01 PG-PAI Si
48,911 2,014 ANMO2**111971 1971-11-15 47 b0f58a11b9a9ae46f44d2e3e57120269 Mujer 2013-05-06 2014-06-09 PG-PAI Si
60,964 2,014 PEVE1**111975 1975-11-13 43 b1705ce662f3c1563f391f3aedd40f84 Hombre 2014-08-19 2014-11-03 PG-PR Si
16,018 2,011 PEVE1**051992 1992-05-13 27 b1705ce662f3c1563f391f3aedd40f84 Hombre 2011-05-24 2011-09-30 PG-PAI Si
161,188 2,019 MAMA2**041986 1986-04-29 33 b19cba8aa8b5dfb101662de43db71800 NA Mujer 2019-08-01 NA PG-PAB Si
155,223 2,019 MAMA2**041986 1986-04-29 33 b19cba8aa8b5dfb101662de43db71800 NA Mujer 2019-03-02 2019-07-25 M-PR Si
100,952 2,016 MAMA2**041986 1986-04-29 33 b19cba8aa8b5dfb101662de43db71800 Mujer 2016-08-26 2016-12-01 M-PR Si
97,878 2,016 MAMA2**041987 1987-04-29 32 b19cba8aa8b5dfb101662de43db71800 Mujer 2016-05-25 2016-06-30 PG-PAB Si
95,371 2,016 CRDA1**021991 1991-02-01 28 b20fd174c15eb124463de3aa492fe53b Hombre 2016-03-23 2016-12-20 PG-PR Si
86,512 2,016 CRDA1**021971 1971-02-02 48 b20fd174c15eb124463de3aa492fe53b Hombre 2015-02-02 2016-03-22 PG-PAB Si
129,386 2,018 TELU2**071965 1965-07-27 54 b2707c684c6f907a791a9714646539b8 NA Mujer 2017-04-20 2018-06-25 PG-PAI Si
15,536 2,011 TELU2**061964 1964-06-26 55 b2707c684c6f907a791a9714646539b8 Mujer 2011-04-14 2011-09-01 M-PR Si
13,810 2,011 TELU2**071965 1965-07-27 54 b2707c684c6f907a791a9714646539b8 Mujer 2011-02-01 2011-04-07 PG-PAB Si
37,784 2,013 ALES1**051984 1984-05-17 35 b2bbaffb5d994584ac0090bd3b47af4a Hombre 2013-03-25 2013-08-07 PG-PAI Si
10,317 2,011 ALES1**051986 1986-05-17 33 b2bbaffb5d994584ac0090bd3b47af4a Hombre 2010-04-01 2011-02-28 PG-PAB Si
135,825 2,018 ALQU1**021982 1982-02-11 37 b2c5561e9b869af58a32b06f4dba07d2 NA Hombre 2018-01-24 2018-07-01 PG-PAI Si
38,369 2,013 ALQU1**021982 1982-02-11 37 b2c5561e9b869af58a32b06f4dba07d2 Hombre 2013-04-02 2013-06-25 PG-PAI Si
20,949 2,012 ALQU1**021985 1985-02-11 34 b2c5561e9b869af58a32b06f4dba07d2 Hombre 2010-06-05 2012-05-11 PG-PAB Si
70,984 2,015 PAPA2**091990 1990-09-19 29 b2d3dff9807f2ddb879b65b2e368c4e6 Mujer 2015-01-02 2015-08-11 M-PAI Si
45,508 2,013 PAPA2**091991 1991-09-19 28 b2d3dff9807f2ddb879b65b2e368c4e6 Mujer 2013-10-08 2014-04-01 PG-PAB Si
77,971 2,015 GERO1**061981 1981-06-18 38 b2fffcd1a8101571f5129bf933805ff7 Hombre 2015-06-09 2015-08-28 PG-PR Si
71,792 2,015 GERO1**061982 1982-06-18 37 b2fffcd1a8101571f5129bf933805ff7 Hombre 2015-01-21 2015-03-23 PG-PR Si
134,068 2,018 MAZA1**081955 1955-08-13 64 b32e80edca05588f627c414c98498b60 NA Hombre 2017-12-18 2018-10-18 PG-PAI Si
34,969 2,013 MAZA1**091951 1951-09-13 68 b32e80edca05588f627c414c98498b60 Hombre 2012-12-04 2013-06-03 PG-PAI Si
97,865 2,016 LOSE1**031968 1968-03-13 51 b36714aa354eaa2894b50c8a976a6cca Hombre 2016-03-30 2016-10-01 PG-PAB Si
41,727 2,013 LOSE1**031961 1961-03-13 58 b36714aa354eaa2894b50c8a976a6cca Hombre 2013-07-02 2014-01-02 PG-PAI Si
147,297 2,019 VISA1**111971 1971-11-11 48 b37c30b0e3ea6c45d80f5af56539a4bd NA Hombre 2018-04-25 2019-03-28 PG-PAI Si
93,952 2,016 VISA1**111971 1971-11-11 47 b37c30b0e3ea6c45d80f5af56539a4bd Hombre 2016-02-23 2016-05-13 PG-PAB Si
67,877 2,015 ALSI1**111979 1979-11-02 40 b37dbe01ed888d49ed98af881bdb4f69 Hombre 2014-07-16 2015-01-08 PG-PR Si
59,067 2,014 JOPA1**091969 1969-09-15 50 b37dbe01ed888d49ed98af881bdb4f69 Hombre 2014-06-28 2014-06-29 PG-PR Si
153,388 2,019 HETO1**111947 1947-11-12 72 b3abb6bc383b99093e07bc3ab41d9198 NA Hombre 2019-02-18 2019-08-29 PG-PR Si
129,836 2,018 HETO1**111947 1947-11-11 71 b3abb6bc383b99093e07bc3ab41d9198 NA Hombre 2017-08-03 2018-11-30 PG-PAB Si
140,654 2,018 CAVA1**061965 1965-06-18 54 b3c08cf36ec26c884c08ca8a795f8232 NA Hombre 2018-07-30 2018-09-03 PG-PR Si
138,249 2,018 CAVA1**061965 1965-06-18 54 b3c08cf36ec26c884c08ca8a795f8232 NA Hombre 2018-01-30 2018-07-27 PG-PAI Si
76,687 2,015 CAVA1**061965 1965-06-18 54 b3c08cf36ec26c884c08ca8a795f8232 Hombre 2015-05-26 2015-11-19 PG-PAI Si
49,728 2,014 CAVA1**071994 1994-07-08 25 b3c08cf36ec26c884c08ca8a795f8232 Hombre 2013-07-08 2014-03-10 PG-PR Si
29,054 2,012 CAVA1**061965 1965-06-18 54 b3c08cf36ec26c884c08ca8a795f8232 Hombre 2012-08-13 2012-08-13 Otro No
117,426 2,017 LUNU1**041958 1958-04-07 61 b3cb5dddcc89f32aeed627d33b3072f6 NA Hombre 2017-05-08 2018-01-01 PG-PAB No
107,936 2,017 LUNU1**041968 1968-04-07 51 b3cb5dddcc89f32aeed627d33b3072f6 NA Hombre 2016-06-28 2017-04-18 PG-PR Si
146,607 2,019 GOVA1**061984 1984-06-05 35 b44164a7906794129c2239b23613205d NA Hombre 2018-01-05 2019-01-04 PG-PAI Si
96,170 2,016 GOVA1**061984 1984-06-05 35 b44164a7906794129c2239b23613205d Hombre 2016-04-18 2016-12-20 PG-PAB Si
67,433 2,015 GOVA1**061985 1985-06-05 34 b44164a7906794129c2239b23613205d Hombre 2014-05-20 2015-06-29 PG-PAB Si
35,680 2,013 GOVA1**061984 1984-06-05 35 b44164a7906794129c2239b23613205d Hombre 2013-01-10 2013-03-04 PG-PAB Si
24,224 2,012 GOVA1**061984 1984-06-05 35 b44164a7906794129c2239b23613205d Hombre 2012-01-25 2012-02-20 PG-PAI Si
17,409 2,011 GOVA1**061984 1984-06-06 35 b44164a7906794129c2239b23613205d Hombre 2011-06-14 2012-01-27 PG-PAB Si
4,574 2,010 GOVA1**061984 1984-06-05 35 b44164a7906794129c2239b23613205d Hombre 2010-04-26 2010-05-25 PG-PAI Si
5,608 2,010 FESU1**041984 1984-04-13 35 b477239da8579d3a19ff71eb9cc71c99 Hombre 2010-05-18 2010-11-09 PG-PR Si
2,847 2,010 FESU1**041983 1983-04-13 36 b477239da8579d3a19ff71eb9cc71c99 Hombre 2010-01-28 2010-03-11 PG-PAI Si
123,509 2,017 EDLO1**041960 1960-04-24 59 b5505e5e75541c68dd342592e34a7c68 NA Hombre 2017-10-04 2017-12-15 PG-PR Si
89,013 2,016 EDLO1**041968 1968-04-02 51 b5505e5e75541c68dd342592e34a7c68 Hombre 2015-08-24 2016-03-08 PG-PR Si
24,978 2,012 EDLO1**041968 1968-04-02 51 b5505e5e75541c68dd342592e34a7c68 Hombre 2012-02-02 2012-03-02 PG-PR Si
15,928 2,011 EDLO1**041968 1968-04-02 51 b5505e5e75541c68dd342592e34a7c68 Hombre 2011-05-04 2011-11-02 PG-PR Si
1,738 2,010 EDLO1**041968 1968-04-04 51 b5505e5e75541c68dd342592e34a7c68 Hombre 2009-11-30 2010-09-20 PG-PR Si
11,211 2,011 ANRU1**011991 1991-01-23 28 b55708195e3aec10337e12dbe80eebbc Hombre 2010-04-01 2011-09-20 PG-PR Si
4,468 2,010 ANRU1**011983 1983-01-09 36 b55708195e3aec10337e12dbe80eebbc Hombre 2010-03-29 2010-06-20 PG-PR Si
3,274 2,010 ANRU1**011983 1983-01-09 36 b55708195e3aec10337e12dbe80eebbc Hombre 2009-11-24 2010-03-02 PG-PAI Si
50,135 2,014 MAFE1**081966 1966-08-30 53 b564ff2c4479d24ecf86feb98e3d68a5 Hombre 2013-07-19 2014-04-11 PG-PAB Si
40,666 2,013 MAFE1**081964 1964-08-30 55 b564ff2c4479d24ecf86feb98e3d68a5 Hombre 2013-06-12 2013-07-31 PG-PAB Si
154,421 2,019 DAAR1**081983 1983-08-09 36 b584cb2f2fdf01a2585c8a21ae9a0d54 NA Hombre 2018-08-30 NA PG-PAI Si
106,040 2,017 DAAR1**081988 1988-08-10 31 b584cb2f2fdf01a2585c8a21ae9a0d54 NA Hombre 2015-10-22 2017-05-03 PG-PAB Si
73,080 2,015 JOOR1**121988 1988-12-03 30 b59edffbd9fb8f2030ba35688228aee4 Hombre 2015-02-18 2015-05-01 PG-PR Si
39,003 2,013 JOOR1**031992 1992-03-04 27 b59edffbd9fb8f2030ba35688228aee4 Hombre 2013-01-16 2013-08-01 PG-PR No
2,085 2,010 JOOR1**121988 1988-12-03 30 b59edffbd9fb8f2030ba35688228aee4 Hombre 2009-10-01 2010-03-01 PG-PAB Si
111,289 2,017 CACA1**121996 1996-12-12 22 b5c202e9bd0bd09521a9226cf96fb10d NA Hombre 2016-12-19 2017-03-29 PG-PAI Si
79,382 2,015 CACA1**101987 1987-10-12 32 b5c202e9bd0bd09521a9226cf96fb10d Hombre 2015-07-20 2015-11-06 PG-PR Si
132,685 2,018 VEAL2**012000 2000-01-26 19 b5e83d35a994deccd43898a8e622b203 NA Mujer 2018-01-26 2018-05-31 PG-PAI Si
76,433 2,015 VEAL2**121980 1980-12-26 38 b5e83d35a994deccd43898a8e622b203 Mujer 2015-05-04 2015-07-22 PG-PAB Si
117,054 2,017 JUSA1**051984 1984-05-21 35 b6223c0d4e5d31721c9bbdfdb9aac75d NA Hombre 2017-05-16 2017-10-31 PG-PAB Si
33,189 2,013 JUSA1**051964 1964-05-21 55 b6223c0d4e5d31721c9bbdfdb9aac75d Hombre 2012-03-08 2014-01-30 PG-PAI Si
155,800 2,019 MOSA1**071973 1973-07-25 46 b625053e2fe56736403429ab73dc1e28 NA Hombre 2019-04-01 NA PG-PAI Si
26,060 2,012 MOSA1**071983 1983-07-25 36 b625053e2fe56736403429ab73dc1e28 Hombre 2012-04-02 2012-10-01 PG-PAI Si
146,631 2,019 JOCA1**111972 1972-11-13 47 b6a2753ff2465c1ee9e349aab0f057e4 NA Hombre 2018-01-11 NA PG-PAB Si
110,722 2,017 JOCA1**111972 1972-11-13 46 b6a2753ff2465c1ee9e349aab0f057e4 NA Hombre 2016-10-07 2017-04-03 PG-PAB Si
72,744 2,015 MILO1**081985 1985-08-09 34 b6ffbb67a0c081dbed3f5c0a7ad0d7f0 Hombre 2014-12-16 2016-01-27 PG-PAB Si
25,849 2,012 MILO1**081983 1983-08-09 36 b6ffbb67a0c081dbed3f5c0a7ad0d7f0 Hombre 2012-03-09 2012-09-07 PG-PAI Si
160,822 2,019 CASO1**081985 1985-08-22 34 b73a63d68453ece9bfb6cc753958b5ae NA Hombre 2019-08-01 NA PG-PAI Si
25,409 2,012 CASO1**121985 1985-12-22 33 b73a63d68453ece9bfb6cc753958b5ae Hombre 2012-02-29 2012-04-17 PG-PAI Si
7,137 2,010 CEGU1**111970 1970-11-07 48 b73be3cc1ce25d9a4249c72e044ebcc9 Hombre 2010-08-03 2010-10-07 PG-PAB Si
6,640 2,010 CEGU1**101970 1970-10-07 49 b73be3cc1ce25d9a4249c72e044ebcc9 Hombre 2010-07-20 2010-08-02 PG-PAI Si
152,750 2,019 LITO2**111987 1987-11-08 32 b81302c4c78c6d1973a08d41b5c4b5a5 NA Mujer 2019-01-08 2019-01-29 M-PR Si
52,995 2,014 LITO2**111987 1987-11-08 31 b81302c4c78c6d1973a08d41b5c4b5a5 Mujer 2014-01-06 2014-11-01 M-PR Si
16,766 2,011 LITO2**111987 1987-11-08 31 b81302c4c78c6d1973a08d41b5c4b5a5 Mujer 2011-06-07 2011-11-28 PG-PAI Si
147,834 2,019 JULE2**062000 2000-06-07 19 b83709c690b1cff78be4aca715aed96b NA Mujer 2018-06-14 2019-05-01 PG-PAI Si
65,642 2,015 JULE2**111963 1963-11-07 55 b83709c690b1cff78be4aca715aed96b Mujer 2013-06-12 2015-05-28 PG-PAI Si
130,526 2,018 HEGU1**051988 1988-05-25 31 b83b725970c55cd103ae02fde4cd7ddb NA Hombre 2017-10-10 2018-03-01 PG-PR No
119,848 2,017 HEGU1**051988 1988-05-25 31 b83b725970c55cd103ae02fde4cd7ddb NA Hombre 2017-07-17 2017-10-06 PG-PAI Si
69,295 2,015 HEGU1**051998 1998-05-25 21 b83b725970c55cd103ae02fde4cd7ddb Hombre 2014-10-01 2015-04-01 PG-PR Si
54,003 2,014 HEGU1**051988 1988-05-26 31 b83b725970c55cd103ae02fde4cd7ddb Hombre 2014-01-07 2014-10-01 PG-PAI Si
8,105 2,010 HEGU1**051988 1988-05-25 31 b83b725970c55cd103ae02fde4cd7ddb Hombre 2010-09-15 2010-11-02 PG-PR Si
6,665 2,010 HEGU1**051988 1988-05-25 31 b83b725970c55cd103ae02fde4cd7ddb Hombre 2010-08-02 2010-09-15 PG-PAB Si
58,447 2,014 RULO2**021974 1974-02-19 45 b87a34c4b3a9986d0d797450aa20edd6 Mujer 2014-06-06 2014-09-01 M-PR Si
33,356 2,013 RULO2**021974 1974-02-19 45 b87a34c4b3a9986d0d797450aa20edd6 Mujer 2012-07-17 2013-07-31 PG-PAI Si
23,910 2,012 RULO2**021974 1974-02-19 45 b87a34c4b3a9986d0d797450aa20edd6 Mujer 2012-01-16 2012-04-02 M-PR Si
11,886 2,011 RULO2**041991 1991-04-19 28 b87a34c4b3a9986d0d797450aa20edd6 Mujer 2010-11-15 2011-04-25 M-PR Si
69,307 2,015 RAME1**111987 1987-11-19 31 b8899b065752319d73fc984b9672fc6a Hombre 2014-10-15 2015-04-01 PG-PR Si
58,166 2,014 RAME1**111987 1987-11-19 31 b8899b065752319d73fc984b9672fc6a Hombre 2014-04-22 2014-10-14 PG-PAB Si
52,170 2,014 RAME1**061987 1987-06-19 32 b8899b065752319d73fc984b9672fc6a Hombre 2013-11-29 2014-05-08 PG-PAB Si
41,515 2,013 RAME1**111987 1987-11-19 31 b8899b065752319d73fc984b9672fc6a Hombre 2013-05-23 2013-09-27 PG-PAB Si
156,633 2,019 ROGO2**111985 1985-11-08 34 b8b4666bb631f5548fef41ac1b38b3cd NA Mujer 2019-05-06 NA M-PAI Si
153,766 2,019 ROGO2**111985 1985-11-08 34 b8b4666bb631f5548fef41ac1b38b3cd NA Mujer 2019-02-14 2019-04-26 M-PR Si
147,111 2,019 ROGO2**111985 1985-11-08 34 b8b4666bb631f5548fef41ac1b38b3cd NA Mujer 2018-04-16 2019-02-13 M-PAI Si
129,708 2,018 ROGO2**111985 1985-11-08 33 b8b4666bb631f5548fef41ac1b38b3cd NA Mujer 2017-09-12 2018-01-03 M-PR Si
112,518 2,017 ROGO2**111985 1985-11-08 33 b8b4666bb631f5548fef41ac1b38b3cd NA Mujer 2017-02-02 2017-09-11 M-PAI No
76,924 2,015 ROGO2**111985 1985-11-08 33 b8b4666bb631f5548fef41ac1b38b3cd Mujer 2015-05-11 2015-07-01 M-PAI Si
23,490 2,012 ROGO2**111985 1985-11-08 33 b8b4666bb631f5548fef41ac1b38b3cd Mujer 2011-11-23 2012-11-30 M-PAB Si
127,107 2,018 GUFA1**101957 1957-10-06 62 b8d7772bce203d2c9ef28b3ab84340e0 NA Hombre 2017-03-01 2018-11-08 PG-PAB Si
15,124 2,011 GUFA1**111957 1957-11-06 61 b8d7772bce203d2c9ef28b3ab84340e0 Hombre 2011-04-04 2011-12-15 PG-PR Si
2,720 2,010 GUFA1**101957 1957-10-06 62 b8d7772bce203d2c9ef28b3ab84340e0 Hombre 2008-10-22 2010-04-30 PG-PAI Si
160,160 2,019 EVGO2**101975 1975-10-06 44 b90faf86c5a0a7721390e749bbdc41cc NA Mujer 2019-07-29 NA M-PR Si
128,501 2,018 EVGO2**101975 1975-10-06 44 b90faf86c5a0a7721390e749bbdc41cc NA Mujer 2017-07-25 2018-01-08 M-PR Si
116,364 2,017 EVGO2**101975 1975-10-06 44 b90faf86c5a0a7721390e749bbdc41cc NA Mujer 2017-04-20 2017-06-09 M-PR Si
114,229 2,017 EVGO2**101975 1975-10-06 44 b90faf86c5a0a7721390e749bbdc41cc NA Mujer 2017-03-02 2017-03-20 PG-PAI Si
98,934 2,016 EVGO2**101965 1965-10-03 54 b90faf86c5a0a7721390e749bbdc41cc Mujer 2016-06-01 2016-08-14 M-PR Si
133,712 2,018 CROL1**041990 1990-04-09 29 b993d8f964185a2b9f9c4871d70a450f NA Hombre 2018-02-10 2018-04-26 PG-PAB Si
95,647 2,016 CHOL1**041996 1996-04-09 23 b993d8f964185a2b9f9c4871d70a450f Hombre 2016-04-09 2016-07-28 PG-PAB Si
118,318 2,017 DAMU1**111994 1994-11-11 24 b9f1641c671b634dbb6bbc64945616dd NA Hombre 2017-06-01 2017-08-23 PG-PAI Si
113,602 2,017 DAMU1**091994 1994-09-11 25 b9f1641c671b634dbb6bbc64945616dd NA Hombre 2017-02-22 2017-03-30 PG-PAI Si
113,280 2,017 SAME1**121979 1979-12-23 39 b9fd0af581a02709bc8eca4952e4ca97 NA Hombre 2017-02-21 2017-08-03 PG-PAB Si
94,410 2,016 SAME1**101979 1979-10-23 40 b9fd0af581a02709bc8eca4952e4ca97 Hombre 2016-03-04 2016-09-02 PG-PAB Si
72,672 2,015 SAME1**121979 1979-12-23 39 b9fd0af581a02709bc8eca4952e4ca97 Hombre 2015-02-18 2015-06-25 PG-PAB Si
133,775 2,018 CLFL1**121976 1976-12-25 42 ba30610611f462591a27ef227c9e1121 NA Hombre 2018-02-02 2018-03-01 PG-PAI Si
120,504 2,017 CLFL1**121976 1976-12-25 42 ba30610611f462591a27ef227c9e1121 NA Hombre 2017-08-02 2018-02-01 PG-PAB Si
107,980 2,017 CLFL1**121976 1976-12-25 42 ba30610611f462591a27ef227c9e1121 NA Hombre 2016-07-12 2017-05-22 PG-PR Si
97,786 2,016 CLFL1**101976 1976-10-25 43 ba30610611f462591a27ef227c9e1121 Hombre 2016-05-02 2016-07-04 PG-PAB Si
90,744 2,016 CLFL1**121976 1976-12-25 42 ba30610611f462591a27ef227c9e1121 Hombre 2015-10-27 2016-03-01 PG-PAI Si
145,764 2,019 SACA2**021975 1975-02-25 44 ba3f2c58985fe23f012ad621d5367e5e NA Mujer 2016-08-29 2019-02-27 PG-PAI Si
85,771 2,016 SACA2**021975 1975-02-25 44 ba3f2c58985fe23f012ad621d5367e5e Mujer 2014-07-21 2016-06-30 PG-PAI Si
48,466 2,014 SACA2**021955 1955-02-25 64 ba3f2c58985fe23f012ad621d5367e5e Mujer 2013-02-20 2014-01-31 PG-PAI Si
71,702 2,015 PEMU1**021981 1981-02-22 38 ba5e4de085b11983b355b17f981b08b6 Hombre 2015-01-13 2015-04-21 PG-PR Si
34,839 2,013 PEMU1**111981 1981-11-22 37 ba5e4de085b11983b355b17f981b08b6 Hombre 2012-11-20 2013-05-31 PG-PAI Si
113,621 2,017 GAMO1**061995 1995-06-04 24 baac47ffd26b7ac3c2b3cc2e2e7394ae NA Hombre 2017-02-23 2017-05-05 PG-PAI Si
73,135 2,015 GAMO1**061985 1985-06-04 34 baac47ffd26b7ac3c2b3cc2e2e7394ae Hombre 2015-02-24 2015-06-04 PG-PAI Si
95,781 2,016 JUES1**111962 1962-11-07 56 bad3b51c442f293cfac4ba0d883627cf Hombre 2016-03-03 2016-10-17 Otro No
73,091 2,015 JUES1**111961 1961-11-11 57 bad3b51c442f293cfac4ba0d883627cf Hombre 2015-02-06 2016-02-08 Otro No
72,239 2,015 JOAL1**091981 1981-09-22 38 bae26bc2c87f1ca969aaca4615441aec Hombre 2015-01-01 2015-04-13 PG-PR Si
67,084 2,015 JOAL1**091981 1981-09-22 38 bae26bc2c87f1ca969aaca4615441aec Hombre 2014-05-15 2014-12-31 PG-PR Si
50,765 2,014 JOAL1**091981 1981-09-22 38 bae26bc2c87f1ca969aaca4615441aec Hombre 2013-09-13 2014-02-28 PG-PAI Si
24,510 2,012 JOAL1**091981 1981-09-22 38 bae26bc2c87f1ca969aaca4615441aec Hombre 2011-06-02 2012-03-05 PG-PAI Si
21,664 2,012 JOAL1**091981 1981-09-22 38 bae26bc2c87f1ca969aaca4615441aec Hombre 2011-06-02 2012-01-01 PG-PAI Si
793 2,010 JOAL1**091989 1989-09-22 30 bae26bc2c87f1ca969aaca4615441aec Hombre 2009-01-12 2010-01-13 PG-PAI Si
95,425 2,016 JEWI1**061989 1989-06-23 30 bb526b65936cdc0ae156432fe68756f2 Hombre 2016-04-01 2016-04-06 PG-PR Si
93,913 2,016 JEWI1**061989 1989-06-26 30 bb526b65936cdc0ae156432fe68756f2 Hombre 2016-01-28 2016-03-31 PG-PAI Si
38,216 2,013 JEWI1**021994 1994-02-16 25 bb526b65936cdc0ae156432fe68756f2 Hombre 2013-03-22 2013-10-14 PG-PAI Si
52,737 2,014 NEBA2**031968 1968-03-31 51 bb7cf9691cc2bf0ba628271b138f7bd2 Mujer 2013-06-07 2014-03-03 M-PAI Si
41,571 2,013 NEBA2**031945 1945-03-31 74 bb7cf9691cc2bf0ba628271b138f7bd2 Mujer 2013-06-05 2013-09-02 PG-PAI Si
66,205 2,015 CRES2**091986 1986-09-17 33 bba0d9e93666b8bd3bc4e61721f9de8a Mujer 2014-01-13 2015-04-07 PG-PAI Si
39,878 2,013 CRES2**091987 1987-09-17 32 bba0d9e93666b8bd3bc4e61721f9de8a Mujer 2013-05-28 2013-08-26 M-PAI Si
72,421 2,015 IVVA2**101989 1989-10-21 30 bba10e9d496d8f65284e17cc05773b18 Mujer 2015-02-11 2015-10-13 M-PR Si
56,077 2,014 IVVE2**101999 1999-10-21 20 bba10e9d496d8f65284e17cc05773b18 Mujer 2014-03-27 2014-05-16 M-PR Si
148,007 2,019 CAOR1**111973 1973-11-07 46 bc042df2a04e7c3321abd803c4c85da6 NA Hombre 2018-06-26 2019-02-01 PG-PR Si
137,863 2,018 CAOR1**111973 1973-11-07 45 bc042df2a04e7c3321abd803c4c85da6 NA Hombre 2018-05-30 2018-06-18 PG-PAI Si
65,950 2,015 CAOR1**111973 1973-11-07 45 bc042df2a04e7c3321abd803c4c85da6 Hombre 2013-10-24 2015-04-28 PG-PAI Si
115,581 2,017 -JRO1**041990 1990-04-09 29 bc05dff345f2e088972cb9963710f3c8 NA Hombre 2017-04-18 2017-10-16 PG-PR Si
107,421 2,017 JORO1**111990 1990-11-09 28 bc05dff345f2e088972cb9963710f3c8 NA Hombre 2016-05-17 2017-01-26 PG-PAB Si
147,599 2,019 LOFR2**101999 1999-10-15 20 bc1e6dd44029efd3a69ed788cc8a3d88 NA Mujer 2018-05-31 2019-03-07 M-PR Si
132,216 2,018 LOFR2**101976 1976-10-15 43 bc1e6dd44029efd3a69ed788cc8a3d88 NA Mujer 2017-11-13 2018-05-30 PG-PAB Si
122,725 2,017 LOFR2**101976 1976-10-15 43 bc1e6dd44029efd3a69ed788cc8a3d88 NA Mujer 2017-10-02 2017-11-11 M-PR Si
112,673 2,017 LOFR2**101976 1976-10-15 43 bc1e6dd44029efd3a69ed788cc8a3d88 NA Mujer 2017-01-03 2017-05-18 PG-PAB Si
101,613 2,016 LOFR2**101976 1976-10-15 43 bc1e6dd44029efd3a69ed788cc8a3d88 Mujer 2016-09-01 2016-12-01 M-PAI Si
113,744 2,017 CACA2**121978 1978-12-09 40 bc3006c6a8035b7c591b4bf172cd4499 NA Mujer 2017-02-02 2017-06-30 PG-PAI Si
103,411 2,016 CACA2**101996 1996-10-09 23 bc3006c6a8035b7c591b4bf172cd4499 Mujer 2016-10-03 2016-12-30 PG-PAI Si
99,615 2,016 CA-C2**121978 1978-12-09 40 bc3006c6a8035b7c591b4bf172cd4499 Mujer 2016-07-13 2016-09-27 M-PR Si
96,389 2,016 CACA2**121978 1978-12-09 40 bc3006c6a8035b7c591b4bf172cd4499 Mujer 2016-03-28 2016-07-12 PG-PAI Si
75,331 2,015 CACA2**121978 1978-12-09 40 bc3006c6a8035b7c591b4bf172cd4499 Mujer 2015-04-08 2015-05-01 PG-PAI Si
68,691 2,015 CACA2**121978 1978-12-09 40 bc3006c6a8035b7c591b4bf172cd4499 Mujer 2014-09-17 2015-03-12 M-PR Si
57,255 2,014 CACA2**121978 1978-12-09 40 bc3006c6a8035b7c591b4bf172cd4499 Mujer 2014-04-30 2014-09-17 PG-PAI Si
65,644 2,015 ALAV1**091969 1969-09-09 50 bca46ad7a817c818b183d67787f06342 Hombre 2013-06-04 2015-07-23 PG-PAI Si
43,994 2,013 ALAV1**111969 1969-11-09 49 bca46ad7a817c818b183d67787f06342 Hombre 2013-09-02 2013-11-02 PG-PR No
159,397 2,019 JOCA2**121977 1977-12-25 41 bcb10a8cc20dc71519d680540e680e5a NA Mujer 2019-07-26 NA M-PR Si
151,996 2,019 JOCA2**121977 1977-12-25 41 bcb10a8cc20dc71519d680540e680e5a NA Mujer 2019-01-17 2019-07-25 PG-PAI Si
140,739 2,018 JOCA2**121977 1977-12-25 41 bcb10a8cc20dc71519d680540e680e5a NA Mujer 2018-08-08 2018-12-19 M-PAI Si
133,695 2,018 JOCA2**121977 1977-12-25 41 bcb10a8cc20dc71519d680540e680e5a NA Mujer 2018-02-07 2018-03-31 M-PR Si
113,928 2,017 JOCA2**121975 1975-12-25 43 bcb10a8cc20dc71519d680540e680e5a NA Mujer 2017-02-23 2017-06-30 PG-PAB Si
104,221 2,016 JOCA2**121977 1977-12-25 41 bcb10a8cc20dc71519d680540e680e5a Mujer 2016-11-25 2017-02-01 PG-PAB Si
61,044 2,014 JOCA2**121977 1977-12-25 41 bcb10a8cc20dc71519d680540e680e5a Mujer 2014-02-26 2014-12-31 PG-PAB Si
104,876 2,016 JUJO1**041985 1985-04-09 34 bd5ac8bc57aa20e51de792ad5c7474d6 Hombre 2016-12-06 2017-02-01 PG-PAB Si
44,867 2,013 JUJO1**041984 1984-04-09 35 bd5ac8bc57aa20e51de792ad5c7474d6 Hombre 2013-08-22 2014-07-15 PG-PAI Si
157,917 2,019 DADI1**111996 1996-11-08 23 bd5fadd54db9e7caf015d560003440f4 NA Hombre 2019-06-05 NA PG-PR Si
139,159 2,018 DADI1**111996 1996-11-08 22 bd5fadd54db9e7caf015d560003440f4 NA Hombre 2018-05-30 2018-10-26 PG-PAI Si
146,506 2,019 NAUL2**041985 1985-04-15 34 bd636cee67f5ff4bf08c216a860034df NA Mujer 2018-01-25 2019-03-31 M-PR Si
131,589 2,018 NAUL2**041999 1999-04-15 20 bd636cee67f5ff4bf08c216a860034df NA Mujer 2017-11-07 2018-01-24 M-PAI Si
106,593 2,017 NAUL2**041985 1985-04-15 34 bd636cee67f5ff4bf08c216a860034df NA Mujer 2016-01-11 2017-11-06 PG-PAB Si
146,685 2,019 JUVI1**021985 1985-02-17 34 bd8929416ae3ba71d9cfea7887957eb1 NA Hombre 2018-02-22 2019-10-30 PG-PR Si
133,527 2,018 JUVI1**021984 1984-02-17 35 bd8929416ae3ba71d9cfea7887957eb1 NA Hombre 2018-02-06 2018-02-21 PG-PAI Si
118,771 2,017 JUVI1**021985 1985-02-17 34 bd8929416ae3ba71d9cfea7887957eb1 NA Hombre 2017-06-09 2017-07-27 PG-PAI Si
36,880 2,013 JARE1**011988 1988-01-10 31 bdb94f07dc17dc5ae7cde691fed41272 Hombre 2013-02-12 2013-03-01 PG-PAI Si
31,521 2,012 JARE1**011968 1968-01-10 51 bdb94f07dc17dc5ae7cde691fed41272 Hombre 2012-11-06 2012-12-04 PG-PR Si
12,587 2,011 JARE1**011988 1988-01-10 31 bdb94f07dc17dc5ae7cde691fed41272 Hombre 2010-12-21 2011-05-31 PG-PR Si
142,666 2,018 GAZA1**051979 1979-05-25 40 bdd72abdd1c4ddf98fcc882a5410cbc5 NA Hombre 2018-09-25 2018-12-10 PG-PAI Si
48,265 2,014 GAZA1**051978 1978-05-25 41 bdd72abdd1c4ddf98fcc882a5410cbc5 Hombre 2013-01-02 2014-01-07 PG-PR Si
129,178 2,018 BAGA2**031986 1986-03-04 33 bde31338de6a454e11a31da13e9aa8ee NA Mujer 2017-08-29 2018-07-11 M-PAI Si
120,750 2,017 BAGA2**041996 1996-04-03 23 bde31338de6a454e11a31da13e9aa8ee NA Mujer 2017-08-16 2017-08-24 M-PR Si
146,973 2,019 CASA2**061971 1971-06-16 48 bde918a912ecd76fb65458ec7ba998dd NA Mujer 2018-02-07 NA PG-PAI Si
111,899 2,017 CASA2**061975 1975-06-16 44 bde918a912ecd76fb65458ec7ba998dd NA Mujer 2017-01-05 2017-10-01 M-PR Si
101,288 2,016 CASA2**061971 1971-06-16 48 bde918a912ecd76fb65458ec7ba998dd Mujer 2016-08-16 2016-12-20 M-PR Si
85,735 2,016 CASA2**061971 1971-06-16 48 bde918a912ecd76fb65458ec7ba998dd Mujer 2014-07-01 2016-08-15 PG-PAI Si
117,563 2,017 DACR1**091966 1966-09-27 53 bdeeeb0f1ce7fc1259a2b9f2921d443d NA Hombre 2017-05-01 2017-09-04 PG-PAI Si
68,384 2,015 DACR1**091966 1966-09-27 53 bdeeeb0f1ce7fc1259a2b9f2921d443d Hombre 2014-08-06 2015-03-13 PG-PAI Si
29,783 2,012 DACR1**091970 1970-09-27 49 bdeeeb0f1ce7fc1259a2b9f2921d443d Hombre 2012-04-04 2012-12-14 PG-PR Si
112,015 2,017 ADAR1**041987 1987-04-11 32 bdf128c08da9e4719ae554f12f1258ec NA Hombre 2017-01-23 2017-05-22 PG-PAB Si
10,542 2,011 ADAR1**041987 1987-04-11 32 bdf128c08da9e4719ae554f12f1258ec Hombre 2010-05-07 2011-07-21 PG-PAB Si
2,599 2,010 ADAR1**041984 1984-04-11 35 bdf128c08da9e4719ae554f12f1258ec Hombre 2008-03-04 2009-09-15 PG-PAB Si
68,339 2,015 FECI1**121984 1984-12-25 34 bf1439617fbceec064cb1b984b427312 Hombre 2014-08-08 2015-03-01 PG-PR Si
49,971 2,014 FECI1**121984 1984-12-25 34 bf1439617fbceec064cb1b984b427312 Hombre 2013-06-14 2014-01-31 PG-PR Si
27,641 2,012 FECI1**121984 1984-12-25 34 bf1439617fbceec064cb1b984b427312 Hombre 2012-06-05 2013-01-02 PG-PR Si
30,176 2,012 FECI1**121984 1984-12-25 34 bf1439617fbceec064cb1b984b427312 Hombre 2012-05-02 2013-01-02 PG-PR Si
17,303 2,011 FECI1**121984 1984-12-25 34 bf1439617fbceec064cb1b984b427312 Hombre 2011-05-02 2012-03-30 PG-PR No
10,864 2,011 FECI1**021984 1984-02-25 35 bf1439617fbceec064cb1b984b427312 Hombre 2010-06-17 2011-06-06 PG-PAB Si
28,061 2,012 NISO1**051965 1965-05-12 54 bf35d83a5028f71a48aec83691bd0f5a Hombre 2012-06-14 2012-08-02 PG-PAB Si
10,470 2,011 NISO1**101964 1964-10-29 55 bf35d83a5028f71a48aec83691bd0f5a Hombre 2010-05-12 2011-07-30 PG-PAB Si
127,101 2,018 CEBA2**121964 1964-12-22 54 bf3e77e32080b2a5cea5f9b61535ac40 NA Mujer 2017-03-13 2018-05-29 M-PAI Si
105,544 2,017 CEBA2**121966 1966-12-20 52 bf3e77e32080b2a5cea5f9b61535ac40 NA Mujer 2015-03-20 2017-02-06 PG-PAB Si
52,602 2,014 ANSA1**121986 1986-12-19 32 bf4aab4cbc76397ebca6b4771b5b24ee Hombre 2013-11-15 2014-07-18 PG-PR Si
43,598 2,013 ANSA1**081986 1986-08-19 33 bf4aab4cbc76397ebca6b4771b5b24ee Hombre 2013-08-08 2013-09-30 PG-PAB Si
139,611 2,018 CRHE1**041983 1983-04-22 36 bf56da84d5676a861b6403d3616938ac NA Hombre 2018-07-09 2018-10-10 PG-PR Si
122,122 2,017 CRHE1**041983 1983-04-22 36 bf56da84d5676a861b6403d3616938ac NA Hombre 2017-09-21 2017-10-27 PG-PAI Si
68,388 2,015 CRHE1**041993 1993-04-22 26 bf56da84d5676a861b6403d3616938ac Hombre 2014-08-07 2015-05-08 PG-PAI Si
19,557 2,011 CRHE1**041983 1983-04-22 36 bf56da84d5676a861b6403d3616938ac Hombre 2011-09-29 2011-11-03 PG-PR Si
17,135 2,011 CRHE1**041983 1983-04-22 36 bf56da84d5676a861b6403d3616938ac Hombre 2011-07-01 2011-09-28 PG-PAI Si
15,944 2,011 CRHE1**041983 1983-04-22 36 bf56da84d5676a861b6403d3616938ac Hombre 2011-05-04 2011-06-30 PG-PAB Si
153,088 2,019 CAMU1**111995 1995-11-24 23 bfd457e901d040734de0bcfdd62c5b5e NA Hombre 2019-01-28 NA PG-PAB Si
132,277 2,018 CAMU1**111999 1999-11-24 19 bfd457e901d040734de0bcfdd62c5b5e NA Hombre 2017-12-29 2018-04-30 PG-PAB Si
149,628 2,019 JELE2**051987 1987-05-24 32 c02c211f09957de3e588da647bf1d2e9 NA Mujer 2018-10-03 2019-01-14 M-PR Si
130,568 2,018 JALE2**051987 1987-05-24 32 c02c211f09957de3e588da647bf1d2e9 NA Mujer 2017-09-07 2018-04-01 PG-PAB Si
110,468 2,017 JALE2**081988 1988-08-25 31 c02c211f09957de3e588da647bf1d2e9 NA Mujer 2016-11-24 2017-05-25 M-PAI Si
156,286 2,019 RUVE1**111991 1991-11-12 28 c05acbd569a652a10fe02550497ea9d5 NA Hombre 2019-04-16 2019-06-30 PG-PAI Si
142,265 2,018 RUVE1**111991 1991-11-12 27 c05acbd569a652a10fe02550497ea9d5 NA Hombre 2018-09-26 2018-09-28 PG-PAB Si
130,361 2,018 MIFI1**071971 1971-07-10 48 c0840d8b33904a04bb0503adf8c53496 NA Hombre 2017-10-03 2018-06-30 PG-PAB Si
109,400 2,017 MIFI1**071971 1971-07-10 48 c0840d8b33904a04bb0503adf8c53496 NA Hombre 2016-09-01 2017-06-01 PG-PAI Si
19,496 2,011 MIFI1**071977 1977-07-10 42 c0840d8b33904a04bb0503adf8c53496 Hombre 2011-10-11 2012-03-01 PG-PAB Si
17,571 2,011 CASI1**011992 1992-01-30 27 c09d8d1122e865db0b9cb3a95663f5d5 Hombre 2011-07-04 2012-02-01 PG-PAI Si
15,681 2,011 CASI1**011974 1974-01-30 45 c09d8d1122e865db0b9cb3a95663f5d5 Hombre 2011-03-23 2011-05-31 PG-PAB Si
142,352 2,018 HEIB1**011970 1970-01-27 49 c09fa3cedfae6b4813fbecee4c086619 NA Hombre 2018-08-20 2018-11-30 PG-PAB Si
10,194 2,011 HEIB1**011970 1970-01-27 49 c09fa3cedfae6b4813fbecee4c086619 Hombre 2010-02-23 2011-09-29 PG-PAI Si
1,505 2,010 HEIB1**011969 1969-01-27 50 c09fa3cedfae6b4813fbecee4c086619 Hombre 2010-01-07 2010-03-10 PG-PR Si
154,088 2,019 GAAR1**101979 1979-10-08 40 c1055ae533c4dca884e506ed85772acc NA Hombre 2019-02-25 2019-03-25 PG-PR Si
152,845 2,019 GAAR1**101979 1979-10-08 40 c1055ae533c4dca884e506ed85772acc NA Hombre 2019-02-05 2019-02-22 PG-PAB Si
96,983 2,016 GAAR1**101978 1978-10-10 41 c1055ae533c4dca884e506ed85772acc Hombre 2016-05-03 2016-10-12 PG-PAB Si
71,429 2,015 GAAR1**101979 1979-10-10 40 c1055ae533c4dca884e506ed85772acc Hombre 2015-01-28 2015-06-25 PG-PAB Si
48,023 2,014 OSPA1**081993 1993-08-17 26 c162a27dbcaf0557bc73ef1f08cefdc5 Hombre 2011-03-10 2014-06-30 PG-PAB Si
22,218 2,012 OSPA1**081983 1983-08-17 36 c162a27dbcaf0557bc73ef1f08cefdc5 Hombre 2011-03-04 2012-01-20 PG-PAB Si
15,745 2,011 OSPA1**081983 1983-08-17 36 c162a27dbcaf0557bc73ef1f08cefdc5 Hombre 2011-03-11 2011-06-02 PG-PAB Si
34,179 2,013 CAMO2**091993 1993-09-26 26 c1b68dfddd142dc2a5dddf11377d20b6 Mujer 2012-09-12 2013-02-28 PG-PAI Si
12,718 2,011 KAMO2**091981 1981-09-26 38 c1b68dfddd142dc2a5dddf11377d20b6 Mujer 2011-01-24 2011-01-26 M-PR Si
97,036 2,016 MASU1**051981 1981-05-17 38 c2140317caed2481a9ce7bd9af47c801 Hombre 2016-05-02 2016-08-02 PG-PAI Si
81,964 2,015 MASU1**111981 1981-11-17 37 c2140317caed2481a9ce7bd9af47c801 Hombre 2015-09-09 2015-12-16 PG-PAI Si
75,571 2,015 MASU1**111981 1981-11-17 37 c2140317caed2481a9ce7bd9af47c801 Hombre 2015-03-02 2015-06-16 PG-PAI Si
54,461 2,014 MASU1**111981 1981-11-17 37 c2140317caed2481a9ce7bd9af47c801 Hombre 2014-02-05 2014-06-05 PG-PAB Si
146,025 2,019 MARU2**111956 1956-11-10 63 c23ebcaa778edb68668eb151a24342ba NA Mujer 2017-07-03 2019-08-12 PG-PAI Si
105,531 2,017 MARU2**111956 1956-11-10 62 c23ebcaa778edb68668eb151a24342ba NA Mujer 2015-03-19 2017-07-01 PG-PAI Si
53,812 2,014 MARI2**111955 1955-11-10 63 c23ebcaa778edb68668eb151a24342ba Mujer 2014-01-28 2014-10-06 M-PR Si
86,407 2,016 LOCA2**051978 1978-05-11 41 c29dfc9aa63c70e6ff96c966c553f7a6 Mujer 2015-01-16 2016-04-04 PG-PAI Si
50,081 2,014 LOCA2**111978 1978-11-07 40 c29dfc9aa63c70e6ff96c966c553f7a6 Mujer 2013-08-02 2015-01-02 M-PR Si
36,852 2,013 LOCA2**111978 1978-11-07 40 c29dfc9aa63c70e6ff96c966c553f7a6 Mujer 2013-02-19 2013-08-01 PG-PAI Si
156,481 2,019 SEMO1**071998 1998-07-18 21 c2abb8a78aec0b4924814e3185adff22 NA Hombre 2019-03-28 NA PG-PAI No
126,426 2,018 SEMO1**071996 1996-07-18 23 c2abb8a78aec0b4924814e3185adff22 NA Hombre 2016-11-10 2018-02-26 PG-PAI Si
109,521 2,017 CLFU1**081989 1989-08-08 30 c2de110728d0a3e3fcef024c10fec40f NA Hombre 2016-10-03 2017-04-04 PG-PR Si
58,480 2,014 CLFU1**081989 1989-08-08 30 c2de110728d0a3e3fcef024c10fec40f Hombre 2014-06-09 2014-12-01 PG-PAB Si
15,170 2,011 CLFU1**081988 1988-08-16 31 c2de110728d0a3e3fcef024c10fec40f Hombre 2011-04-04 2011-06-22 PG-PAB Si
102,296 2,016 NIAL2**121986 1986-12-06 32 c2efffc5ed7bb5436bd0edffae08d403 Mujer 2016-08-30 2017-01-27 PG-PAB Si
48,659 2,014 NIAL2**121986 1986-12-06 32 c2efffc5ed7bb5436bd0edffae08d403 Mujer 2012-09-11 2014-06-30 M-PAI Si
29,159 2,012 NIAL2**121986 1986-12-06 32 c2efffc5ed7bb5436bd0edffae08d403 Mujer 2012-08-17 2012-10-06 PG-PAI Si
25,980 2,012 NIAL2**061986 1986-06-12 33 c2efffc5ed7bb5436bd0edffae08d403 Mujer 2012-03-26 2012-05-08 PG-PAI Si
35,577 2,013 CRBA1**121991 1991-12-10 27 c30f5d4ed4c83e69303550eccac0ef1f Hombre 2012-12-28 2013-03-15 PG-PAI Si
24,263 2,012 CRBA1**021991 1991-02-10 28 c30f5d4ed4c83e69303550eccac0ef1f Hombre 2012-01-10 2012-12-14 PG-PR Si
135,170 2,018 LUPA1**111969 1969-11-15 49 c3245056a1da56f4ff571b663538c38e NA Hombre 2018-03-20 2018-09-01 PG-PAI Si
107,953 2,017 LUPA1**111969 1969-11-15 49 c3245056a1da56f4ff571b663538c38e NA Hombre 2016-07-12 2017-06-13 PG-PAB Si
73,564 2,015 LUPA1**031969 1969-03-15 50 c3245056a1da56f4ff571b663538c38e Hombre 2015-03-02 2015-07-21 PG-PAI Si
43,418 2,013 JOPE1**071992 1992-07-13 27 c35dfba55eb173d8f1d01ac875f07c9e Hombre 2013-08-01 2013-09-26 PG-PAB Si
15,595 2,011 JOPE1**071991 1991-07-13 28 c35dfba55eb173d8f1d01ac875f07c9e Hombre 2011-04-19 2011-06-23 PG-PAB Si
157,119 2,019 MADI1**061963 1963-06-12 56 c386a30bc33dfa9d684f6fbf7d2a0317 NA Hombre 2019-05-20 2019-05-28 PG-PR Si
137,654 2,018 MADI1**061966 1966-06-12 53 c386a30bc33dfa9d684f6fbf7d2a0317 NA Hombre 2018-04-13 2019-01-28 PG-PAI Si
102,322 2,016 PACA2**101978 1978-10-21 41 c3a9e83c24be72355e44801935f19a8f Mujer 2016-09-27 2016-12-24 M-PR Si
99,922 2,016 PACA2**101979 1979-10-21 40 c3a9e83c24be72355e44801935f19a8f Mujer 2016-07-22 2016-09-26 M-PAI Si
138,355 2,018 ALRE1**091997 1997-09-10 22 c3b0ab0bb2cc5286ba129160f74135b7 NA Hombre 2018-03-29 2018-05-31 PG-PAI Si
54,240 2,014 ALRE1**091971 1971-09-10 48 c3b0ab0bb2cc5286ba129160f74135b7 Hombre 2013-11-06 2014-03-11 PG-PAB Si
74,126 2,015 CRVI1**081980 1980-08-12 39 c3cbfed46483416f043b5c0c693961de Hombre 2015-03-10 2015-04-01 PG-PAI Si
55,821 2,014 CRVI1**011979 1979-01-01 40 c3cbfed46483416f043b5c0c693961de Hombre 2014-03-12 2014-05-02 PG-PAI Si
155,566 2,019 ANCO2**051986 1986-05-22 33 c3d0b2830470921b9a772f6f4dea446c NA Mujer 2019-04-10 2019-05-31 M-PR Si
155,213 2,019 ANCO2**051986 1986-05-22 33 c3d0b2830470921b9a772f6f4dea446c NA Mujer 2019-03-15 2019-04-09 M-PAI Si
118,962 2,017 ANCO2**061974 1974-06-10 45 c3d0b2830470921b9a772f6f4dea446c NA Mujer 2017-06-01 2017-10-22 M-PAI Si
90,320 2,016 ANCO2**051986 1986-05-22 33 c3d0b2830470921b9a772f6f4dea446c Mujer 2015-10-05 2016-12-01 M-PAI Si
79,375 2,015 ANCO2**051986 1986-05-22 33 c3d0b2830470921b9a772f6f4dea446c Mujer 2015-07-01 2015-10-08 PG-PR Si
70,143 2,015 ANCO2**051986 1986-05-22 33 c3d0b2830470921b9a772f6f4dea446c Mujer 2014-11-04 2015-07-03 M-PAI Si
137,462 2,018 EVCA2**081975 1975-08-29 44 c3eacbf236d865e419d2734396934cc5 NA Mujer 2018-05-18 2018-12-18 M-PAI Si
94,302 2,016 EVCA2**081976 1976-08-29 43 c3eacbf236d865e419d2734396934cc5 Mujer 2016-02-11 2016-07-29 PG-PAB Si
86,914 2,016 EVCA2**081975 1975-08-29 44 c3eacbf236d865e419d2734396934cc5 Mujer 2015-03-19 2016-01-29 PG-PAB Si
49,595 2,014 EVCA2**081975 1975-08-29 44 c3eacbf236d865e419d2734396934cc5 Mujer 2013-06-29 2014-03-21 PG-PAB Si
35,109 2,013 EVCA2**081975 1975-08-29 44 c3eacbf236d865e419d2734396934cc5 Mujer 2012-12-13 2013-03-19 M-PR Si
23,135 2,012 EVCA2**111992 1992-11-29 26 c3eacbf236d865e419d2734396934cc5 Mujer 2011-11-30 2012-11-12 M-PAI Si
117,003 2,017 CACU2**011994 1994-01-02 25 c417a00faa2fa2010bdc63243380c8cc NA Mujer 2017-05-17 2017-08-18 M-PAI Si
81,746 2,015 CACU2**011994 1994-01-02 25 c417a00faa2fa2010bdc63243380c8cc Mujer 2015-09-25 2015-11-02 PG-PAI Si
73,714 2,015 CACU2**011994 1994-01-02 25 c417a00faa2fa2010bdc63243380c8cc Mujer 2015-03-20 2015-08-01 M-PR Si
58,631 2,014 CACU2**011994 1994-01-02 25 c417a00faa2fa2010bdc63243380c8cc Mujer 2014-06-02 2014-06-10 M-PR Si
53,790 2,014 CACU2**011994 1994-01-02 25 c417a00faa2fa2010bdc63243380c8cc Mujer 2014-01-09 2014-05-15 PG-PAI Si
46,214 2,013 CACU2**011993 1993-01-02 26 c417a00faa2fa2010bdc63243380c8cc Mujer 2013-11-12 2013-12-02 M-PR Si
36,351 2,013 CACU2**011994 1994-01-02 25 c417a00faa2fa2010bdc63243380c8cc Mujer 2012-06-20 2013-10-01 M-PR Si
94,252 2,016 CEVI2**101979 1979-10-28 40 c4396b22647f28f777c3b8c731506767 Mujer 2016-02-12 2016-03-14 M-PR Si
93,528 2,016 CEVI2**101980 1980-10-28 39 c4396b22647f28f777c3b8c731506767 Mujer 2016-02-12 2016-02-13 M-PR No
113,363 2,017 GUHU2**121965 1965-12-20 53 c4597a331b5ede2ef62596b28de38f51 NA Mujer 2017-02-13 2017-11-30 M-PAI Si
73,557 2,015 GUHU2**121995 1995-12-20 23 c4597a331b5ede2ef62596b28de38f51 Mujer 2015-03-02 2016-01-04 PG-PAI Si
155,909 2,019 JAFI1**111984 1984-11-22 34 c45d295f8c32c97ba06e8f5f5bd3f231 NA Hombre 2019-04-01 NA PG-PAI Si
130,570 2,018 MEOS1**071967 1967-07-30 52 c45d295f8c32c97ba06e8f5f5bd3f231 NA Hombre 2017-10-23 2018-08-01 PG-PAI Si
18,822 2,011 JAFI1**111984 1984-11-22 34 c45d295f8c32c97ba06e8f5f5bd3f231 Hombre 2011-08-01 2011-12-30 PG-PAB Si
157,906 2,019 SED&1**031989 1989-03-12 30 c47b27a3e0ce9e5e4b9695cfd99311a6 NA Hombre 2019-06-03 2019-07-01 PG-PAI Si
146,459 2,019 SED&1**031999 1999-03-12 20 c47b27a3e0ce9e5e4b9695cfd99311a6 NA Hombre 2017-10-30 2019-05-31 PG-PAB Si
105,501 2,017 SEDA1**031989 1989-03-12 30 c47b27a3e0ce9e5e4b9695cfd99311a6 NA Hombre 2015-02-19 2017-08-31 PG-PAI Si
134,603 2,018 ALPE1**041979 1979-04-03 40 c4b666094b18d0909e7d2a03bde4b5ac NA Hombre 2018-01-18 2018-06-26 PG-PAI Si
36,236 2,013 ALPE1**041979 1979-04-03 40 c4b666094b18d0909e7d2a03bde4b5ac Hombre 2013-01-30 2013-09-27 PG-PAB Si
26,795 2,012 ALPE1**041980 1980-04-03 39 c4b666094b18d0909e7d2a03bde4b5ac Hombre 2012-05-22 2013-01-11 PG-PAB Si
130,936 2,018 ANVE1**041968 1968-04-15 51 c4c0c35532b766b0196a2c2129e1515c NA Hombre 2017-11-20 2018-02-27 PG-PR Si
91,580 2,016 ANVE1**041978 1978-04-15 41 c4c0c35532b766b0196a2c2129e1515c Hombre 2015-12-11 2016-05-02 PG-PAI Si
38,540 2,013 CRCI1**101965 1965-10-04 54 c4c5ecb48224e5a46b828964df41de5b Hombre 2013-03-18 2014-01-22 PG-PAB Si
19,489 2,011 CRCI1**101969 1969-10-04 50 c4c5ecb48224e5a46b828964df41de5b Hombre 2011-10-17 2012-01-04 PG-PAB Si
81,112 2,015 JUMA1**061972 1972-06-18 47 c4e0e27172c8f7ffc75aa599bd46f37f Hombre 2015-08-24 2015-12-01 PG-PAI Si
69,009 2,015 JUMA1**061982 1982-06-18 37 c4e0e27172c8f7ffc75aa599bd46f37f Hombre 2014-10-09 2015-08-25 PG-PAB Si
36,713 2,013 ALAG1**021994 1994-02-04 25 c4f4e254f4e5224db6b81d5f0fdddb6e Hombre 2013-02-06 2013-02-06 PG-PAI Si
2,229 2,010 MARO1**111955 1955-11-11 63 c4f4e254f4e5224db6b81d5f0fdddb6e Hombre 2008-11-03 2009-09-30 PG-PR Si
153,907 2,019 IVMO1**091970 1970-09-26 49 c51a5b958f10c95dbbf9cdd9a42cfffd NA Hombre 2019-02-19 2019-03-02 PG-PR Si
95,184 2,016 IVMO1**091970 1970-09-26 49 c51a5b958f10c95dbbf9cdd9a42cfffd Hombre 2016-03-14 2016-03-18 PG-PR Si
44,521 2,013 IVMO1**091971 1971-09-26 48 c51a5b958f10c95dbbf9cdd9a42cfffd Hombre 2013-09-06 2013-11-18 PG-PR Si
117,194 2,017 CACA1**041989 1989-04-21 30 c59496365b03c317f37c4dbbf8fa3c7f NA Hombre 2017-05-23 2017-08-01 PG-PAI Si
114,324 2,017 CACA1**041989 1989-04-21 30 c59496365b03c317f37c4dbbf8fa3c7f NA Hombre 2017-03-16 2017-05-16 PG-PR Si
85,833 2,016 CACA1**041999 1999-04-21 20 c59496365b03c317f37c4dbbf8fa3c7f Hombre 2014-08-13 2016-05-02 PG-PAI Si
117,245 2,017 MAVE2**021984 1984-02-19 35 c60b55d60d0fb7abffb2aeec1b771adf NA Mujer 2017-05-10 2017-05-22 PG-PAI Si
112,935 2,017 MAVE2**021984 1984-02-19 35 c60b55d60d0fb7abffb2aeec1b771adf NA Mujer 2017-01-03 2017-03-23 PG-PAI Si
103,633 2,016 MAVE2**021984 1984-02-19 35 c60b55d60d0fb7abffb2aeec1b771adf Mujer 2016-10-24 2016-12-01 M-PR Si
97,813 2,016 MAVE2**021984 1984-02-19 35 c60b55d60d0fb7abffb2aeec1b771adf Mujer 2016-05-24 2016-07-01 M-PR Si
60,483 2,014 MAVE2**021984 1984-02-19 35 c60b55d60d0fb7abffb2aeec1b771adf Mujer 2014-07-02 2014-11-10 PG-PAI Si
50,288 2,014 MAVE2**021982 1982-02-19 37 c60b55d60d0fb7abffb2aeec1b771adf Mujer 2013-08-15 2014-01-02 PG-PAI Si
27,164 2,012 MAVE2**021984 1984-02-19 35 c60b55d60d0fb7abffb2aeec1b771adf Mujer 2012-05-07 2012-11-05 PG-PAI Si
131,572 2,018 CRAL1**111994 1994-11-22 24 c64ebf5bd7017afb4c63f30eade00640 NA Hombre 2017-11-21 2018-10-26 PG-PAI Si
49,107 2,014 CRAL1**051994 1994-05-20 25 c64ebf5bd7017afb4c63f30eade00640 Hombre 2013-05-30 2014-08-26 PG-PAI Si
119,474 2,017 MAGO2**081980 1980-08-28 39 c6501ed916395f275ba1b3fe0d03b326 NA Mujer 2017-07-21 2017-09-27 M-PR Si
117,353 2,017 MAGO2**081990 1990-08-28 29 c6501ed916395f275ba1b3fe0d03b326 NA Mujer 2017-04-26 2017-07-20 PG-PAI Si
114,034 2,017 MAGO2**081990 1990-08-28 29 c6501ed916395f275ba1b3fe0d03b326 NA Mujer 2017-02-28 2017-05-02 M-PR Si
111,173 2,017 MAGO2**081990 1990-08-28 29 c6501ed916395f275ba1b3fe0d03b326 NA Mujer 2016-11-09 2017-02-28 PG-PAI Si
81,914 2,015 MAGO2**081990 1990-08-28 29 c6501ed916395f275ba1b3fe0d03b326 Mujer 2015-09-03 2015-10-13 PG-PAI Si
111,136 2,017 DACO1**121966 1966-12-04 52 c65548c5f42e998f306235e5a4b808f1 NA Hombre 2016-12-14 2017-09-04 PG-PR Si
94,318 2,016 DACO1**121965 1965-12-04 53 c65548c5f42e998f306235e5a4b808f1 Hombre 2016-01-04 2016-12-13 PG-PAI Si
49,427 2,014 DACO1**121968 1968-12-04 50 c65548c5f42e998f306235e5a4b808f1 Hombre 2013-06-11 2014-04-22 PG-PR Si
153,543 2,019 HUDO1**111969 1969-11-19 49 c668aa3153ea4a1a4435c45557feb80b NA Hombre 2019-02-19 2019-03-09 PG-PR Si
42,521 2,013 HUDO1**091969 1969-09-19 50 c668aa3153ea4a1a4435c45557feb80b Hombre 2013-06-28 2013-07-09 PG-PR Si
12,534 2,011 HUDO1**111969 1969-11-19 49 c668aa3153ea4a1a4435c45557feb80b Hombre 2010-11-15 2011-01-03 PG-PR Si
148,190 2,019 GLGA2**111990 1990-11-02 29 c6825876f65706ad09e567b036367f33 NA Mujer 2018-07-03 2019-05-01 PG-PAB Si
135,424 2,018 GLGA2**111990 1990-11-02 29 c6825876f65706ad09e567b036367f33 NA Mujer 2018-03-28 2018-04-12 M-PR Si
133,619 2,018 GLGA2**111990 1990-11-02 29 c6825876f65706ad09e567b036367f33 NA Mujer 2017-11-28 2018-03-27 PG-PAB Si
116,914 2,017 GLGA2**111990 1990-11-02 29 c6825876f65706ad09e567b036367f33 NA Mujer 2017-05-22 2017-06-16 M-PR Si
102,479 2,016 GLGA2**101995 1995-10-02 24 c6825876f65706ad09e567b036367f33 Mujer 2016-09-20 2016-11-29 PG-PAB Si
92,969 2,016 GLGA2**111990 1990-11-02 29 c6825876f65706ad09e567b036367f33 Mujer 2016-01-06 2016-01-16 M-PR Si
90,251 2,016 GLGA2**111990 1990-11-02 29 c6825876f65706ad09e567b036367f33 Mujer 2015-10-15 2016-01-04 PG-PAI Si
68,106 2,015 GLGA2**111990 1990-11-02 29 c6825876f65706ad09e567b036367f33 Mujer 2014-08-20 2015-10-26 PG-PAB Si
162,978 2,019 CAHI1**111986 1986-11-09 33 c69435e7d3d8691db699d6debe26395e NA Hombre 2019-10-02 NA PG-PAI Si
139,206 2,018 CAHI1**111986 1986-11-09 32 c69435e7d3d8691db699d6debe26395e NA Hombre 2018-06-01 2018-12-01 PG-PAI Si
125,703 2,017 CAHI1**111986 1986-11-09 32 c69435e7d3d8691db699d6debe26395e NA Hombre 2017-12-04 2018-02-01 PG-PAB Si
114,169 2,017 JUSO1**111991 1991-11-20 27 c6cd0322a5d9822fe6a73aa31e8ed67f NA Hombre 2017-01-23 2017-05-31 PG-PAI Si
87,830 2,016 JUSO1**111999 1999-11-20 19 c6cd0322a5d9822fe6a73aa31e8ed67f Hombre 2015-06-15 2016-11-10 PG-PAB Si
109,437 2,017 CLRE1**021987 1987-02-23 32 c75e097bd43037e22cc3dfe017edb2cc NA Hombre 2016-08-23 2017-04-01 PG-PAB Si
96,394 2,016 CLRE1**021986 1986-02-23 33 c75e097bd43037e22cc3dfe017edb2cc Hombre 2016-04-12 2016-06-30 PG-PAB Si
76,406 2,015 KAJO1**051998 1998-05-05 21 c7713fe3e6fa0975435ea391005c5d60 Hombre 2015-05-20 2015-11-02 PG-PAI Si
59,020 2,014 KAJO2**061989 1989-06-01 30 c7713fe3e6fa0975435ea391005c5d60 Mujer 2014-06-13 2014-08-25 PG-PAI Si
66,062 2,015 VIPE1**021976 1976-02-10 43 c785d666e224dd5b52a1873e49d623e1 Hombre 2013-10-25 2014-05-30 PG-PAB Si
38,180 2,013 VIPE1**021967 1967-02-10 52 c785d666e224dd5b52a1873e49d623e1 Hombre 2013-03-18 2013-10-22 PG-PR Si
23,048 2,012 VIPE1**021967 1967-02-10 52 c785d666e224dd5b52a1873e49d623e1 Hombre 2011-11-09 2012-03-27 PG-PAB Si
133,204 2,018 MAQU1**051977 1977-05-30 42 c797504fae3149e7bd86c27976ceedf4 NA Hombre 2018-01-10 2018-09-04 PG-PAB Si
109,149 2,017 MAQU1**051996 1996-05-16 23 c797504fae3149e7bd86c27976ceedf4 NA Hombre 2016-09-26 2017-02-02 PG-PAB Si
66,533 2,015 LEGA1**101994 1994-10-22 25 c7a7f61ff04d7077a9707a1c0a5bb448 Hombre 2014-03-10 2015-03-17 PG-PR Si
11,190 2,011 LEGA1**101988 1988-10-12 31 c7a7f61ff04d7077a9707a1c0a5bb448 Hombre 2010-08-26 2011-01-04 PG-PAI Si
111,303 2,017 PIHE2**101963 1963-10-02 56 c7b5ed49858d3006209e4e5ddf64a2d4 NA Mujer 2016-11-11 2017-05-01 PG-PAB Si
50,995 2,014 PIHE2**101953 1953-10-02 66 c7b5ed49858d3006209e4e5ddf64a2d4 Mujer 2013-10-01 2014-03-17 PG-PAB Si
37,439 2,013 DAME1**071974 1974-07-29 45 c7c6e4802d88d24f8d9529f20ebba71f Hombre 2013-02-11 2013-08-20 PG-PR Si
35,564 2,013 DAME1**071993 1993-07-29 26 c7c6e4802d88d24f8d9529f20ebba71f Hombre 2013-01-09 2013-02-26 PG-PAI Si
25,617 2,012 DAME1**071974 1974-07-29 45 c7c6e4802d88d24f8d9529f20ebba71f Hombre 2012-03-16 2012-03-30 PG-PR Si
112,730 2,017 HAJA1**101969 1969-10-09 50 c7d35a6a29cb9b4d782af4ede1b54479 NA Hombre 2017-01-09 2017-03-20 PG-PR Si
59,343 2,014 HAJA1**101979 1979-10-09 40 c7d35a6a29cb9b4d782af4ede1b54479 Hombre 2014-06-30 2014-10-13 PG-PR Si
58,354 2,014 HAJA1**101979 1979-10-09 40 c7d35a6a29cb9b4d782af4ede1b54479 Hombre 2014-05-08 2014-06-30 PG-PR No
26,422 2,012 HAJA1**101979 1979-10-09 40 c7d35a6a29cb9b4d782af4ede1b54479 Hombre 2012-04-24 2012-10-09 PG-PR Si
111,959 2,017 SEVE1**111998 1998-11-08 20 c7ea41cd85a11c5df46967b1e5ddca8d NA Hombre 2017-01-10 2017-05-01 PG-PAI Si
110,788 2,017 SEVE1**111988 1988-11-08 30 c7ea41cd85a11c5df46967b1e5ddca8d NA Hombre 2016-11-28 2017-01-04 PG-PR Si
86,254 2,016 SEVE1**111988 1988-11-08 30 c7ea41cd85a11c5df46967b1e5ddca8d Hombre 2014-06-18 2016-11-02 PG-PAB Si
54,535 2,014 SEVE1**111988 1988-11-08 30 c7ea41cd85a11c5df46967b1e5ddca8d Hombre 2013-12-09 2014-05-30 PG-PAB Si
33,024 2,013 SEVE1**111988 1988-11-08 30 c7ea41cd85a11c5df46967b1e5ddca8d Hombre 2012-05-30 2013-08-22 PG-PAI Si
75,378 2,015 PADI2**021985 1985-02-02 34 c8319d2ec9bbdbc654c7ccf45ef5f111 Mujer 2015-04-27 2015-06-12 M-PR Si
56,903 2,014 PADI2**021989 1989-02-02 30 c8319d2ec9bbdbc654c7ccf45ef5f111 Mujer 2014-04-21 2014-10-31 PG-PAI Si
53,398 2,014 PADI2**021989 1989-02-02 30 c8319d2ec9bbdbc654c7ccf45ef5f111 Mujer 2014-01-03 2014-02-27 PG-PAI Si
162,553 2,019 HEME1**111976 1976-11-08 43 c8661ddb3a775a39abe92ecbe129d2e7 NA Hombre 2019-10-08 NA PG-PR Si
11,082 2,011 HEME1**111976 1976-11-08 42 c8661ddb3a775a39abe92ecbe129d2e7 Hombre 2010-08-20 2011-10-28 PG-PAI Si
161,652 2,019 HUTH1**071993 1993-07-10 26 c8ec9fc0ababc3b18af28033a9b0df67 NA Hombre 2019-09-16 NA PG-PAI Si
149,612 2,019 HUTH1**071993 1993-07-10 26 c8ec9fc0ababc3b18af28033a9b0df67 NA Hombre 2018-10-01 2019-05-02 PG-PAI Si
132,270 2,018 HUTH1**071995 1995-07-10 24 c8ec9fc0ababc3b18af28033a9b0df67 NA Hombre 2017-12-11 2018-02-20 PG-PAI Si
158,124 2,019 ERBA1**111983 1983-11-08 36 c8f4683691c5c8b274e741f9a6a24072 NA Hombre 2019-06-18 2019-07-26 PG-PAI Si
109,032 2,017 ERBA1**111983 1983-11-08 35 c8f4683691c5c8b274e741f9a6a24072 NA Hombre 2016-09-09 2017-04-25 PG-PAI Si
157,623 2,019 SALA2**111968 1968-11-07 51 c950fe2e8571fef461c7bcbd59114534 NA Mujer 2019-05-24 2019-08-06 M-PR Si
41,946 2,013 SALA2**111968 1968-11-07 50 c950fe2e8571fef461c7bcbd59114534 Mujer 2013-07-17 2014-01-27 M-PAI Si
23,185 2,012 SALA2**111968 1968-11-07 50 c950fe2e8571fef461c7bcbd59114534 Mujer 2011-11-16 2012-11-01 PG-PAI Si
66,366 2,015 PATA1**061981 1981-06-22 38 c9a4c16ccb614dc09fc8bad7802dda2c Hombre 2014-02-04 2015-05-05 PG-PAB Si
15,683 2,011 PATA1**021982 1982-02-03 37 c9a4c16ccb614dc09fc8bad7802dda2c Hombre 2011-03-03 2011-06-01 PG-PAI Si
89,011 2,016 NAPE2**011988 1988-01-05 31 c9b3b86aadc212099417e25f2723d11f Mujer 2015-07-15 2016-09-30 M-PAI Si
11,561 2,011 NAPE2**011988 1988-01-05 31 c9b3b86aadc212099417e25f2723d11f Mujer 2010-10-13 2011-07-29 PG-PAI Si
4,789 2,010 NAPE2**011987 1987-01-05 32 c9b3b86aadc212099417e25f2723d11f Mujer 2010-03-15 2010-06-14 PG-PAI Si
1,437 2,010 NAPE2**011988 1988-01-05 31 c9b3b86aadc212099417e25f2723d11f Mujer 2009-12-02 2010-02-18 M-PR Si
129,569 2,018 MANA2**051968 1968-05-17 51 c9bb6f67816dc9b3bdfad50617829a58 NA Mujer 2017-08-16 2018-04-01 PG-PAB Si
107,837 2,017 MANA2**051968 1968-05-17 51 c9bb6f67816dc9b3bdfad50617829a58 NA Mujer 2016-06-30 2017-03-31 M-PR Si
86,075 2,016 MANA2**051988 1988-05-17 31 c9bb6f67816dc9b3bdfad50617829a58 Mujer 2014-11-10 2016-06-29 PG-PAB Si
161,962 2,019 LUCE1**111986 1986-11-10 33 c9dc3ce8e4cc1c71fc83e278404ff2ad NA Hombre 2019-09-27 2019-10-07 PG-PR Si
133,474 2,018 LUCE1**111986 1986-11-10 32 c9dc3ce8e4cc1c71fc83e278404ff2ad NA Hombre 2018-01-29 2018-02-05 PG-PR Si
92,372 2,016 LUCE1**111986 1986-11-10 32 c9dc3ce8e4cc1c71fc83e278404ff2ad Hombre 2016-01-20 2016-12-20 PG-PR Si
44,190 2,013 LUCE1**111986 1986-11-10 32 c9dc3ce8e4cc1c71fc83e278404ff2ad Hombre 2013-09-24 2014-05-29 PG-PAI Si
35,582 2,013 LUCE1**111986 1986-11-10 32 c9dc3ce8e4cc1c71fc83e278404ff2ad Hombre 2013-01-18 2013-02-20 PG-PR Si
28,220 2,012 LUCE1**111986 1986-11-10 32 c9dc3ce8e4cc1c71fc83e278404ff2ad Hombre 2012-07-09 2012-07-09 Otro No
17,872 2,011 LUCE1**111986 1986-11-10 32 c9dc3ce8e4cc1c71fc83e278404ff2ad Hombre 2011-08-17 2011-10-03 PG-PAI Si
40,628 2,013 MIRI1**061994 1994-06-10 25 c9e9eb98fed76beed7302acaa3343a60 Hombre 2013-05-22 2013-09-30 PG-PAI Si
10,979 2,011 MIRI1**021974 1974-02-28 45 c9e9eb98fed76beed7302acaa3343a60 Hombre 2010-08-23 2011-02-22 PG-PAI Si
149,733 2,019 JOAG1**061984 1984-06-23 35 ca34e84efb83b5cc2c300313b08c8431 NA Hombre 2018-10-16 2019-02-01 PG-PAI Si
32,994 2,013 JOAG1**061984 1984-06-23 35 ca34e84efb83b5cc2c300313b08c8431 Hombre 2012-04-12 2013-09-09 PG-PR Si
10,749 2,011 JOAG1**061983 1983-06-23 36 ca34e84efb83b5cc2c300313b08c8431 Hombre 2010-06-21 2012-01-02 PG-PAI Si
152,023 2,019 YERO1**111977 1977-11-10 42 caa7b3a0243e6e9b455cbd62b73b05f6 NA Hombre 2019-01-04 2019-07-15 PG-PAI Si
97,568 2,016 YERO1**111977 1977-11-10 41 caa7b3a0243e6e9b455cbd62b73b05f6 Hombre 2016-05-19 2016-07-01 PG-PAI Si
88,858 2,016 YERO1**111977 1977-11-10 41 caa7b3a0243e6e9b455cbd62b73b05f6 Hombre 2015-07-27 2016-04-01 PG-PAI Si
105,864 2,017 PACO2**021987 1987-02-28 32 cae3ce4f0d72b2bc5caec9bb0c248cbb NA Mujer 2015-03-18 2017-02-28 PG-PAI Si
73,800 2,015 PACO2**021983 1983-02-28 36 cae3ce4f0d72b2bc5caec9bb0c248cbb Mujer 2015-03-23 2015-06-01 M-PR Si
68,512 2,015 PACO2**021983 1983-02-28 36 cae3ce4f0d72b2bc5caec9bb0c248cbb Mujer 2014-09-03 2015-01-21 M-PR Si
159,618 2,019 LULE1**051958 1958-05-01 61 caeb5146ddfb7eb43dfa2b8cec4dac9e NA Hombre 2019-07-12 2019-10-15 PG-PR No
157,810 2,019 LULE1**051958 1958-05-01 61 caeb5146ddfb7eb43dfa2b8cec4dac9e NA Hombre 2019-05-16 2019-07-11 PG-PAI Si
129,891 2,018 LULE1**051958 1958-05-01 61 caeb5146ddfb7eb43dfa2b8cec4dac9e NA Hombre 2017-08-25 2019-01-29 PG-PAI Si
107,929 2,017 LULE1**051996 1996-05-01 23 caeb5146ddfb7eb43dfa2b8cec4dac9e NA Hombre 2016-07-05 2017-03-01 PG-PAB Si
134,106 2,018 SOOR2**111971 1971-11-16 47 caef74376cb252c59748ce27f9b7b077 NA Mujer 2018-02-24 2018-12-31 M-PR Si
130,340 2,018 SOOR2**101971 1971-10-16 48 caef74376cb252c59748ce27f9b7b077 NA Mujer 2017-10-02 2018-02-23 PG-PAI Si
117,061 2,017 SOOR2**111971 1971-11-16 47 caef74376cb252c59748ce27f9b7b077 NA Mujer 2017-05-24 2017-09-28 M-PR Si
105,712 2,017 SOOR2**111971 1971-11-16 47 caef74376cb252c59748ce27f9b7b077 NA Mujer 2015-06-16 2017-05-23 PG-PAI Si
151,614 2,019 DAOR1**111966 1966-11-12 53 caf8ffaf6c4c70d496eff66ba35c7dcb NA Hombre 2018-12-20 NA PG-PAB Si
88,080 2,016 DAOR1**111966 1966-11-12 52 caf8ffaf6c4c70d496eff66ba35c7dcb Hombre 2015-07-06 2016-07-22 PG-PAB Si
147,239 2,019 ENAG1**101981 1981-10-22 38 caf9853b922323cbd9834b4ba996938e NA Hombre 2018-04-10 2019-09-16 PG-PAI Si
56,915 2,014 ENAG1**111981 1981-11-22 37 caf9853b922323cbd9834b4ba996938e Hombre 2014-04-01 2014-08-01 PG-PAB Si
129,208 2,018 MAPU1**091959 1959-09-18 60 cb2bece5f3b04d58bfad44afe6a882b7 NA Hombre 2017-07-26 2018-05-31 PG-PAI Si
49,432 2,014 MAFU1**091954 1954-09-18 65 cb2bece5f3b04d58bfad44afe6a882b7 Hombre 2013-06-11 2014-08-18 PG-PAI Si
10,041 2,011 MAPU1**091959 1959-09-18 60 cb2bece5f3b04d58bfad44afe6a882b7 Hombre 2010-01-04 2011-08-30 PG-PAI Si
108,530 2,017 HUAG1**081983 1983-08-10 36 cb9b53a128c22b043726883df19954d4 NA Hombre 2016-08-05 2017-08-16 PG-PAI Si
74,299 2,015 HUAG1**081988 1988-08-10 31 cb9b53a128c22b043726883df19954d4 Hombre 2015-03-02 2015-09-07 PG-PAI Si
57,987 2,014 HEAG1**111974 1974-11-04 45 cbabbbd0eeb00408ae7d624dff0519d1 Hombre 2014-05-05 2014-07-07 PG-PAI Si
50,741 2,014 HEAG1**111971 1971-11-04 48 cbabbbd0eeb00408ae7d624dff0519d1 Hombre 2013-09-16 2014-04-03 PG-PAI Si
138,121 2,018 EVOL1**081962 1962-08-02 57 cbc8ab748f26f72a17bbe42e896b320c NA Hombre 2018-04-11 2018-12-18 PG-PAI Si
126,806 2,018 EVOL2**081972 1972-08-02 47 cbc8ab748f26f72a17bbe42e896b320c NA Mujer 2017-02-01 2018-02-07 PG-PAI Si
153,744 2,019 SEPI1**081988 1988-08-10 31 cbdce906270510e5ac784a167b5866a7 NA Hombre 2019-02-01 2019-09-01 PG-PAB Si
61,696 2,014 SEPI1**081982 1982-08-10 37 cbdce906270510e5ac784a167b5866a7 Hombre 2014-09-01 2014-11-09 PG-PAB Si
135,734 2,018 RIGO1**111987 1987-11-15 31 cbf7ecde7c9ba6c3f49e8f12d6189a37 NA Hombre 2018-03-01 2018-09-27 PG-PAI Si
115,442 2,017 RIGO1**081987 1987-08-15 32 cbf7ecde7c9ba6c3f49e8f12d6189a37 NA Hombre 2017-04-11 2017-09-28 PG-PAB Si
101,049 2,016 RIGO1**111987 1987-11-15 31 cbf7ecde7c9ba6c3f49e8f12d6189a37 Hombre 2016-08-02 2016-12-28 PG-PAB Si
151,464 2,019 CLSA2**111990 1990-11-09 29 cc26c390f0833a95e52b75fac925dc77 NA Mujer 2018-12-17 2019-03-14 PG-PAI Si
40,928 2,013 CLSA2**111990 1990-11-09 28 cc26c390f0833a95e52b75fac925dc77 Mujer 2013-06-03 2013-08-01 PG-PAB Si
12,862 2,011 CLSA2**111990 1990-11-09 28 cc26c390f0833a95e52b75fac925dc77 Mujer 2010-12-15 2011-07-29 PG-PAI Si
100,324 2,016 RIFR1**051984 1984-05-06 35 cc354ad2bfe675170a4f82bf6946f32c Hombre 2016-07-13 2016-12-14 PG-PAB Si
24,299 2,012 RIFR1**051983 1983-05-06 36 cc354ad2bfe675170a4f82bf6946f32c Hombre 2011-12-26 2012-05-30 PG-PAB Si
14,841 2,011 RIFR1**051984 1984-05-06 35 cc354ad2bfe675170a4f82bf6946f32c Hombre 2011-02-16 2011-09-06 PG-PAB Si
152,634 2,019 FEES1**111984 1984-11-09 35 cc45f76979e09d66d6a84334ac42f5a8 NA Hombre 2019-01-02 2019-06-18 PG-PR Si
141,985 2,018 FEES1**111984 1984-11-09 34 cc45f76979e09d66d6a84334ac42f5a8 NA Hombre 2018-09-05 2018-12-20 PG-PR Si
53,176 2,014 FEES1**111984 1984-11-09 34 cc45f76979e09d66d6a84334ac42f5a8 Hombre 2013-12-02 2014-04-29 PG-PAI Si
156,768 2,019 ISNU1**051989 1989-05-01 30 cca84570b7b07cc037d49924c42aba0f NA Hombre 2019-05-07 2019-05-30 PG-PR Si
133,006 2,018 ISNU1**051989 1989-05-01 30 cca84570b7b07cc037d49924c42aba0f NA Hombre 2018-01-10 2018-02-28 PG-PR Si
122,141 2,017 ISNU1**051989 1989-05-01 30 cca84570b7b07cc037d49924c42aba0f NA Hombre 2017-09-04 2017-09-21 PG-PR Si
98,708 2,016 ISNU1**051989 1989-05-01 30 cca84570b7b07cc037d49924c42aba0f Hombre 2016-06-20 2016-09-01 PG-PR Si
73,125 2,015 ISNU1**051986 1986-05-01 33 cca84570b7b07cc037d49924c42aba0f Hombre 2015-02-26 2015-05-12 PG-PAI Si
14,470 2,011 ISNU1**051989 1989-05-01 30 cca84570b7b07cc037d49924c42aba0f Hombre 2011-03-21 2011-04-20 PG-PR Si
13,137 2,011 ISNU1**051989 1989-05-01 30 cca84570b7b07cc037d49924c42aba0f Hombre 2011-01-19 2011-01-27 PG-PR Si
27,858 2,012 CAPE2**051993 1993-05-14 26 cce63de713ea416e5a7b2370df78562d Mujer 2012-05-14 2012-07-10 PG-PAI Si
18,905 2,011 CAPE2**021985 1985-02-24 34 cce63de713ea416e5a7b2370df78562d Mujer 2011-09-01 2012-01-02 PG-PAI Si
15,781 2,011 CAPR2**121985 1985-12-24 33 cce63de713ea416e5a7b2370df78562d Mujer 2011-05-11 2011-08-08 M-PR Si
57,185 2,014 VERO2**111973 1973-11-11 45 cd414d8ab858822b33eec363d60cb433 Mujer 2014-04-24 2014-06-26 PG-PAB Si
46,643 2,013 VERO2**101973 1973-10-11 46 cd414d8ab858822b33eec363d60cb433 Mujer 2013-11-20 2013-12-18 PG-PAB Si
18,478 2,011 VERO2**101973 1973-10-11 46 cd414d8ab858822b33eec363d60cb433 Mujer 2011-09-14 2011-12-30 M-PAI Si
118,408 2,017 ERDU1**011967 1967-01-16 52 cd5ab28ad842d4dd604ebf759cc4aebd NA Hombre 2017-06-27 2017-07-18 PG-PAB Si
115,299 2,017 MAVI1**041991 1991-04-29 28 cd5ab28ad842d4dd604ebf759cc4aebd NA Hombre 2017-03-20 2017-05-23 PG-PAB Si
108,133 2,017 ERDU1**011967 1967-01-15 52 cd5ab28ad842d4dd604ebf759cc4aebd NA Hombre 2016-06-07 2017-01-31 PG-PAI Si
95,798 2,016 ERDU1**011996 1996-01-16 23 cd5ab28ad842d4dd604ebf759cc4aebd Hombre 2016-04-11 2016-04-14 PG-PAI Si
133,172 2,018 ROGA1**101978 1978-10-07 41 cd6db53f70c6842af670d674f8879009 NA Hombre 2018-01-02 2018-05-07 PG-PR Si
120,192 2,017 ROGA1**061978 1978-06-13 41 cd6db53f70c6842af670d674f8879009 NA Hombre 2017-07-21 2018-01-23 PG-PR Si
108,591 2,017 ROGA1**101978 1978-10-07 41 cd6db53f70c6842af670d674f8879009 NA Hombre 2016-08-02 2017-07-20 PG-PAI Si
61,481 2,014 ROGA1**101979 1979-10-07 40 cd6db53f70c6842af670d674f8879009 Hombre 2014-08-27 2014-08-29 PG-PAI Si
157,235 2,019 FAHE2**081998 1998-08-27 21 cdc7be050c70fa45d447a6e79f36c725 NA Mujer 2019-05-06 NA PG-PAB Si
13,653 2,011 FAHE2**081988 1988-08-27 31 cdc7be050c70fa45d447a6e79f36c725 Mujer 2010-11-17 2011-09-21 PG-PAB Si
122,834 2,017 BAHE2**051993 1993-05-21 26 cdd5f1393134a2e63f314c6b93071d9e NA Mujer 2017-10-11 2018-01-26 M-PR Si
116,827 2,017 SEAN1**111998 1998-11-28 20 cdd5f1393134a2e63f314c6b93071d9e NA Hombre 2017-05-08 2017-05-30 PG-PR Si
155,693 2,019 JOFR1**121982 1982-12-23 36 cdece01dcaf930271fc82eccf379ea79 NA Hombre 2019-04-16 2019-06-25 PG-PAI Si
89,726 2,016 JOFR1**091982 1982-09-23 37 cdece01dcaf930271fc82eccf379ea79 Hombre 2015-09-23 2016-06-02 PG-PAB Si
131,400 2,018 CAMA1**061977 1977-06-16 42 ce9a0a198cc207bb1ee799674dff5b9c NA Hombre 2017-10-05 2018-12-29 PG-PAB Si
15,561 2,011 CAMA1**061967 1967-06-16 52 ce9a0a198cc207bb1ee799674dff5b9c Hombre 2011-04-04 2011-09-27 Otro No
63,899 2,014 ANSA2**041969 1969-04-04 50 ced82efbb8c6ad7c25ad46b5b8d13eeb Mujer 2014-11-10 2014-12-05 M-PR No
3,435 2,010 ANSA2**041961 1961-04-29 58 ced82efbb8c6ad7c25ad46b5b8d13eeb Mujer 2010-02-23 2010-08-30 PG-PAI Si
124,894 2,017 FRVA1**011999 1999-01-21 20 cedffa0c8a4bc7aa31a5a5c89dfb04a3 NA Hombre 2017-10-24 2018-01-26 PG-PAB Si
52,051 2,014 FRVA1**011981 1981-01-21 38 cedffa0c8a4bc7aa31a5a5c89dfb04a3 Hombre 2013-11-04 2014-08-29 PG-PAI Si
23,975 2,012 ANRA2**061981 1981-06-07 38 cf6205d7d2be24b4d6d1ee87fce9b8f4 Mujer 2011-12-01 2012-04-09 PG-PAB Si
20,065 2,011 ANRA2**111982 1982-11-17 36 cf6205d7d2be24b4d6d1ee87fce9b8f4 Mujer 2011-11-01 2011-12-20 PG-PAB Si
160,423 2,019 SEMO1**061996 1996-06-24 23 cf89af03141142e2a61216539fd5a9aa NA Hombre 2019-08-19 2019-08-29 PG-PR Si
122,768 2,017 SEMO1**061997 1997-06-24 22 cf89af03141142e2a61216539fd5a9aa NA Hombre 2017-10-03 2017-10-31 PG-PR Si
114,921 2,017 SEMO1**061996 1996-06-24 23 cf89af03141142e2a61216539fd5a9aa NA Hombre 2017-03-02 2017-10-02 PG-PAI Si
12,015 2,011 LUHO1**111991 1991-11-28 27 cfb0fdf80e3ad6ea6b3739658b70984b Hombre 2010-12-01 2011-05-30 PG-PAB Si
677 2,010 LUAR1**111975 1975-11-28 43 cfb0fdf80e3ad6ea6b3739658b70984b Hombre 2010-01-19 2010-10-01 PG-PR Si
36,606 2,013 MAVI1**031973 1973-03-24 46 d082b31de5952d64336bd39c8337d452 Hombre 2013-01-31 2013-03-01 PG-PR Si
31,568 2,012 MAVI1**031975 1975-03-24 44 d082b31de5952d64336bd39c8337d452 Hombre 2012-11-20 2012-12-13 PG-PR Si
160,097 2,019 CANU2**041975 1975-04-21 44 d08a68c2f7966369db839d6a17f8bf30 NA Mujer 2019-06-04 NA M-PAI Si
143,265 2,018 CANU2**041975 1975-04-21 44 d08a68c2f7966369db839d6a17f8bf30 NA Mujer 2018-09-24 2018-12-20 M-PAI Si
90,583 2,016 CANU2**041975 1975-04-21 44 d08a68c2f7966369db839d6a17f8bf30 Mujer 2015-09-28 2016-07-01 M-PAI Si
66,759 2,015 CANU2**041976 1976-04-21 43 d08a68c2f7966369db839d6a17f8bf30 Mujer 2014-04-01 2015-08-27 M-PR Si
53,568 2,014 CANU2**041976 1976-04-21 43 d08a68c2f7966369db839d6a17f8bf30 Mujer 2014-01-08 2014-03-31 PG-PAB Si
77,408 2,015 JEAR1**091996 1996-09-28 23 d09c6593c7eaae6a4cd4c07c7eea7982 Hombre 2015-05-27 2015-08-12 PG-PAI Si
76,076 2,015 JEOR1**091986 1986-09-28 33 d09c6593c7eaae6a4cd4c07c7eea7982 Hombre 2015-04-27 2015-06-02 PG-PR Si
73,881 2,015 JEOR1**091986 1986-09-28 33 d09c6593c7eaae6a4cd4c07c7eea7982 Hombre 2015-03-25 2015-05-01 PG-PAI Si
51,102 2,014 JEAR1**091986 1986-09-28 33 d09c6593c7eaae6a4cd4c07c7eea7982 Hombre 2013-10-14 2014-02-05 PG-PR Si
42,992 2,013 JEAR1**091986 1986-09-28 33 d09c6593c7eaae6a4cd4c07c7eea7982 Hombre 2013-08-05 2013-10-14 PG-PAB Si
95,531 2,016 SEHE1**101981 1981-10-30 38 d0ba7ad11d9bb1b1c84c30335ad76514 Hombre 2016-03-15 2016-09-30 PG-PAI Si
50,921 2,014 SEHE1**101981 1981-10-31 38 d0ba7ad11d9bb1b1c84c30335ad76514 Hombre 2013-09-04 2014-08-05 PG-PR Si
39,095 2,013 SEHE1**101981 1981-10-30 38 d0ba7ad11d9bb1b1c84c30335ad76514 Hombre 2013-04-03 2013-07-01 PG-PAI Si
34,934 2,013 SEHE1**031992 1992-03-11 27 d0ba7ad11d9bb1b1c84c30335ad76514 Hombre 2012-10-10 2013-04-08 PG-PR Si
29,941 2,012 SEHE1**101981 1981-10-30 38 d0ba7ad11d9bb1b1c84c30335ad76514 Hombre 2012-09-25 2012-10-09 PG-PAI Si
14,187 2,011 SEHE1**101981 1981-10-30 38 d0ba7ad11d9bb1b1c84c30335ad76514 Hombre 2011-02-25 2011-08-31 PG-PAI Si
8,900 2,010 SEHE1**101981 1981-10-30 38 d0ba7ad11d9bb1b1c84c30335ad76514 Hombre 2010-10-28 2011-03-10 PG-PAB Si
53,288 2,014 FEGU1**021991 1991-02-24 28 d0df996310c6623a4f693a2ad80982d8 Hombre 2014-01-06 2014-04-25 PG-PR Si
50,132 2,014 FEGU1**021992 1992-02-24 27 d0df996310c6623a4f693a2ad80982d8 Hombre 2013-08-13 2014-01-23 PG-PAB Si
38,524 2,013 FEGU1**021992 1992-02-24 27 d0df996310c6623a4f693a2ad80982d8 Hombre 2013-04-04 2013-07-04 PG-PAB Si
56,938 2,014 NECI1**111973 1973-11-07 45 d112d3e24f26abb18565ffc43bb983b7 Hombre 2014-03-28 2014-08-04 PG-PAB Si
6,517 2,010 NECI1**111976 1976-11-07 42 d112d3e24f26abb18565ffc43bb983b7 Hombre 2010-07-21 2010-08-10 PG-PAI Si
148,525 2,019 VACA2**041983 1983-04-08 36 d119b05880ac5cab3eb8f62e6411352b NA Mujer 2018-07-25 NA PG-PAI Si
127,828 2,018 VACA2**041999 1999-04-08 20 d119b05880ac5cab3eb8f62e6411352b NA Mujer 2017-06-13 2018-06-01 M-PR Si
115,378 2,017 VACA2**041983 1983-04-08 36 d119b05880ac5cab3eb8f62e6411352b NA Mujer 2017-04-03 2017-06-12 M-PR Si
88,405 2,016 VACA2**041983 1983-04-08 36 d119b05880ac5cab3eb8f62e6411352b Mujer 2015-02-26 2016-05-26 M-PAI Si
76,583 2,015 VACA2**041983 1983-04-08 36 d119b05880ac5cab3eb8f62e6411352b Mujer 2015-04-16 2015-07-28 PG-PAI Si
61,264 2,014 VACA2**041983 1983-04-08 36 d119b05880ac5cab3eb8f62e6411352b Mujer 2014-08-25 2014-10-01 M-PR Si
57,233 2,014 VACA2**051983 1983-05-08 36 d119b05880ac5cab3eb8f62e6411352b Mujer 2014-04-24 2014-07-18 M-PR Si
53,855 2,014 VACA2**041983 1983-04-08 36 d119b05880ac5cab3eb8f62e6411352b Mujer 2014-01-17 2014-04-23 PG-PAI Si
3,814 2,010 VACA2**041983 1983-04-08 36 d119b05880ac5cab3eb8f62e6411352b Mujer 2009-10-22 2010-08-17 PG-PAI Si
53,557 2,014 TALO2**071997 1997-07-16 22 d14d41b605658fd11be460b113757228 Mujer 2014-01-02 2014-01-20 M-PR Si
44,431 2,013 TALO2**071986 1986-07-15 33 d14d41b605658fd11be460b113757228 Mujer 2013-09-02 2014-01-02 PG-PAI Si
37,218 2,013 TALO2**071986 1986-07-15 33 d14d41b605658fd11be460b113757228 Mujer 2013-02-21 2013-06-20 PG-PAI Si
36,936 2,013 OSLI1**021968 1968-02-15 51 d16861aebeecfb466c2673b94cec74d2 Hombre 2013-02-22 2013-07-26 PG-PAB No
7,408 2,010 OSLI1**111968 1968-11-15 50 d16861aebeecfb466c2673b94cec74d2 Hombre 2010-08-20 2011-02-18 PG-PAB Si
126,763 2,018 JOPO1**111982 1982-11-11 36 d237248cad8560709c8990ca2be1bcbe NA Hombre 2017-02-18 2018-01-05 PG-PR Si
113,034 2,017 JOPO1**011999 1999-01-19 20 d237248cad8560709c8990ca2be1bcbe NA Hombre 2017-01-19 2017-02-17 PG-PAI Si
123,245 2,017 ANCO1**051959 1959-05-15 60 d2470f8d8cf22926041d0d3eca9c467f NA Hombre 2017-10-23 2018-01-23 PG-PAB Si
91,380 2,016 ANCO1**051958 1958-05-15 61 d2470f8d8cf22926041d0d3eca9c467f Hombre 2015-04-07 2017-01-26 PG-PAB Si
117,656 2,017 FECH1**101992 1992-10-07 27 d24c6832e804420e654002757b30828e NA Hombre 2017-05-09 2017-10-16 PG-PR No
115,123 2,017 FECH1**081992 1992-08-07 27 d24c6832e804420e654002757b30828e NA Hombre 2017-03-29 2017-05-08 PG-PAI No
113,909 2,017 FECH1**101993 1993-10-09 26 d24c6832e804420e654002757b30828e NA Hombre 2017-03-01 2017-03-28 PG-PAB Si
52,815 2,014 FECH1**101992 1992-10-07 27 d24c6832e804420e654002757b30828e Hombre 2013-12-19 2014-07-24 PG-PAB Si
70,946 2,015 MIMA2**061977 1977-06-23 42 d258a3505d5917c97278415897134ca0 Mujer 2014-12-09 2015-03-02 PG-PAB Si
59,108 2,014 MIMA2**061979 1979-06-23 40 d258a3505d5917c97278415897134ca0 Mujer 2014-06-09 2014-10-24 M-PR Si
58,228 2,014 MIMA2**061977 1977-06-23 42 d258a3505d5917c97278415897134ca0 Mujer 2014-05-09 2014-06-09 PG-PAB Si
41,864 2,013 MIMA2**061977 1977-06-23 42 d258a3505d5917c97278415897134ca0 Mujer 2013-07-08 2013-09-02 PG-PAB Si
148,046 2,019 JAGO1**111963 1963-11-19 55 d26f177415acea6eba9443779d0d8ace NA Hombre 2018-05-25 2019-01-31 PG-PAB Si
110,719 2,017 JAGO1**111996 1996-11-19 22 d26f177415acea6eba9443779d0d8ace NA Hombre 2016-11-02 2017-04-03 PG-PAI Si
128,009 2,018 FRCE1**061999 1999-06-01 20 d2a36442bf2d249e4ac09306bd913b05 NA Hombre 2017-06-01 2018-09-28 PG-PAB Si
57,649 2,014 FRCA1**061985 1985-06-22 34 d2a36442bf2d249e4ac09306bd913b05 Hombre 2014-05-16 2014-08-01 PG-PAI Si
95,198 2,016 JACA1**081988 1988-08-22 31 d2b17141c68424beb4cd4aab59d0bcb5 Hombre 2016-03-15 2016-11-25 PG-PR No
54,565 2,014 JACA1**051981 1981-05-01 38 d2b17141c68424beb4cd4aab59d0bcb5 Hombre 2014-02-18 2014-05-07 PG-PR Si
37,936 2,013 JACA1**081988 1988-08-22 31 d2b17141c68424beb4cd4aab59d0bcb5 Hombre 2013-01-24 2013-06-28 PG-PAI Si
32,589 2,013 JACA1**091988 1988-09-09 31 d2b17141c68424beb4cd4aab59d0bcb5 Hombre 2012-01-24 2013-02-28 PG-PAB Si
106,280 2,017 EDCA1**041985 1985-04-06 34 d396e22b9f4e5385fa9df66d059d00d7 NA Hombre 2016-01-01 2017-11-27 PG-PAI Si
70,776 2,015 EDCA1**041984 1984-04-06 35 d396e22b9f4e5385fa9df66d059d00d7 Hombre 2014-12-03 2015-09-09 PG-PAI Si
55,779 2,014 ROMA1**121996 1996-12-03 22 d3ba1c1378c2fa5f9e43e5167e839e08 Hombre 2014-03-20 2014-11-12 PG-PR Si
53,384 2,014 ROMA1**111976 1976-11-03 43 d3ba1c1378c2fa5f9e43e5167e839e08 Hombre 2014-01-23 2014-03-27 PG-PAB Si
158,059 2,019 VIRA1**111988 1988-11-06 31 d3c395f37e58c628b5bd3dfb86f6252f NA Hombre 2019-05-02 NA PG-PAB Si
126,630 2,018 VIRA1**111988 1988-11-06 30 d3c395f37e58c628b5bd3dfb86f6252f NA Hombre 2016-12-22 2018-08-30 PG-PAB Si
11,473 2,011 MAPE1**021979 1979-02-09 40 d3d3418c00b50037ae509267e0924144 Hombre 2010-07-01 2011-01-13 PG-PAI Si
6,279 2,010 MAPE1**021975 1975-02-09 44 d3d3418c00b50037ae509267e0924144 Hombre 2010-06-24 2010-08-31 PG-PAB Si
23,705 2,012 RUGO1**021981 1981-02-12 38 d42020889c737bf8a1adf308d83351c6 Hombre 2011-08-16 2012-10-01 PG-PAI Si
17,047 2,011 RUGO1**021992 1992-02-12 27 d42020889c737bf8a1adf308d83351c6 Hombre 2011-06-01 2011-09-08 PG-PAI Si
158,559 2,019 MAFU2**091989 1989-09-12 30 d429e8367e1d87f64607bd5717a2db0f NA Mujer 2019-06-10 2019-08-14 PG-PAI Si
74,043 2,015 MAFU2**091988 1988-09-12 31 d429e8367e1d87f64607bd5717a2db0f Mujer 2015-03-25 2015-10-12 M-PR Si
71,791 2,015 MAFU2**091989 1989-09-12 30 d429e8367e1d87f64607bd5717a2db0f Mujer 2015-01-21 2015-03-24 PG-PAI Si
26,371 2,012 MAFU2**091989 1989-09-12 30 d429e8367e1d87f64607bd5717a2db0f Mujer 2012-04-17 2012-10-30 PG-PAB Si
2,947 2,010 MAFU2**091989 1989-09-12 30 d429e8367e1d87f64607bd5717a2db0f Mujer 2010-01-26 2010-04-06 PG-PAB Si
161,815 2,019 LEOB2**081998 1998-08-13 21 d4c2bd1bbd3f4f28c9690a00a5313b55 NA Mujer 2019-07-01 NA M-PAI Si
129,348 2,018 LEOB2**081988 1988-08-13 31 d4c2bd1bbd3f4f28c9690a00a5313b55 NA Mujer 2017-08-23 2018-06-04 M-PAI Si
156,425 2,019 JUAR1**041970 1970-04-18 49 d5047b591988e003b08c8b3a41296614 NA Hombre 2019-04-01 NA PG-PAI Si
137,338 2,018 JUAR1**041970 1970-04-18 49 d5047b591988e003b08c8b3a41296614 NA Hombre 2018-05-17 2018-09-28 PG-PR Si
131,248 2,018 JUAR1**041970 1970-04-18 49 d5047b591988e003b08c8b3a41296614 NA Hombre 2017-11-03 2018-05-16 PG-PAI Si
114,782 2,017 JUAR1**041976 1976-04-18 43 d5047b591988e003b08c8b3a41296614 NA Hombre 2017-03-01 2017-10-18 PG-PAI Si
84,644 2,015 JUAR1**041970 1970-04-18 49 d5047b591988e003b08c8b3a41296614 Hombre 2015-11-26 2016-02-17 PG-PAB Si
75,203 2,015 JUAR1**041970 1970-04-18 49 d5047b591988e003b08c8b3a41296614 Hombre 2015-04-21 2015-11-14 PG-PR Si
146,293 2,019 CRAL1**091973 1973-09-02 46 d5516db8fbe11278d21f34dd53192ea3 NA Hombre 2017-11-06 2019-10-29 PG-PAB Si
112,629 2,017 CRAL1**091972 1972-09-02 47 d5516db8fbe11278d21f34dd53192ea3 NA Hombre 2017-02-02 2017-07-01 PG-PAI Si
52,902 2,014 CHAL1**091973 1973-09-02 46 d5516db8fbe11278d21f34dd53192ea3 Hombre 2013-12-02 2014-05-29 PG-PAI Si
146,948 2,019 OSMO1**071960 1960-07-03 59 d571b0933b03d4bc27db49d9a86d830e NA Hombre 2018-03-01 2019-06-05 PG-PAB Si
107,849 2,017 OSMO1**071960 1960-07-03 59 d571b0933b03d4bc27db49d9a86d830e NA Hombre 2016-04-14 2017-11-28 PG-PAI Si
69,883 2,015 OSMO1**101950 1950-10-22 69 d571b0933b03d4bc27db49d9a86d830e Hombre 2014-11-04 2015-08-14 PG-PR Si
147,552 2,019 NIDI2**011992 1992-01-23 27 d57798a64881e2b75b9d7b3ae36017fd NA Mujer 2018-05-17 2019-03-04 M-PAI Si
129,933 2,018 NIDI2**011991 1991-01-23 28 d57798a64881e2b75b9d7b3ae36017fd NA Mujer 2017-09-04 2018-05-02 M-PR Si
55,697 2,014 GOSA1**061988 1988-06-09 31 d5a42c80fcb5e14758812be8d136ca22 Hombre 2014-03-24 2014-05-27 PG-PAI Si
45,644 2,013 GOSA1**061998 1998-06-09 21 d5a42c80fcb5e14758812be8d136ca22 Hombre 2013-10-03 2014-01-15 Otro No
12,183 2,011 GOSA1**061988 1988-06-09 31 d5a42c80fcb5e14758812be8d136ca22 Hombre 2010-11-18 2011-01-31 PG-PAI Si
62,764 2,014 ALVA1**031994 1994-03-03 25 d6143d207664211d35b47a053278b8f9 Hombre 2014-10-01 2014-12-17 PG-PAI Si
54,749 2,014 ALVA1**031993 1993-03-06 26 d6143d207664211d35b47a053278b8f9 Hombre 2014-02-03 2014-07-09 PG-PAI Si
90,344 2,016 PAVA2**091950 1950-09-28 69 d61542e0c28a5863dd53ed04db1370af Mujer 2015-10-19 2016-05-02 M-PR Si
72,245 2,015 PAVA2**041950 1950-04-28 69 d61542e0c28a5863dd53ed04db1370af Mujer 2014-12-19 2015-04-22 M-PR Si
61,472 2,014 PAVA2**041950 1950-04-28 69 d61542e0c28a5863dd53ed04db1370af Mujer 2014-08-18 2014-08-28 M-PR Si
54,692 2,014 PAVA2**041950 1950-04-22 69 d61542e0c28a5863dd53ed04db1370af Mujer 2014-02-10 2014-08-15 M-PAI Si
52,819 2,014 PAVA2**041950 1950-04-28 69 d61542e0c28a5863dd53ed04db1370af Mujer 2013-12-17 2014-01-22 M-PR Si
37,527 2,013 PAVA2**031994 1994-03-01 25 d61542e0c28a5863dd53ed04db1370af Mujer 2013-03-01 2013-12-16 M-PAI Si
152,132 2,019 CAFL2**111981 1981-11-08 38 d6244688fdb01a2e632b2179c3f325e8 NA Mujer 2019-01-14 2019-08-01 PG-PR No
89,743 2,016 CAFL2**111981 1981-11-08 37 d6244688fdb01a2e632b2179c3f325e8 Mujer 2015-09-30 2016-12-20 PG-PR Si
72,495 2,015 CAFL2**111981 1981-11-08 37 d6244688fdb01a2e632b2179c3f325e8 Mujer 2014-12-01 2015-08-31 PG-PAI Si
62,774 2,014 CAFL2**111981 1981-11-08 37 d6244688fdb01a2e632b2179c3f325e8 Mujer 2014-09-29 2014-10-22 PG-PAB Si
138,944 2,018 ALRO1**101987 1987-10-10 32 d650de3388b733a5f968aa8b4e34bc89 NA Hombre 2018-06-05 2018-07-03 PG-PAI Si
117,905 2,017 ALRO1**101987 1987-10-10 32 d650de3388b733a5f968aa8b4e34bc89 NA Hombre 2017-06-01 2017-09-29 PG-PAB No
71,152 2,015 ALRO1**101987 1987-10-10 32 d650de3388b733a5f968aa8b4e34bc89 Hombre 2015-01-06 2015-04-01 PG-PAI Si
61,659 2,014 ALRO1**101987 1987-10-10 32 d650de3388b733a5f968aa8b4e34bc89 Hombre 2014-08-06 2014-11-03 PG-PAI Si
49,654 2,014 ALRO1**101987 1987-10-10 32 d650de3388b733a5f968aa8b4e34bc89 Hombre 2013-06-27 2014-07-17 PG-PAB Si
17,209 2,011 ALRO1**111987 1987-11-10 31 d650de3388b733a5f968aa8b4e34bc89 Hombre 2011-06-28 2011-09-23 PG-PAI Si
35,783 2,013 CAPI2**091969 1969-09-16 50 d67705c8b038cfa31183c40da092d18a Mujer 2013-01-03 2013-07-29 PG-PAB Si
2,325 2,010 CAPI2**091959 1959-09-16 60 d67705c8b038cfa31183c40da092d18a Mujer 2009-11-02 2010-05-06 PG-PAI Si
160,530 2,019 ISTO1**121966 1966-12-23 52 d6ff3cf5d526fec02e0c96a1697fbbf4 NA Hombre 2019-08-05 NA PG-PAB Si
94,816 2,016 ISTO1**031966 1966-03-23 53 d6ff3cf5d526fec02e0c96a1697fbbf4 Hombre 2016-03-23 2016-09-01 PG-PAB Si
49,981 2,014 ISTO1**121966 1966-12-23 52 d6ff3cf5d526fec02e0c96a1697fbbf4 Hombre 2013-07-05 2015-01-02 PG-PAI Si
33,881 2,013 ISTO1**121965 1965-12-23 53 d6ff3cf5d526fec02e0c96a1697fbbf4 Hombre 2012-08-20 2013-04-02 PG-PAI Si
10,134 2,011 ISTO1**121966 1966-12-23 52 d6ff3cf5d526fec02e0c96a1697fbbf4 Hombre 2010-02-09 2011-02-28 PG-PAB Si
27,568 2,012 MEBE2**061993 1993-06-25 26 d7645a5367deb0c4a938c868764bb77b Mujer 2012-06-25 2012-08-03 M-PR Si
23,716 2,012 MEBE2**041959 1959-04-02 60 d7645a5367deb0c4a938c868764bb77b Mujer 2012-01-09 2012-05-21 M-PR Si
6,172 2,010 MEBE2**041959 1959-04-02 60 d7645a5367deb0c4a938c868764bb77b Mujer 2010-06-07 2010-11-15 PG-PR Si
5,695 2,010 MEBE2**041959 1959-04-02 60 d7645a5367deb0c4a938c868764bb77b Mujer 2010-02-16 2010-05-24 M-PR Si
122,180 2,017 MARO2**121989 1989-12-16 29 d79aed203c0e7a40bd870949a6d365a7 NA Mujer 2017-08-25 2017-11-01 PG-PAI Si
85,120 2,015 MARO1**091989 1989-09-16 30 d79aed203c0e7a40bd870949a6d365a7 Hombre 2015-11-03 2015-12-14 PG-PAI Si
80,132 2,015 MARO2**121989 1989-12-16 29 d79aed203c0e7a40bd870949a6d365a7 Mujer 2015-08-07 2015-12-07 PG-PAB Si
148,117 2,019 KARA2**111978 1978-11-09 41 d7c73e9a21db78dd1b6a6bd4be3dd28b NA Mujer 2018-06-28 2019-07-23 M-PAI Si
28,503 2,012 KARA2**111978 1978-11-09 40 d7c73e9a21db78dd1b6a6bd4be3dd28b Mujer 2012-07-02 2012-11-01 PG-PAB Si
13,782 2,011 KARA2**111978 1978-11-09 40 d7c73e9a21db78dd1b6a6bd4be3dd28b Mujer 2011-02-07 2011-05-06 M-PR Si
23,375 2,012 SEZA1**121971 1971-12-20 47 d7c8d4af2c03d876ff7596675923ac2c Hombre 2011-12-02 2012-01-02 PG-PR Si
6,692 2,010 SEZA1**101971 1971-10-20 48 d7c8d4af2c03d876ff7596675923ac2c Hombre 2010-07-26 2010-12-06 PG-PR Si
71,237 2,015 ALCA1**031987 1987-03-03 32 d7d47478880bae087f8efd1c2f91d2da Hombre 2015-01-05 2015-07-01 PG-PAI Si
59,337 2,014 ALCA1**031987 1987-03-03 32 d7d47478880bae087f8efd1c2f91d2da Hombre 2014-06-23 2014-11-03 PG-PAI Si
33,762 2,013 ALCA1**081993 1993-08-03 26 d7d47478880bae087f8efd1c2f91d2da Hombre 2012-08-13 2013-06-03 PG-PAI Si
96,504 2,016 MISE1**031981 1981-03-09 38 d7d7b3a0480ad241e586537d007a5a96 Hombre 2016-04-04 2016-06-06 PG-PAI Si
19,129 2,011 MISE1**101992 1992-10-17 27 d7d7b3a0480ad241e586537d007a5a96 Hombre 2011-10-17 2011-11-30 PG-PAI Si
147,306 2,019 MAPA1**051968 1968-05-10 51 d847c30833e9bd64e71af0601374c735 NA Hombre 2018-04-09 2019-05-31 PG-PAB Si
131,880 2,018 MAPA1**121988 1988-12-10 30 d847c30833e9bd64e71af0601374c735 NA Hombre 2017-12-04 2018-01-02 PG-PR Si
155,459 2,019 HEBA1**021958 1958-02-03 61 d86ae086b8807038cab1b1cbdd19914b NA Hombre 2019-01-03 NA PG-PAI Si
3,185 2,010 HEBA1**121958 1958-12-02 60 d86ae086b8807038cab1b1cbdd19914b Hombre 2007-10-24 2010-01-28 PG-PAB Si
139,038 2,018 FRFA1**071987 1987-07-10 32 d892e8ce80db54e5c5ff500b0a954565 NA Hombre 2018-06-26 2018-12-28 PG-PAI Si
131,183 2,018 FRFA1**061987 1987-06-10 32 d892e8ce80db54e5c5ff500b0a954565 NA Hombre 2017-11-01 2018-03-29 PG-PAI Si
122,674 2,017 FRFA1**071981 1981-07-10 38 d892e8ce80db54e5c5ff500b0a954565 NA Hombre 2017-09-07 2017-09-22 PG-PAI Si
147,526 2,019 CLPE1**111976 1976-11-06 43 d89c6c1dcd46416fd48667a77ab76d95 NA Hombre 2018-05-22 2019-02-28 PG-PAI Si
5,691 2,010 CLPE1**111976 1976-11-26 42 d89c6c1dcd46416fd48667a77ab76d95 Hombre 2010-05-03 2010-10-29 PG-PAB Si
44,600 2,013 VACI2**101991 1991-10-18 28 d8b0832779fb7e3ad0af2382f5c00a46 Mujer 2013-09-24 2013-10-07 M-PR Si
36,318 2,013 VACI2**101991 1991-10-18 28 d8b0832779fb7e3ad0af2382f5c00a46 Mujer 2013-01-01 2013-04-01 PG-PAI Si
31,518 2,012 VACI2**111991 1991-11-18 27 d8b0832779fb7e3ad0af2382f5c00a46 Mujer 2012-10-30 2012-12-31 PG-PAI No
14,795 2,011 TACA2**031961 1961-03-04 58 d8bfa2d7adb3ce4d2991c329035e4725 Mujer 2011-03-03 2011-07-14 PG-PAB Si
5,610 2,010 TACA2**031991 1991-03-24 28 d8bfa2d7adb3ce4d2991c329035e4725 Mujer 2010-05-03 2010-10-18 PG-PAB Si
98,165 2,016 MESO2**071995 1995-07-14 24 d8dcf8042b0ec8e7c75a18a29d9195fb Mujer 2016-06-15 2016-08-23 PG-PAB Si
94,500 2,016 MESO2**071991 1991-07-14 28 d8dcf8042b0ec8e7c75a18a29d9195fb Mujer 2016-03-08 2016-04-28 PG-PAI Si
73,956 2,015 MESO2**071991 1991-07-14 28 d8dcf8042b0ec8e7c75a18a29d9195fb Mujer 2015-03-16 2015-07-30 PG-PAI Si
40,567 2,013 CAMU2**041994 1994-04-28 25 d8e7802b9d5c59a4771e36f93c21ea9c Mujer 2013-06-03 2013-07-31 M-PR Si
31,686 2,012 CAMU2**041993 1993-04-28 26 d8e7802b9d5c59a4771e36f93c21ea9c Mujer 2012-12-03 2013-02-07 M-PR Si
152,939 2,019 JOSA1**111976 1976-11-10 43 d940a65cb50377638c856df54b088396 NA Hombre 2019-01-07 2019-03-31 PG-PR Si
138,579 2,018 JOSA1**111976 1976-11-10 42 d940a65cb50377638c856df54b088396 NA Hombre 2018-05-07 2018-10-01 PG-PAI Si
105,827 2,017 JOSA1**111976 1976-11-10 42 d940a65cb50377638c856df54b088396 NA Hombre 2015-08-25 2017-09-01 PG-PAI Si
69,050 2,015 CIAN2**071986 1986-07-10 33 d94d11382dead58c7d5a6bfaf82d4a17 Mujer 2014-10-10 2015-02-20 M-PR Si
21,944 2,012 CIAN2**071969 1969-07-10 50 d94d11382dead58c7d5a6bfaf82d4a17 Mujer 2011-08-24 2012-03-01 M-PR Si
88,329 2,016 MAMO1**121972 1972-12-07 46 d9b39940c11bc0a0e4184b007e975f12 Hombre 2015-04-07 2016-05-30 PG-PAI Si
28,086 2,012 MAMO1**121972 1972-12-07 46 d9b39940c11bc0a0e4184b007e975f12 Hombre 2012-06-04 2012-07-31 PG-PR Si
23,556 2,012 MAMO1**121972 1972-12-07 46 d9b39940c11bc0a0e4184b007e975f12 Hombre 2011-12-19 2012-05-31 PG-PAI Si
4,664 2,010 MAMO1**121990 1990-12-07 28 d9b39940c11bc0a0e4184b007e975f12 Hombre 2010-04-06 2010-10-11 PG-PAI Si
160,922 2,019 FRTA1**121976 1976-12-05 42 d9cdc87e89b0ff3d3445cdeb628475b1 NA Hombre 2019-08-20 NA PG-PAI Si
140,861 2,018 FRTA1**121976 1976-12-05 42 d9cdc87e89b0ff3d3445cdeb628475b1 NA Hombre 2018-08-17 2018-10-04 PG-PR Si
139,309 2,018 FRTA1**121976 1976-12-05 42 d9cdc87e89b0ff3d3445cdeb628475b1 NA Hombre 2018-06-18 2018-08-16 PG-PAI Si
116,557 2,017 FRTA1**121976 1976-12-05 42 d9cdc87e89b0ff3d3445cdeb628475b1 NA Hombre 2017-04-20 2017-09-21 PG-PAI Si
66,077 2,015 FRTA1**121975 1975-12-05 43 d9cdc87e89b0ff3d3445cdeb628475b1 Hombre 2013-11-21 2015-01-15 PG-PR Si
25,644 2,012 FRTA1**121976 1976-12-05 42 d9cdc87e89b0ff3d3445cdeb628475b1 Hombre 2012-03-20 2012-12-19 PG-PAI Si
119,460 2,017 ERVA1**081968 1968-08-12 51 d9e020a08875ef763ce0c3e06cbf1b9d NA Hombre 2017-07-06 2017-10-23 PG-PAB Si
108,082 2,017 ERVA1**081995 1995-08-12 24 d9e020a08875ef763ce0c3e06cbf1b9d NA Hombre 2016-07-04 2017-03-23 PG-PAB Si
53,438 2,014 FRCA1**101981 1981-10-15 38 da07b1a5c2ca22c16145c6b1345698cd Hombre 2014-01-23 2014-02-04 PG-PAI Si
28,902 2,012 FRCA1**121981 1981-12-09 37 da07b1a5c2ca22c16145c6b1345698cd Hombre 2012-07-31 2012-08-31 PG-PAI Si
162,605 2,019 MAVA1**081985 1985-08-30 34 dac96345a3ecb51c2d84132906b0cb9e NA Hombre 2019-10-01 NA PG-PR Si
130,718 2,018 MAVA1**081985 1985-08-30 34 dac96345a3ecb51c2d84132906b0cb9e NA Hombre 2017-11-01 2018-08-20 PG-PR Si
119,197 2,017 MAVA1**081995 1995-08-30 24 dac96345a3ecb51c2d84132906b0cb9e NA Hombre 2017-07-13 2017-10-31 PG-PAI Si
130,115 2,018 MACA2**121997 1997-12-21 21 dadda6ce75320bfcdb2be564d42e9e3d NA Mujer 2017-10-06 2018-03-20 PG-PAI Si
114,593 2,017 MACA2**031996 1996-03-21 23 dadda6ce75320bfcdb2be564d42e9e3d NA Mujer 2017-02-08 2017-03-01 M-PR Si
155,891 2,019 ANRE2**111985 1985-11-07 34 db0d72d2e2133cf8da0eda0ac5507c55 NA Mujer 2019-04-01 2019-09-02 PG-PAI Si
59,642 2,014 ANRE2**111985 1985-11-07 33 db0d72d2e2133cf8da0eda0ac5507c55 Mujer 2014-06-24 2014-09-30 PG-PAI Si
128,299 2,018 JASA1**041987 1987-04-02 32 db99336ec846bddb105ae2644823187f NA Hombre 2017-06-15 2018-01-23 PG-PAB Si
79,787 2,015 JASA1**041985 1985-04-02 34 db99336ec846bddb105ae2644823187f Hombre 2015-07-15 2015-08-01 PG-PR Si
75,737 2,015 JASA1**041987 1987-04-02 32 db99336ec846bddb105ae2644823187f Hombre 2015-04-13 2015-07-15 PG-PAI Si
135,955 2,018 VISA1**071967 1967-07-20 52 dbc33e4180198bdb0fddeba6410b2f8c NA Hombre 2018-03-26 2018-08-27 PG-PAI Si
118,125 2,017 VISA1**071967 1967-07-20 52 dbc33e4180198bdb0fddeba6410b2f8c NA Hombre 2017-04-10 2017-10-23 PG-PAI Si
29,095 2,012 VISA1**071967 1967-07-20 52 dbc33e4180198bdb0fddeba6410b2f8c Hombre 2012-07-18 2012-09-26 PG-PAI Si
15,013 2,011 VISA1**061968 1968-06-20 51 dbc33e4180198bdb0fddeba6410b2f8c Hombre 2011-04-14 2011-08-04 PG-PAI Si
148,382 2,019 ANCO2**111965 1965-11-10 54 dbc662581d7865ef55dacd15913f3ccc NA Mujer 2018-03-15 NA PG-PAI Si
6,306 2,010 ANCO2**111965 1965-11-10 53 dbc662581d7865ef55dacd15913f3ccc Mujer 2010-06-23 2010-11-29 M-PR Si
91,553 2,016 FEMO1**121985 1985-12-04 33 dbe51ee188afdd3230182e4fc413c1d9 Hombre 2015-12-04 2016-01-12 PG-PAB Si
66,462 2,015 FEMO1**041985 1985-04-29 34 dbe51ee188afdd3230182e4fc413c1d9 Hombre 2014-02-14 2015-02-28 PG-PAB Si
37,853 2,013 JUSA1**061974 1974-06-16 45 dbef232c4fcd87d69c7fa2ceb250add1 Hombre 2013-01-24 2013-07-25 PG-PAI Si
8,342 2,010 JUSA1**061991 1991-06-16 28 dbef232c4fcd87d69c7fa2ceb250add1 Hombre 2010-10-08 2010-12-31 PG-PAI Si
132,651 2,018 BERE2**051984 1984-05-24 35 dc11173e8fcc40895a625ffdd81faf7a NA Mujer 2018-01-04 2018-12-20 M-PR Si
107,832 2,017 BERE2**051985 1985-05-24 34 dc11173e8fcc40895a625ffdd81faf7a NA Mujer 2016-06-08 2017-06-16 PG-PAI Si
64,838 2,014 JABA1**091963 1963-09-25 56 dc3448fe50069fb38873ecb63a506724 Hombre 2014-11-24 2014-12-23 PG-PAI Si
18,364 2,011 JABA1**011965 1965-01-28 54 dc3448fe50069fb38873ecb63a506724 Hombre 2011-08-22 2012-02-01 PG-PAB Si
162,407 2,019 NARA2**111985 1985-11-13 34 dc41e5abd14c64656ebc14ec1877406a NA Mujer 2019-10-04 NA PG-PAI Si
128,394 2,018 NARA2**111985 1985-11-13 33 dc41e5abd14c64656ebc14ec1877406a NA Mujer 2017-07-07 2018-01-25 M-PAI Si
69,404 2,015 JOVA1**051990 1990-05-23 29 dc47fa5cfcb3e688ad4cbfbb727015cf Hombre 2014-10-14 NA PG-PAI Si
58,294 2,014 JOVA1**051990 1990-05-23 29 dc47fa5cfcb3e688ad4cbfbb727015cf Hombre 2014-05-19 2014-10-29 PG-PAI Si
49,446 2,014 JOVA1**051994 1994-05-23 25 dc47fa5cfcb3e688ad4cbfbb727015cf Hombre 2013-06-15 2014-02-13 PG-PAB Si
111,383 2,017 REJI1**111996 1996-11-03 23 dca600280b7cb947f7098e1a69b9f9df NA Hombre 2016-12-20 2017-02-24 PG-PAI Si
88,682 2,016 REJI1**111964 1964-11-03 55 dca600280b7cb947f7098e1a69b9f9df Hombre 2015-08-11 2016-04-15 PG-PAI Si
58,814 2,014 REJI1**111964 1964-11-03 55 dca600280b7cb947f7098e1a69b9f9df Hombre 2014-06-24 2014-07-31 PG-PR Si
104,405 2,016 JOBU1**011990 1990-01-20 29 dcf21c3469c821339944329ab51b557e Hombre 2016-11-23 2017-01-13 PG-PR Si
35,032 2,013 JOBU1**011990 1990-01-20 29 dcf21c3469c821339944329ab51b557e Hombre 2012-12-04 2013-03-25 PG-PR Si
24,874 2,012 JOBU1**011993 1993-01-20 26 dcf21c3469c821339944329ab51b557e Hombre 2012-02-20 2012-02-21 PG-PR Si
1,385 2,010 JOBU1**011990 1990-01-20 29 dcf21c3469c821339944329ab51b557e Hombre 2009-07-15 2010-02-20 PG-PR Si
108,727 2,017 SAMA2**121967 1967-12-14 51 dd0d42261d00273d4e19ff2a46bda4b9 NA Mujer 2016-08-01 2017-08-01 PG-PAI Si
82,620 2,015 SAMA2**121967 1967-12-14 51 dd0d42261d00273d4e19ff2a46bda4b9 Mujer 2015-10-01 2015-11-30 M-PR Si
81,930 2,015 SAMA2**021967 1967-02-14 52 dd0d42261d00273d4e19ff2a46bda4b9 Mujer 2015-09-02 2015-09-30 M-PAI Si
78,942 2,015 SAMA2**121967 1967-12-14 51 dd0d42261d00273d4e19ff2a46bda4b9 Mujer 2015-07-01 2015-08-31 M-PAI Si
73,892 2,015 SAMA2**121967 1967-12-14 51 dd0d42261d00273d4e19ff2a46bda4b9 Mujer 2015-03-16 2015-06-30 M-PR Si
65,650 2,015 SAMA2**121967 1967-12-14 51 dd0d42261d00273d4e19ff2a46bda4b9 Mujer 2013-06-10 2015-03-20 PG-PAI Si
33,754 2,013 SAMA2**121967 1967-12-14 51 dd0d42261d00273d4e19ff2a46bda4b9 Mujer 2012-08-24 2013-05-07 M-PAI Si
28,254 2,012 SAMA2**121967 1967-12-14 51 dd0d42261d00273d4e19ff2a46bda4b9 Mujer 2012-07-02 2012-08-30 PG-PAB Si
1,356 2,010 SAMA2**121967 1967-12-14 51 dd0d42261d00273d4e19ff2a46bda4b9 Mujer 2009-06-10 2010-02-26 PG-PAI Si
156,022 2,019 ERFL1**091971 1971-09-13 48 dd15061466a4f2d2912dec2fa37660bd NA Hombre 2019-04-01 NA PG-PR Si
147,659 2,019 ERFL1**091971 1971-09-13 48 dd15061466a4f2d2912dec2fa37660bd NA Hombre 2018-05-03 2019-03-29 PG-PAI Si
116,300 2,017 ERFL1**041970 1970-04-02 49 dd15061466a4f2d2912dec2fa37660bd NA Hombre 2017-02-06 2017-06-16 PG-PAB Si
17,966 2,011 PASA1**101983 1983-10-17 36 dd41acbe7b98c219bddcf539f2bd5cac Hombre 2011-08-03 2011-10-27 PG-PAB Si
7,697 2,010 PASA1**101985 1985-10-17 34 dd41acbe7b98c219bddcf539f2bd5cac Hombre 2010-09-06 2011-01-26 PG-PAB No
27,379 2,012 GIIB1**101966 1966-10-13 53 dd9becb7fe8d3544dc1c989c19c97581 Hombre 2012-06-12 2012-11-14 PG-PAI Si
24,472 2,012 GIIB1**101992 1992-10-10 27 dd9becb7fe8d3544dc1c989c19c97581 Hombre 2012-01-25 2012-04-12 PG-PAI Si
20,973 2,012 GIIB1**101966 1966-10-13 53 dd9becb7fe8d3544dc1c989c19c97581 Hombre 2011-01-25 2012-02-07 PG-PAI Si
58,050 2,014 YEGO1**081982 1982-08-12 37 dd9cc106b68f54509c3eb728ec3d9415 Hombre 2014-05-20 2014-07-30 PG-PAB Si
24,908 2,012 YEGO1**081992 1992-08-12 27 dd9cc106b68f54509c3eb728ec3d9415 Hombre 2012-02-06 2012-04-25 PG-PAI Si
158,871 2,019 BAQU2**111982 1982-11-08 37 de33ee17d79ab0339b0953aa53e6f4d1 NA Mujer 2019-06-25 NA M-PAI Si
153,332 2,019 BAQU2**111982 1982-11-08 37 de33ee17d79ab0339b0953aa53e6f4d1 NA Mujer 2019-02-14 2019-06-24 M-PR Si
138,314 2,018 BAQU2**111982 1982-11-08 36 de33ee17d79ab0339b0953aa53e6f4d1 NA Mujer 2018-05-29 2018-08-03 PG-PAI Si
136,223 2,018 NAAS2**111984 1984-11-05 35 de4d49f9e18a4be3c835d8a816f69e23 NA Mujer 2018-04-18 2018-12-18 PG-PAI Si
129,960 2,018 NAAS2**111984 1984-11-05 35 de4d49f9e18a4be3c835d8a816f69e23 NA Mujer 2017-10-03 2018-02-27 M-PR Si
110,997 2,017 NAAS2**111984 1984-11-05 35 de4d49f9e18a4be3c835d8a816f69e23 NA Mujer 2016-11-23 2017-10-02 PG-PAB Si
77,464 2,015 NAAS2**111984 1984-11-05 35 de4d49f9e18a4be3c835d8a816f69e23 Mujer 2015-02-11 2015-09-29 PG-PAB Si
58,459 2,014 NAAS2**091984 1984-09-05 35 de4d49f9e18a4be3c835d8a816f69e23 Mujer 2014-05-12 2014-12-31 PG-PAI Si
34,335 2,013 NAAS2**111984 1984-11-05 35 de4d49f9e18a4be3c835d8a816f69e23 Mujer 2012-10-31 2013-07-31 PG-PAI Si
10,038 2,011 NAAS2**111984 1984-11-15 34 de4d49f9e18a4be3c835d8a816f69e23 Mujer 2010-01-20 2011-06-03 PG-PAI Si
93,642 2,016 PERO1**081972 1972-08-09 47 de4fc1961b0ee5d421645d3932341631 Hombre 2016-01-13 2016-08-16 PG-PR Si
90,524 2,016 PERO1**081972 1972-08-09 47 de4fc1961b0ee5d421645d3932341631 Hombre 2015-10-20 2016-01-12 PG-PAI Si
48,570 2,014 PERO1**081962 1962-08-09 57 de4fc1961b0ee5d421645d3932341631 Hombre 2013-02-25 2014-02-04 PG-PAB Si
157,663 2,019 JUAS1**111954 1954-11-08 65 de59738859fbee4ca81db6a8ea7e0b7e NA Hombre 2019-05-02 NA PG-PAI Si
125,956 2,018 JUAS1**111954 1954-11-08 64 de59738859fbee4ca81db6a8ea7e0b7e NA Hombre 2016-02-17 2018-05-11 PG-PAI Si
156,819 2,019 DAGA1**111995 1995-11-08 24 de5fe6de1e8281dbacb67dbaadd2da44 NA Hombre 2019-03-13 2019-09-30 PG-PAI Si
114,180 2,017 DAGA1**111995 1995-11-08 23 de5fe6de1e8281dbacb67dbaadd2da44 NA Hombre 2017-03-02 2017-06-30 PG-PAI Si
113,153 2,017 DAGA1**111995 1995-11-08 23 de5fe6de1e8281dbacb67dbaadd2da44 NA Hombre 2017-02-02 2017-03-01 PG-PAI Si
71,681 2,015 CHPO1**111956 1956-11-21 62 de8d6d1824c3c71813c49a97c9b2cf65 Hombre 2015-01-08 2015-05-29 PG-PAI Si
64,468 2,014 CHPO1**101956 1956-10-21 63 de8d6d1824c3c71813c49a97c9b2cf65 Hombre 2014-11-12 2015-01-29 PG-PAB Si
30,250 2,012 CHPO1**101956 1956-10-21 63 de8d6d1824c3c71813c49a97c9b2cf65 Hombre 2012-09-03 2012-12-31 PG-PAB Si
130,520 2,018 ANSA1**011989 1989-01-04 30 de970d5730f19853f55b07c485e55ae8 NA Hombre 2017-10-11 2018-03-01 PG-PR Si
113,617 2,017 ANSA1**011999 1999-01-04 20 de970d5730f19853f55b07c485e55ae8 NA Hombre 2016-12-12 2017-10-03 PG-PAI Si
47,925 2,014 ANSA1**011989 1989-01-04 30 de970d5730f19853f55b07c485e55ae8 Hombre 2012-06-18 2014-09-02 PG-PAI Si
27,956 2,012 ANSA1**011989 1989-01-04 30 de970d5730f19853f55b07c485e55ae8 Hombre 2012-06-18 2012-07-02 PG-PAB Si
146,291 2,019 ROGO1**121988 1988-12-15 30 df434ddfa68cf1d717a54bc7b200aa1f NA Hombre 2017-10-23 2019-01-02 PG-PAB Si
22,471 2,012 ROGO1**121985 1985-12-15 33 df434ddfa68cf1d717a54bc7b200aa1f Hombre 2011-10-03 2012-03-16 PG-PAI Si
52,277 2,014 JOBR1**111990 1990-11-22 28 df464eb979f6ff7da168f9e90b48dc3d Hombre 2013-11-04 2014-10-16 PG-PR Si
40,252 2,013 JOBR1**091990 1990-09-22 29 df464eb979f6ff7da168f9e90b48dc3d Hombre 2013-05-06 2013-08-16 PG-PAI Si
156,004 2,019 KACA2**021981 1981-02-22 38 df6148ce34b5e919ba266b5d0e97806e NA Mujer 2019-04-01 NA M-PAI Si
93,379 2,016 KACA2**021981 1981-02-22 38 df6148ce34b5e919ba266b5d0e97806e Mujer 2016-02-04 2016-03-21 M-PAI Si
37,541 2,013 KACA2**021981 1981-02-22 38 df6148ce34b5e919ba266b5d0e97806e Mujer 2013-02-26 2013-10-29 M-PAI Si
23,872 2,012 KACA2**021981 1981-02-22 38 df6148ce34b5e919ba266b5d0e97806e Mujer 2011-10-24 2012-05-01 M-PAI Si
18,391 2,011 KACA2**021981 1981-02-22 38 df6148ce34b5e919ba266b5d0e97806e Mujer 2011-09-08 2011-10-18 M-PR Si
11,657 2,011 KACA2**021991 1991-02-22 28 df6148ce34b5e919ba266b5d0e97806e Mujer 2010-10-14 2010-12-28 M-PAI Si
117,601 2,017 ALFR2**051974 1974-05-23 45 df8af13efcbdc722453c2ac069bf5c9d NA Mujer 2017-05-10 2017-08-31 PG-PAI Si
99,970 2,016 ALFR2**051974 1974-05-23 45 df8af13efcbdc722453c2ac069bf5c9d Mujer 2016-07-26 2016-08-15 PG-PR No
96,258 2,016 ALFR2**051954 1954-05-23 65 df8af13efcbdc722453c2ac069bf5c9d Mujer 2016-04-15 2016-07-25 PG-PAI Si
124,390 2,017 YECO1**031976 1976-03-08 43 dfb6b85b54ff385fc0b50741b2f8141f NA Hombre 2017-11-06 2017-11-28 PG-PR Si
122,282 2,017 YECO1**031976 1976-03-08 43 dfb6b85b54ff385fc0b50741b2f8141f NA Hombre 2017-08-08 2017-11-03 PG-PAB Si
107,710 2,017 YECO1**031976 1976-03-08 43 dfb6b85b54ff385fc0b50741b2f8141f NA Hombre 2016-05-18 2017-07-26 PG-PR Si
66,316 2,015 YECO1**031978 1978-03-08 41 dfb6b85b54ff385fc0b50741b2f8141f Hombre 2014-01-30 2015-04-01 PG-PAI Si
150,828 2,019 MIAR1**111982 1982-11-09 37 dfd795096ff014a85a05d81389011882 NA Hombre 2018-10-27 NA PG-PAI Si
118,828 2,017 MIAR1**111982 1982-11-09 36 dfd795096ff014a85a05d81389011882 NA Hombre 2017-04-04 2017-11-01 PG-PAI Si
93,116 2,016 MIAR1**111982 1982-11-09 36 dfd795096ff014a85a05d81389011882 Hombre 2016-01-29 2016-05-30 PG-PAI Si
119,242 2,017 MASO2**101993 1993-10-05 26 e01f5f34b725a5ebced7ae481600dc40 NA Mujer 2017-07-12 2017-09-28 M-PR Si
94,105 2,016 MASO2**101992 1992-10-05 27 e01f5f34b725a5ebced7ae481600dc40 Mujer 2016-02-22 2016-03-08 M-PR Si
23,863 2,012 NISO1**021988 1988-02-03 31 e04d64335833be5b9f0d3202c1150621 Hombre 2012-01-10 2012-04-26 PG-PAB Si
1,756 2,010 NISO1**121988 1988-12-03 30 e04d64335833be5b9f0d3202c1150621 Hombre 2009-09-22 2010-02-26 PG-PAB Si
70,658 2,015 CAMO1**051982 1982-05-31 37 e091e08a777141dd8f502e6e3362d91f Hombre 2014-11-25 2015-08-03 PG-PAI Si
37,568 2,013 CAMO1**031994 1994-03-14 25 e091e08a777141dd8f502e6e3362d91f Hombre 2013-03-14 2013-04-01 PG-PR Si
69,614 2,015 JEGO2**051988 1988-05-27 31 e0cfb3a0ba90dd05cac82e1087bbc6fd Mujer 2014-11-01 2015-03-27 PG-PAI Si
63,549 2,014 JEGO2**051998 1998-05-17 21 e0cfb3a0ba90dd05cac82e1087bbc6fd Mujer 2014-10-08 2014-11-01 PG-PR Si
50,702 2,014 MIES1**061981 1981-06-19 38 e125c421dba1ba2359ec187ec715dc45 Hombre 2013-09-03 2014-06-02 PG-PAI Si
34,941 2,013 MIES1**061981 1981-06-19 38 e125c421dba1ba2359ec187ec715dc45 Hombre 2012-11-23 2013-08-29 PG-PAI Si
431 2,010 MIES1**061984 1984-06-15 35 e125c421dba1ba2359ec187ec715dc45 Hombre 2009-03-09 2010-03-15 PG-PR Si
49,426 2,014 WABU1**031994 1994-03-02 25 e17ce266edcb39ac91f26338a3cf62db Hombre 2013-06-03 2014-06-30 PG-PAI Si
14,163 2,011 WABU1**031970 1970-03-02 49 e17ce266edcb39ac91f26338a3cf62db Hombre 2011-03-01 2011-07-06 PG-PAB Si
10,046 2,011 WABU1**031970 1970-03-02 49 e17ce266edcb39ac91f26338a3cf62db Hombre 2009-10-01 2011-02-28 PG-PAI Si
119,295 2,017 RUMU1**081963 1963-08-29 56 e17e5d7ebf1a35390641d0baea11644f NA Hombre 2017-07-18 2017-11-22 PG-PR Si
113,203 2,017 RUMU1**081965 1965-08-29 54 e17e5d7ebf1a35390641d0baea11644f NA Hombre 2017-02-06 2017-07-17 PG-PAB Si
12,200 2,011 RUMU1**081985 1985-08-29 34 e17e5d7ebf1a35390641d0baea11644f Hombre 2010-11-01 2011-03-31 PG-PAB Si
156,454 2,019 JACA1**121956 1956-12-15 62 e1b4b5533f74c4050e10e306d25aa273 NA Hombre 2019-04-11 NA PG-PAI Si
116,316 2,017 JACA1**041965 1965-04-06 54 e1b4b5533f74c4050e10e306d25aa273 NA Hombre 2017-03-24 2017-07-28 PG-PAB Si
89,349 2,016 JACA1**121956 1956-12-14 62 e1b4b5533f74c4050e10e306d25aa273 Hombre 2015-09-03 2016-03-01 PG-PAI Si
133,777 2,018 DASE1**011976 1976-01-07 43 e1e35fee2a752b2688db17b49c028424 NA Hombre 2018-02-02 2018-07-19 PG-PAI Si
125,754 2,017 DASE1**011976 1976-01-07 43 e1e35fee2a752b2688db17b49c028424 NA Hombre 2017-12-13 2018-02-01 PG-PAB Si
113,320 2,017 DASE1**011966 1966-01-07 53 e1e35fee2a752b2688db17b49c028424 NA Hombre 2017-02-06 2017-07-28 PG-PAB Si
71,209 2,015 DASE1**011976 1976-01-07 43 e1e35fee2a752b2688db17b49c028424 Hombre 2015-01-28 2015-05-20 PG-PAB Si
86,474 2,016 MEGU2**101960 1960-10-12 59 e295197ee7cbf2a2b6cc71e97e48bbf1 Mujer 2015-02-05 2016-02-01 M-PAI Si
70,679 2,015 MEGU2**101964 1964-10-12 55 e295197ee7cbf2a2b6cc71e97e48bbf1 Mujer 2014-09-08 2015-02-03 PG-PAI Si
105,092 2,016 CLAG2**121987 1987-12-16 31 e2ee1e143262cfd7d4c2df52a0033560 Mujer 2016-12-01 2016-12-30 M-PAI Si
93,190 2,016 CLAG2**011987 1987-01-16 32 e2ee1e143262cfd7d4c2df52a0033560 Mujer 2016-01-29 2016-11-30 M-PR Si
126,682 2,018 LICA2**101972 1972-10-27 47 e35c539bf00ca58606e9c452f743e861 NA Mujer 2016-11-14 2018-08-01 PG-PAI Si
76,284 2,015 LICA2**111972 1972-11-27 46 e35c539bf00ca58606e9c452f743e861 Mujer 2015-05-15 2015-08-25 M-PAI Si
54,290 2,014 LICA2**101972 1972-10-27 47 e35c539bf00ca58606e9c452f743e861 Mujer 2014-02-05 2014-04-01 PG-PAB Si
110,292 2,017 MAAR2**071989 1989-07-19 30 e35d8927786d016dd71c67c7e63d80d6 NA Mujer 2016-11-11 2017-01-24 M-PAI Si
45,820 2,013 MAAR2**071990 1990-07-09 29 e35d8927786d016dd71c67c7e63d80d6 Mujer 2013-10-09 2013-12-30 M-PR Si
161,399 2,019 PECA1**111980 1980-11-11 39 e3c2d7b4e3a869d2e06a22a64e030e0f NA Hombre 2019-09-10 NA PG-PR Si
50,446 2,014 PECA1**111980 1980-11-11 38 e3c2d7b4e3a869d2e06a22a64e030e0f Hombre 2013-08-13 2014-08-22 PG-PR Si
92,361 2,016 CAFI2**101983 1983-10-13 36 e3ce73f64ce34ea115c3e7fd78d02bdf Mujer 2016-01-19 2016-03-01 M-PR Si
88,442 2,016 CAFI2**111983 1983-11-13 35 e3ce73f64ce34ea115c3e7fd78d02bdf Mujer 2015-07-15 2016-01-18 PG-PAI Si
105,514 2,017 MASI2**111984 1984-11-11 34 e43480084bb07f08568e96b817bda091 NA Mujer 2015-02-26 2017-08-04 PG-PAB Si
63,637 2,014 MASI2**101984 1984-10-11 35 e43480084bb07f08568e96b817bda091 Mujer 2014-10-07 2014-12-31 M-PR Si
50,589 2,014 MASI2**101984 1984-10-11 35 e43480084bb07f08568e96b817bda091 Mujer 2013-09-13 2014-10-09 PG-PAB Si
149,993 2,019 HESA2**111962 1962-11-08 57 e46da0c3b69d2280b527e80989e443c8 NA Mujer 2018-10-09 NA PG-PAI Si
62,604 2,014 HESA2**111962 1962-11-08 56 e46da0c3b69d2280b527e80989e443c8 Mujer 2014-09-29 2014-11-30 PG-PAB Si
131,580 2,018 LEVE1**081987 1987-08-05 32 e49b2608df5c7ac6c370b3990d710619 NA Hombre 2017-11-27 2018-07-09 PG-PAI Si
91,219 2,016 LEVE2**081978 1978-08-05 41 e49b2608df5c7ac6c370b3990d710619 Mujer 2015-11-19 2016-04-01 PG-PAI Si
42,927 2,013 LEVE2**081985 1985-08-05 34 e49b2608df5c7ac6c370b3990d710619 Mujer 2013-07-25 2013-09-26 PG-PAB Si
34,850 2,013 LEVE2**081987 1987-08-05 32 e49b2608df5c7ac6c370b3990d710619 Mujer 2012-11-30 2013-08-05 PG-PAI Si
66,679 2,015 IRCA2**031965 1965-03-09 54 e4b30e78aa708e08e15b5c519f79158e Mujer 2014-03-17 2015-09-11 PG-PAB Si
38,809 2,013 IRCA2**041955 1955-04-09 64 e4b30e78aa708e08e15b5c519f79158e Mujer 2013-04-11 2013-06-25 PG-PAB Si
35,695 2,013 RIRE1**051973 1973-05-01 46 e4b3e7249fe8bd90d8cef2a56a24dac5 Hombre 2013-01-02 2013-11-08 PG-PAI Si
10,746 2,011 RIRE1**051978 1978-05-01 41 e4b3e7249fe8bd90d8cef2a56a24dac5 Hombre 2009-11-04 2011-06-01 PG-PAI Si
16,605 2,011 KALA2**011971 1971-01-06 48 e4d0616bb77e91ff04b2b79db4a3c378 Mujer 2011-05-18 2011-12-01 PG-PAI Si
6,955 2,010 KALA2**011979 1979-01-06 40 e4d0616bb77e91ff04b2b79db4a3c378 Mujer 2010-04-09 2010-10-29 PG-PAI Si
93,452 2,016 HERA1**011957 1957-01-08 62 e5591108dc94fc108aa331af5bace5da Hombre 2016-02-01 2017-01-02 PG-PAI Si
35,964 2,013 HERA1**091956 1956-09-22 63 e5591108dc94fc108aa331af5bace5da Hombre 2013-01-01 2014-08-01 Otro No
52,812 2,014 JOVA2**081988 1988-08-13 31 e56b4ab7f2de83efd27105f19a59f181 Mujer 2013-12-12 2014-12-30 PG-PAB Si
33,611 2,013 JOVA2**081988 1988-08-13 31 e56b4ab7f2de83efd27105f19a59f181 Mujer 2012-08-27 2013-06-04 M-PR Si
23,370 2,012 JOVA2**121988 1988-12-13 30 e56b4ab7f2de83efd27105f19a59f181 Mujer 2011-12-14 2012-08-24 PG-PAI Si
75,332 2,015 ANCO1**101989 1989-10-24 30 e5947c9cd6b5b86e33b65305afcf4f17 Hombre 2015-04-20 2015-06-01 PG-PR Si
70,837 2,015 ANCO1**101980 1980-10-24 39 e5947c9cd6b5b86e33b65305afcf4f17 Hombre 2014-12-17 2015-03-23 PG-PAI Si
143,798 2,018 FRBA1**011971 1971-01-13 48 e5acd23612c53c7f18f98c38b7a5b943 NA Hombre 2018-10-01 2018-11-27 PG-PAI Si
106,955 2,017 FRBA1**011996 1996-01-13 23 e5acd23612c53c7f18f98c38b7a5b943 NA Hombre 2016-04-20 2017-01-31 PG-PAB Si
25,465 2,012 FRBA1**011971 1971-01-13 48 e5acd23612c53c7f18f98c38b7a5b943 Hombre 2012-03-19 2012-06-26 PG-PAB Si
91,007 2,016 LUMU1**121968 1968-12-02 50 e655e0b384914154cb365ddb00a8a0ae Hombre 2015-10-17 2016-06-02 PG-PAB Si
7,764 2,010 LUMU1**091991 1991-09-07 28 e655e0b384914154cb365ddb00a8a0ae Hombre 2010-09-07 2010-12-17 Otro No
13,699 2,011 SIAL1**121971 1971-12-21 47 e66011a254ffef5bf8023d0d53fa89bb Hombre 2010-10-29 2011-05-02 PG-PAB Si
1,149 2,010 SIAL1**091965 1965-09-09 54 e66011a254ffef5bf8023d0d53fa89bb Hombre 2010-01-21 2010-09-11 PG-PAB Si
118,067 2,017 MINA1**111981 1981-11-21 37 e6b10dd10266ea317940016b36821edc NA Hombre 2017-06-01 2017-11-24 PG-PR Si
109,942 2,017 MINA1**101981 1981-10-21 38 e6b10dd10266ea317940016b36821edc NA Hombre 2016-09-13 2017-05-31 PG-PAI Si
12,902 2,011 MINA1**111981 1981-11-21 37 e6b10dd10266ea317940016b36821edc Hombre 2010-12-01 2011-07-22 PG-PAI Si
32,633 2,013 SAMA1**111976 1976-11-05 43 e6c22e02b9f739cedff92486a2bc172f Hombre 2012-03-06 2013-08-12 PG-PAB Si
4,706 2,010 SAMA2**111976 1976-11-06 42 e6c22e02b9f739cedff92486a2bc172f Mujer 2010-04-26 2010-11-03 PG-PAB Si
136,400 2,018 JOSA1**121977 1977-12-21 41 e6f0ac8f9a355f918918a496f3562b7b NA Hombre 2018-04-16 2018-06-25 PG-PAI Si
120,651 2,017 JOSA1**081999 1999-08-10 20 e6f0ac8f9a355f918918a496f3562b7b NA Hombre 2017-08-14 2017-09-22 PG-PAB Si
107,405 2,017 TEUR2**101964 1964-10-02 55 e71deed74ba0d4c5a4f65547b6484a7d NA Mujer 2016-05-31 2017-07-03 PG-PAB Si
155 2,010 TEUR2**101969 1969-10-04 50 e71deed74ba0d4c5a4f65547b6484a7d Mujer 2009-09-01 2010-03-25 M-PR Si
51,337 2,014 FLLE2**021971 1971-02-13 48 e7421231aacd163e1748688e78453b99 Mujer 2013-10-08 2014-05-06 M-PAI Si
35,473 2,013 FLLE2**021971 1971-02-13 48 e7421231aacd163e1748688e78453b99 Mujer 2012-12-14 2013-08-12 M-PAI Si
14,935 2,011 FLLE2**021972 1972-02-13 47 e7421231aacd163e1748688e78453b99 Mujer 2011-03-21 2011-04-01 PG-PR No
10,954 2,011 FLLE2**021972 1972-02-13 47 e7421231aacd163e1748688e78453b99 Mujer 2010-08-18 2011-02-28 PG-PR Si
3,210 2,010 FLLE2**021973 1973-02-13 46 e7421231aacd163e1748688e78453b99 Mujer 2009-04-29 2010-02-26 PG-PAI Si
45,683 2,013 ROCA1**031979 1979-03-03 40 e77083b10a5022750529a71526c6315d Hombre 2013-10-03 2016-01-28 PG-PAI Si
16,493 2,011 ROCA1**031979 1979-03-03 40 e77083b10a5022750529a71526c6315d Hombre 2011-06-09 2012-02-02 PG-PAB Si
13,437 2,011 ROCA1**011980 1980-01-01 39 e77083b10a5022750529a71526c6315d Hombre 2011-01-07 2011-02-07 PG-PAB Si
114,362 2,017 MASA1**061983 1983-06-28 36 e795f4d666fcb040393944359200b90c NA Hombre 2017-03-20 2017-07-03 PG-PAI Si
94,123 2,016 MASA1**061983 1983-06-08 36 e795f4d666fcb040393944359200b90c Hombre 2016-02-24 2016-05-01 PG-PR Si
85,941 2,016 MASA1**061973 1973-06-08 46 e795f4d666fcb040393944359200b90c Hombre 2014-08-04 2016-02-23 PG-PAB Si
56,274 2,014 MASA1**061983 1983-06-08 36 e795f4d666fcb040393944359200b90c Hombre 2014-03-06 2014-04-16 PG-PAI Si
129,314 2,018 PAEL1**071999 1999-07-01 20 e7f6d28054f0c233e28180ca9b62a03c NA Hombre 2017-07-13 2018-10-31 PG-PAI Si
92,761 2,016 PAEL1**071982 1982-07-01 37 e7f6d28054f0c233e28180ca9b62a03c Hombre 2016-01-04 2016-08-31 PG-PAI Si
126,404 2,018 MOJE2**101983 1983-10-19 36 e846c9a426cf46d8899567042d2e14d3 NA Mujer 2016-11-15 2018-05-31 PG-PAB Si
58,615 2,014 MOJE2**111983 1983-11-19 35 e846c9a426cf46d8899567042d2e14d3 Mujer 2014-06-18 2015-03-03 PG-PAB Si
154,475 2,019 EFTO1**121975 1975-12-24 43 e8886226c506e0c77d5bf7a12d1db441 NA Hombre 2019-03-04 2019-08-27 PG-PAB Si
109,280 2,017 EFTO1**121976 1976-12-24 42 e8886226c506e0c77d5bf7a12d1db441 NA Hombre 2016-09-01 2017-02-28 PG-PAB Si
146,026 2,019 CRRE1**111969 1969-11-11 50 e88b156187f83b17b5fbce32a5a978a4 NA Hombre 2017-07-07 NA PG-PAI Si
70,183 2,015 CRRE1**111969 1969-11-11 49 e88b156187f83b17b5fbce32a5a978a4 Hombre 2014-07-01 2015-02-02 PG-PAI Si
50,892 2,014 CRRE1**111969 1969-11-11 49 e88b156187f83b17b5fbce32a5a978a4 Hombre 2013-09-27 2014-06-30 PG-PR No
13,564 2,011 CRRE1**111969 1969-11-11 49 e88b156187f83b17b5fbce32a5a978a4 Hombre 2011-01-14 2011-11-10 PG-PAI Si
7,281 2,010 CRRE1**111969 1969-11-11 49 e88b156187f83b17b5fbce32a5a978a4 Hombre 2010-03-04 2010-11-24 PG-PAI Si
149,743 2,019 MAHI2**011975 1975-01-14 44 e8c458a2f63955e10aea9f65528349e1 NA Mujer 2018-10-19 2019-03-13 PG-PAB Si
81,183 2,015 MAHI2**011974 1974-01-14 45 e8c458a2f63955e10aea9f65528349e1 Mujer 2015-09-01 2015-12-17 M-PAI Si
151,623 2,019 KEFE2**071981 1981-07-21 38 e90c651c06765d57113258427579944a NA Mujer 2018-12-14 2019-07-31 M-PAI Si
119,432 2,017 KEFE2**071999 1999-07-21 20 e90c651c06765d57113258427579944a NA Mujer 2017-05-31 2017-10-31 M-PAI Si
93,614 2,016 VAHO2**021996 1996-02-17 23 e918c77eebbfb2e71cfb8e8c5e9c4ed8 Mujer 2016-02-15 2016-03-31 M-PR Si
80,317 2,015 VAHO2**101989 1989-10-21 30 e918c77eebbfb2e71cfb8e8c5e9c4ed8 Mujer 2015-08-18 2015-09-17 M-PR Si
147,080 2,019 JAGO1**101977 1977-10-08 42 e92822da16cfd3038f552373eadb2f9b NA Hombre 2018-04-02 2019-03-01 PG-PAI Si
134,429 2,018 JAGO1**101977 1977-10-08 42 e92822da16cfd3038f552373eadb2f9b NA Hombre 2018-02-15 2018-03-05 PG-PR Si
132,440 2,018 JAGO1**101977 1977-10-08 42 e92822da16cfd3038f552373eadb2f9b NA Hombre 2018-01-02 2018-02-14 PG-PAI Si
70,551 2,015 JAGO1**101973 1973-10-08 46 e92822da16cfd3038f552373eadb2f9b Hombre 2014-12-03 2015-01-28 PG-PAB Si
2,165 2,010 JAGO1**101977 1977-10-08 42 e92822da16cfd3038f552373eadb2f9b Hombre 2009-11-16 2010-05-05 PG-PAI Si
35,331 2,013 ANTE1**071969 1969-07-01 50 e932bfc142e9fe44aa96fd9e9ba5f807 Hombre 2013-01-01 2013-11-30 PG-PR Si
24,025 2,012 ANTE1**081960 1960-08-16 59 e932bfc142e9fe44aa96fd9e9ba5f807 Hombre 2011-08-19 2012-02-27 PG-PAI Si
91,422 2,016 PANE1**041983 1983-04-05 36 e95c9e3510a12153315dac20731ee0bc Hombre 2015-11-09 2016-04-01 PG-PAB Si
25,173 2,012 PANE1**091979 1979-09-18 40 e95c9e3510a12153315dac20731ee0bc Hombre 2012-02-14 2012-05-18 PG-PAI Si
48,628 2,014 DAWI1**011984 1984-01-20 35 e9af93c0adfacc94347d68ae80099af8 Hombre 2013-03-22 2014-01-31 PG-PAI Si
4,935 2,010 DAWI1**111970 1970-11-16 48 e9af93c0adfacc94347d68ae80099af8 Hombre 2010-04-12 2010-08-23 PG-PAI Si
127,179 2,018 DACO2**041999 1999-04-03 20 e9c126ca696b11cea2d0c407b562bb8b NA Mujer 2017-03-23 2018-02-16 PG-PAB Si
106,094 2,017 DACO2**041989 1989-04-03 30 e9c126ca696b11cea2d0c407b562bb8b NA Mujer 2015-11-16 2017-03-07 PG-PAI Si
152,706 2,019 PABR1**101963 1963-10-03 56 e9cccf45ab2da84b790b05917a564cd8 NA Hombre 2019-01-24 NA PG-PAI Si
144,617 2,018 PABR1**101963 1963-10-03 56 e9cccf45ab2da84b790b05917a564cd8 NA Hombre 2018-11-05 2018-12-19 PG-PAI Si
141,221 2,018 PABR1**101963 1963-10-03 56 e9cccf45ab2da84b790b05917a564cd8 NA Hombre 2018-08-29 2018-10-31 PG-PAB Si
6,184 2,010 PABR1**101964 1964-10-13 55 e9cccf45ab2da84b790b05917a564cd8 Hombre 2010-07-05 2010-10-20 PG-PAB No
127,821 2,018 CRFE1**011967 1967-01-07 52 e9cdbc6f9c1cf20e2d517cc092006c1e NA Hombre 2017-05-25 2019-02-01 PG-PAI Si
94,276 2,016 CRFE1**011996 1996-01-07 23 e9cdbc6f9c1cf20e2d517cc092006c1e Hombre 2016-01-21 2016-06-07 PG-PAB No
145,899 2,019 CAFO1**121990 1990-12-17 28 e9f1a0fbe8723086b7452360851cb89a NA Hombre 2017-04-10 2019-03-01 PG-PAI Si
71,574 2,015 CAFO1**011990 1990-01-17 29 e9f1a0fbe8723086b7452360851cb89a Hombre 2015-01-27 2015-06-26 PG-PR Si
64,665 2,014 CAFO1**121990 1990-12-17 28 e9f1a0fbe8723086b7452360851cb89a Hombre 2014-10-02 2015-01-27 PG-PAB Si
34,365 2,013 MIHE1**101982 1982-10-19 37 ea675bfc8714318e06cd76225b3d3057 Hombre 2012-10-02 2013-05-10 PG-PR Si
3,694 2,010 MIHE1**121982 1982-12-19 36 ea675bfc8714318e06cd76225b3d3057 Hombre 2010-02-02 2010-03-01 PG-PAB Si
129,923 2,018 NIAG1**091996 1996-09-08 23 ea72d4a9ef3baf47fa6921bbd8df61f1 NA Hombre 2017-09-30 2018-02-22 PG-PR Si
119,609 2,017 JOTA1**091985 1985-09-12 34 ea72d4a9ef3baf47fa6921bbd8df61f1 NA Hombre 2017-07-21 2017-08-04 PG-PR Si
118,672 2,017 JOTA1**091985 1985-09-12 34 ea72d4a9ef3baf47fa6921bbd8df61f1 NA Hombre 2017-06-20 2017-07-07 PG-PAI Si
108,270 2,017 JOTA1**091985 1985-09-12 34 ea72d4a9ef3baf47fa6921bbd8df61f1 NA Hombre 2016-07-26 2017-02-24 PG-PR Si
88,904 2,016 JOTA1**091985 1985-09-12 34 ea72d4a9ef3baf47fa6921bbd8df61f1 Hombre 2015-08-19 2016-06-01 PG-PAI Si
51,376 2,014 OSCA1**051992 1992-05-31 27 ea7f7d7829075250912d197e1d44f1b7 Hombre 2013-10-29 2014-04-16 PG-PR Si
43,991 2,013 OSCA1**051982 1982-05-31 37 ea7f7d7829075250912d197e1d44f1b7 Hombre 2013-08-26 2013-10-29 PG-PAI Si
129,152 2,018 RATA2**121997 1997-12-12 21 ea940d70952809b9bda44069ed359389 NA Mujer 2017-08-08 2018-08-01 PG-PAI Si
107,700 2,017 RATA2**121994 1994-12-12 24 ea940d70952809b9bda44069ed359389 NA Mujer 2016-04-14 2017-02-15 PG-PAI Si
97,918 2,016 ALNO1**051996 1996-05-24 23 eac0e9a294dd0fed642ac4dd7f092375 Hombre 2016-05-24 2016-09-23 PG-PAI Si
55,078 2,014 ALNO1**041971 1971-04-30 48 eac0e9a294dd0fed642ac4dd7f092375 Hombre 2014-01-27 2014-05-01 PG-PAI Si
49,255 2,014 ALNO1**041971 1971-04-30 48 eac0e9a294dd0fed642ac4dd7f092375 Hombre 2013-05-30 2014-01-31 PG-PAI Si
118,754 2,017 JUPE1**011983 1983-01-17 36 eacb96accfb85526769e8d590defbdb6 NA Hombre 2017-05-22 2017-11-01 PG-PAI Si
110,331 2,017 JUPE1**011996 1996-01-17 23 eacb96accfb85526769e8d590defbdb6 NA Hombre 2016-11-10 2017-05-19 PG-PR Si
91,037 2,016 JUPE1**011983 1983-01-17 36 eacb96accfb85526769e8d590defbdb6 Hombre 2015-11-16 2016-11-09 PG-PAI Si
102,395 2,016 EGAR1**011960 1960-01-06 59 ead1471bf9ce148f30b2d6079e87b38f Hombre 2016-08-31 2016-12-15 PG-PAI Si
66,020 2,015 EGAR1**011990 1990-01-06 29 ead1471bf9ce148f30b2d6079e87b38f Hombre 2013-10-25 2015-08-31 PG-PAI Si
114,544 2,017 RILE1**031987 1987-03-05 32 eaf2830746888d37bdec367b161a3797 NA Hombre 2017-03-22 2017-04-10 PG-PR Si
79,055 2,015 RILE1**031987 1987-03-05 32 eaf2830746888d37bdec367b161a3797 Hombre 2015-07-14 2015-08-11 PG-PR Si
41,346 2,013 RILE1**061994 1994-06-27 25 eaf2830746888d37bdec367b161a3797 Hombre 2013-06-27 2013-08-27 PG-PR Si
36,837 2,013 RILE1**031987 1987-03-05 32 eaf2830746888d37bdec367b161a3797 Hombre 2013-02-01 2013-02-27 PG-PAI Si
88,800 2,016 FINO2**071966 1966-07-25 53 eaf5f232ecfebd9e58c03bb7f2e70798 Mujer 2015-08-24 2016-12-05 M-PAI Si
76,025 2,015 FIAM2**071977 1977-07-25 42 eaf5f232ecfebd9e58c03bb7f2e70798 Mujer 2015-05-01 2015-06-30 PG-PAB Si
134,513 2,018 MIPE1**091982 1982-09-16 37 eaf995cb33d947ef6b637e0f89907f96 NA Hombre 2018-02-24 2018-03-30 PG-PR Si
131,012 2,018 MIPE1**091999 1999-09-16 20 eaf995cb33d947ef6b637e0f89907f96 NA Hombre 2017-11-06 2018-02-23 PG-PAI Si
112,684 2,017 MIPE1**091982 1982-09-16 37 eaf995cb33d947ef6b637e0f89907f96 NA Hombre 2017-01-30 2017-07-25 PG-PR Si
69,227 2,015 MIPE1**091982 1982-09-16 37 eaf995cb33d947ef6b637e0f89907f96 Hombre 2014-10-06 2015-07-01 PG-PR Si
62,831 2,014 MIPE1**091982 1982-09-16 37 eaf995cb33d947ef6b637e0f89907f96 Hombre 2014-09-25 2014-10-14 PG-PAB Si
42,421 2,013 MIPE1**091982 1982-09-16 37 eaf995cb33d947ef6b637e0f89907f96 Hombre 2013-07-15 2013-08-22 PG-PR Si
10,961 2,011 MIPE1**091982 1982-09-16 37 eaf995cb33d947ef6b637e0f89907f96 Hombre 2010-08-11 2011-04-28 PG-PAB Si
10,374 2,011 ALGO1**011980 1980-01-15 39 eb4e8f9a743fdf73572b428e287d7540 Hombre 2010-04-23 2011-03-07 PG-PR Si
751 2,010 ALGO1**011970 1970-01-15 49 eb4e8f9a743fdf73572b428e287d7540 Hombre 2009-11-26 2010-02-05 PG-PAI Si
22,273 2,012 SCMA2**091992 1992-09-20 27 eb75f1fa2f650a712f3078cdc31d18e1 Mujer 2011-03-29 2013-01-31 PG-PAI Si
16,319 2,011 SCMA2**031980 1980-03-20 39 eb75f1fa2f650a712f3078cdc31d18e1 Mujer 2011-03-29 2011-06-30 PG-PAB Si
100,911 2,016 STHE2**121984 1984-12-12 34 eb8162541577c55da0e370e699a2f5c2 Mujer 2016-08-10 2016-12-12 M-PAI Si
94,691 2,016 STHE1**121984 1984-12-12 34 eb8162541577c55da0e370e699a2f5c2 Hombre 2016-02-02 2016-04-20 M-PAI Si
18,009 2,011 STHE2**081992 1992-08-12 27 eb8162541577c55da0e370e699a2f5c2 Mujer 2011-08-18 2011-10-03 PG-PAI Si
68,427 2,015 MAHI2**101980 1980-10-22 39 ebb00fe7ea189479e9e3c8125f8ac929 Mujer 2014-08-04 2015-07-27 PG-PAB Si
47,964 2,014 MAHI2**101982 1982-10-22 37 ebb00fe7ea189479e9e3c8125f8ac929 Mujer 2012-08-21 2014-02-19 PG-PAI Si
25,469 2,012 JEAC1**011981 1981-01-03 38 ebb21326593a7edc6956d3427d285cdb Hombre 2012-03-26 2012-10-05 PG-PR Si
22,170 2,012 JEAC1**011988 1988-01-03 31 ebb21326593a7edc6956d3427d285cdb Hombre 2011-09-07 2012-01-26 PG-PAI Si
12,121 2,011 JEAC1**011988 1988-01-03 31 ebb21326593a7edc6956d3427d285cdb Hombre 2010-10-18 2011-07-05 PG-PR Si
117,672 2,017 LOCA2**121986 1986-12-15 32 ebc9cb5bebfc95b01581e095ece75671 NA Mujer 2017-05-19 2017-10-26 PG-PAI Si
24,480 2,012 LOCA2**121984 1984-12-15 34 ebc9cb5bebfc95b01581e095ece75671 Mujer 2011-11-17 2012-10-31 PG-PAB Si
5,352 2,010 IRRO2**051979 1979-05-02 40 ebe0f4bbd73c65fce462efa9177666ba Mujer 2010-05-03 2010-08-26 PG-PAI Si
2,238 2,010 IRRO2**051974 1974-05-02 45 ebe0f4bbd73c65fce462efa9177666ba Mujer 2009-12-11 2010-05-03 PG-PR Si
158,087 2,019 MIMI1**111973 1973-11-08 46 ebe2291caeaf8ced037635158f95a6a7 NA Hombre 2019-06-13 NA PG-PAI Si
127,405 2,018 MIMI1**111973 1973-11-08 45 ebe2291caeaf8ced037635158f95a6a7 NA Hombre 2017-05-01 2018-03-14 PG-PAI Si
90,341 2,016 MIMI1**111973 1973-11-08 45 ebe2291caeaf8ced037635158f95a6a7 Hombre 2015-10-16 2016-11-18 PG-PAI Si
67,563 2,015 ARMO1**091971 1971-09-09 48 ec5a0af631cb4d3e3606f2ebc8395b0a Hombre 2014-06-02 2015-04-21 PG-PAI Si
52,965 2,014 ARMO1**091979 1979-09-09 40 ec5a0af631cb4d3e3606f2ebc8395b0a Hombre 2013-12-26 2014-03-17 PG-PAI Si
107,559 2,017 CUBR1**111974 1974-11-27 44 ec79faa492739db71da3f1892f2a8f88 NA Hombre 2016-05-30 2017-06-30 PG-PAB Si
45,191 2,013 CUBR1**111975 1975-11-27 43 ec79faa492739db71da3f1892f2a8f88 Hombre 2012-10-22 2014-03-21 PG-PAB Si
87,097 2,016 JUBA1**061952 1952-06-13 67 ec89bb9b30ae015d3d6d284aefd36a18 Hombre 2015-04-01 2016-09-01 PG-PAB Si
36,028 2,013 JUBA1**061969 1969-06-02 50 ec89bb9b30ae015d3d6d284aefd36a18 Hombre 2013-01-01 2014-08-01 Otro No
53,611 2,014 HEAL1**091968 1968-09-28 51 ecb45c7beb59b7f4dd2c4664b56f00da Hombre 2014-01-03 2014-08-29 PG-PAB Si
52,326 2,014 HEAL1**091968 1968-09-28 51 ecb45c7beb59b7f4dd2c4664b56f00da Hombre 2013-11-22 2013-12-30 PG-PAB No
40,315 2,013 HEAL1**091967 1967-09-28 52 ecb45c7beb59b7f4dd2c4664b56f00da Hombre 2013-05-24 2013-07-01 PG-PR Si
39,121 2,013 HEAL1**091968 1968-09-28 51 ecb45c7beb59b7f4dd2c4664b56f00da Hombre 2010-10-29 2013-05-24 PG-PAB Si
10,119 2,011 HEAL1**091968 1968-09-28 51 ecb45c7beb59b7f4dd2c4664b56f00da Hombre 2010-01-26 2011-07-18 PG-PAB Si
157,491 2,019 ALCA2**081977 1977-08-21 42 ecf861d964b589ac9d756484be83ab7b NA Mujer 2019-05-07 NA M-PR Si
109,956 2,017 ALCA2**081977 1977-08-21 42 ecf861d964b589ac9d756484be83ab7b NA Mujer 2016-10-21 2017-08-10 M-PAI Si
36,381 2,013 ALCA2**081977 1977-08-21 42 ecf861d964b589ac9d756484be83ab7b Mujer 2012-10-17 2013-05-08 M-PAI Si
15,705 2,011 ALCA2**081987 1987-08-21 32 ecf861d964b589ac9d756484be83ab7b Mujer 2011-04-20 2011-09-30 M-PAI Si
152,150 2,019 CALU1**111977 1977-11-10 42 ed6ac3c766d1f53f574c0afb8a3b58ad NA Hombre 2019-01-24 2019-03-20 PG-PAI Si
57,128 2,014 CALU1**111977 1977-11-10 41 ed6ac3c766d1f53f574c0afb8a3b58ad Hombre 2014-04-02 2014-06-17 PG-PAI Si
155,951 2,019 JOGO1**041986 1986-04-01 33 eda32a7f9d515c29b641949bb5e8933b NA Hombre 2019-04-24 2019-06-14 PG-PAI Si
101,996 2,016 JOGO1**041996 1996-04-01 23 eda32a7f9d515c29b641949bb5e8933b Hombre 2016-09-06 2017-01-03 PG-PAI Si
130,825 2,018 ITAB1**021994 1994-02-12 25 ee0664f1d45cc5a9199985df839e6881 NA Hombre 2017-11-09 2018-08-14 PG-PAI Si
90,265 2,016 ITAB1**021992 1992-02-12 27 ee0664f1d45cc5a9199985df839e6881 Hombre 2015-09-14 2016-06-30 PG-PAI Si
36,760 2,013 FRPA2**081992 1992-08-14 27 ee3a27342eca852c2cbb724dab9ee5a8 Mujer 2013-01-23 2013-03-06 PG-PAB Si
31,698 2,012 FRPA2**081992 1992-08-14 27 ee3a27342eca852c2cbb724dab9ee5a8 Mujer 2012-11-27 2012-12-10 M-PR Si
30,252 2,012 FRPA2**081993 1993-08-03 26 ee3a27342eca852c2cbb724dab9ee5a8 Mujer 2012-07-30 2012-11-22 PG-PAB Si
150,978 2,019 ANCO1**071987 1987-07-01 32 ee4fc1ad4a047cde367435a99ffbceaf NA Hombre 2018-11-29 2019-05-10 PG-PAI Si
108,031 2,017 ANCO1**071987 1987-07-01 32 ee4fc1ad4a047cde367435a99ffbceaf NA Hombre 2016-06-30 2017-01-31 PG-PAB Si
66,068 2,015 ANCO1**111988 1988-11-29 30 ee4fc1ad4a047cde367435a99ffbceaf Hombre 2013-11-13 2015-01-30 PG-PAB Si
23,008 2,012 ANCO1**071987 1987-07-01 32 ee4fc1ad4a047cde367435a99ffbceaf Hombre 2011-11-07 2012-06-05 PG-PAB Si
156,806 2,019 CRUR1**051976 1976-05-10 43 ee765e7f8f251b370f3733fe71c3fb3d NA Hombre 2019-05-13 NA PG-PAI Si
146,407 2,019 CRUR1**051976 1976-05-10 43 ee765e7f8f251b370f3733fe71c3fb3d NA Hombre 2017-12-18 2019-02-01 PG-PR Si
43,967 2,013 ERPA1**091982 1982-09-10 37 ee765e7f8f251b370f3733fe71c3fb3d Hombre 2013-08-21 2013-11-30 PG-PAB Si
1,397 2,010 CRUR1**051976 1976-05-10 43 ee765e7f8f251b370f3733fe71c3fb3d Hombre 2009-02-02 2010-03-03 PG-PAB Si
37,232 2,013 PACO2**081952 1952-08-15 67 ee9295888f607d4d98b5902819cb3287 Mujer 2013-02-06 2013-05-24 M-PR Si
1,875 2,010 PACO2**011958 1958-01-28 61 ee9295888f607d4d98b5902819cb3287 Mujer 2010-01-08 2010-05-04 M-PAI Si
137,938 2,018 TAAC2**111999 1999-11-13 19 eea618bb2ad170d53b7d0aa0846afdf0 NA Mujer 2018-05-23 2018-07-06 M-PR Si
135,875 2,018 TAAC2**111980 1980-11-15 38 eea618bb2ad170d53b7d0aa0846afdf0 NA Mujer 2018-02-09 2018-05-22 PG-PAB Si
124,510 2,017 TAAC2**111980 1980-11-15 38 eea618bb2ad170d53b7d0aa0846afdf0 NA Mujer 2017-10-30 2017-12-18 M-PR Si
94,446 2,016 TAAC2**111980 1980-11-15 38 eea618bb2ad170d53b7d0aa0846afdf0 Mujer 2016-03-08 2016-08-26 M-PAI Si
148,028 2,019 FRMA2**121994 1994-12-09 24 eecf2ed7c09fcedad50ce2e74a92f9bb NA Mujer 2018-06-21 2019-03-29 M-PAI Si
134,409 2,018 FRMA2**121994 1994-12-09 24 eecf2ed7c09fcedad50ce2e74a92f9bb NA Mujer 2018-02-15 2018-06-20 M-PAI Si
43,357 2,013 FRMA2**081994 1994-08-09 25 eecf2ed7c09fcedad50ce2e74a92f9bb Mujer 2013-08-01 2014-01-01 M-PAI Si
129,653 2,018 SECA1**011991 1991-01-31 28 ef9c1892bac9495e745838db8ccfcc70 NA Hombre 2017-09-11 2018-03-01 PG-PAB Si
93,609 2,016 SECA1**011991 1991-01-31 28 ef9c1892bac9495e745838db8ccfcc70 Hombre 2016-01-18 2016-05-20 PG-PAB Si
75,486 2,015 SECA1**011981 1981-01-31 38 ef9c1892bac9495e745838db8ccfcc70 Hombre 2015-04-15 2015-11-02 PG-PAI Si
113,548 2,017 SEBA1**051988 1988-05-06 31 efa0718f4dea5b967de4bff24fd0d226 NA Hombre 2017-01-09 2017-03-31 PG-PAI Si
53,194 2,014 SEBA1**111992 1992-11-18 26 efa0718f4dea5b967de4bff24fd0d226 Hombre 2014-01-20 2014-03-12 PG-PAI No
112,766 2,017 FRHE1**011999 1999-01-15 20 efd9deabcaaa6be2bb0dfedf1faa4795 NA Hombre 2017-01-30 2017-03-15 PG-PAI Si
82,900 2,015 FRHE1**071988 1988-07-15 31 efd9deabcaaa6be2bb0dfedf1faa4795 Hombre 2015-10-19 2015-12-15 PG-PAB Si
93,918 2,016 FLGU2**031988 1988-03-27 31 f034030fad848ec324911cb7cbe6ec2a Mujer 2016-02-22 2016-12-01 M-PR Si
39,162 2,013 FLGU2**031983 1983-03-27 36 f034030fad848ec324911cb7cbe6ec2a Mujer 2013-04-25 2013-08-01 PG-PAI Si
35,617 2,013 FLGU2**031983 1983-03-27 36 f034030fad848ec324911cb7cbe6ec2a Mujer 2013-01-21 2013-04-01 M-PR Si
27,573 2,012 FLGU2**031983 1983-03-27 36 f034030fad848ec324911cb7cbe6ec2a Mujer 2012-06-25 2012-08-09 M-PR Si
12,953 2,011 FLGU2**031983 1983-03-27 36 f034030fad848ec324911cb7cbe6ec2a Mujer 2011-01-12 2011-11-11 M-PR Si
85,926 2,016 PARO1**101974 1974-10-23 45 f0b1003b82ec6f34802d663d8b432da8 Hombre 2014-09-22 2016-05-05 PG-PAI Si
27,447 2,012 PARO1**101977 1977-10-23 42 f0b1003b82ec6f34802d663d8b432da8 Hombre 2012-06-15 2013-01-14 PG-PAB Si
127,527 2,018 MAJA1**051988 1988-05-04 31 f0d2dec2852c70da276fe8740596a5f0 NA Hombre 2017-05-03 2018-08-01 PG-PAI Si
110,223 2,017 MAJA1**051968 1968-05-04 51 f0d2dec2852c70da276fe8740596a5f0 NA Hombre 2016-11-04 2017-04-17 PG-PR Si
100,024 2,016 MAJA1**051968 1968-05-04 51 f0d2dec2852c70da276fe8740596a5f0 Hombre 2016-06-01 2016-11-03 PG-PAI Si
99,764 2,016 CRRI1**051989 1989-05-17 30 f0db5434dbc9e92d2339f5f59b550425 Hombre 2016-07-27 2016-08-14 PG-PR Si
97,504 2,016 CRRI1**051989 1989-05-17 30 f0db5434dbc9e92d2339f5f59b550425 Hombre 2016-05-18 2016-06-06 PG-PR Si
30,691 2,012 CRRI1**051989 1989-05-17 30 f0db5434dbc9e92d2339f5f59b550425 Hombre 2012-10-19 2012-10-29 PG-PR Si
28,833 2,012 CRRI1**051984 1984-05-17 35 f0db5434dbc9e92d2339f5f59b550425 Hombre 2012-07-05 2012-09-28 PG-PAB Si
112,821 2,017 CLGA1**061986 1986-06-15 33 f0f0d5117f82eaa0a6cbd1d48cfea43e NA Hombre 2017-01-03 2017-03-31 PG-PAI Si
100,393 2,016 CLGA1**061996 1996-06-15 23 f0f0d5117f82eaa0a6cbd1d48cfea43e Hombre 2016-08-01 2016-12-29 PG-PAI Si
48,712 2,014 CLGA1**061986 1986-06-15 33 f0f0d5117f82eaa0a6cbd1d48cfea43e Hombre 2013-04-05 2014-02-26 PG-PAI Si
162,895 2,019 MALE2**111996 1996-11-11 23 f0f988d124579522d46865a22f4a2942 NA Mujer 2019-10-07 NA PG-PAB Si
156,460 2,019 MALE2**111996 1996-11-11 23 f0f988d124579522d46865a22f4a2942 NA Mujer 2019-04-03 2019-10-02 M-PR Si
149,849 2,019 MALE2**111996 1996-11-11 23 f0f988d124579522d46865a22f4a2942 NA Mujer 2018-10-15 2019-02-06 M-PR Si
142,382 2,018 MALE2**111986 1986-11-11 32 f0f988d124579522d46865a22f4a2942 NA Mujer 2018-07-17 2018-10-12 PG-PAI Si
34,844 2,013 ELGR2**031991 1991-03-03 28 f10a0720f991874eb71b7c620c6c585e Mujer 2012-11-20 2013-04-18 M-PR Si
25,239 2,012 ELGA2**031991 1991-03-14 28 f10a0720f991874eb71b7c620c6c585e Mujer 2012-01-09 2012-11-23 M-PAI Si
14,257 2,011 ELGA2**031992 1992-03-14 27 f10a0720f991874eb71b7c620c6c585e Mujer 2011-03-01 2011-06-16 M-PR Si
73,914 2,015 RURI1**051970 1970-05-14 49 f1172ff524da736b32de1b5e1c39a3f5 Hombre 2015-03-17 2015-11-03 PG-PAI Si
16 2,010 RURI1**051982 1982-05-14 37 f1172ff524da736b32de1b5e1c39a3f5 Hombre 2009-08-25 2010-07-01 PG-PR Si
88,602 2,016 AMMU2**121972 1972-12-11 46 f140297cfdfc76ef101648e363354c06 Mujer 2015-07-08 2016-05-12 M-PR No
76,953 2,015 AMMU2**121972 1972-12-11 46 f140297cfdfc76ef101648e363354c06 Mujer 2015-05-26 2015-06-08 M-PR Si
75,646 2,015 AMMU2**121972 1972-12-11 46 f140297cfdfc76ef101648e363354c06 Mujer 2015-03-12 2015-05-25 PG-PAI Si
57,053 2,014 AMMU2**041972 1972-04-11 47 f140297cfdfc76ef101648e363354c06 Mujer 2014-04-21 2014-07-01 PG-PAI Si
29,632 2,012 AMMU2**121972 1972-12-11 46 f140297cfdfc76ef101648e363354c06 Mujer 2012-08-20 2012-12-03 PG-PAI Si
102,052 2,016 RICA1**121988 1988-12-27 30 f146456726438aab42b0d84fce0d8ae3 Hombre 2016-09-26 2016-10-25 PG-PR Si
20,947 2,012 RICA1**011992 1992-01-06 27 f146456726438aab42b0d84fce0d8ae3 Hombre 2011-01-03 2013-01-01 PG-PAB Si
89,021 2,016 PACO1**101965 1965-10-11 54 f1afdbd6fc934f65d6c77ab9e4d32530 Hombre 2015-08-25 2016-11-15 PG-PR Si
28,980 2,012 PACO1**111965 1965-11-11 53 f1afdbd6fc934f65d6c77ab9e4d32530 Hombre 2012-08-01 2012-08-01 Otro No
156,330 2,019 VISA2**111957 1957-11-12 62 f20ad60e878371e58225ab5c3454e72c NA Mujer 2019-02-25 2019-08-01 PG-PAI Si
86,505 2,016 VISA2**111957 1957-11-12 61 f20ad60e878371e58225ab5c3454e72c Mujer 2015-02-12 2016-04-01 M-PR Si
37,636 2,013 VISA2**111957 1957-11-12 61 f20ad60e878371e58225ab5c3454e72c Mujer 2013-02-18 2014-02-28 PG-PAI Si
14,595 2,011 VISA2**111957 1957-11-12 61 f20ad60e878371e58225ab5c3454e72c Mujer 2010-10-19 2011-05-27 M-PR No
148,143 2,019 GIFR2**051971 1971-05-18 48 f213a0411ea25ea2ca6e080b63508d2c NA Mujer 2018-07-09 2019-01-15 M-PR Si
10,245 2,011 GIFR2**051975 1975-05-18 44 f213a0411ea25ea2ca6e080b63508d2c Mujer 2010-02-26 2011-02-25 PG-PAB Si
133,558 2,018 CRMA1**111978 1978-11-01 41 f23e5679e95025ab6d1a69330c3e2f3b NA Hombre 2017-12-20 2018-06-01 PG-PAI Si
60,459 2,014 CRMA1**111978 1978-11-01 41 f23e5679e95025ab6d1a69330c3e2f3b Hombre 2014-07-11 2014-09-22 PG-PAI Si
51,608 2,014 CRMA1**111978 1978-11-10 40 f23e5679e95025ab6d1a69330c3e2f3b Hombre 2013-10-01 2014-04-21 PG-PAI Si
39,865 2,013 CRMA1**111978 1978-11-01 41 f23e5679e95025ab6d1a69330c3e2f3b Hombre 2013-05-27 2013-09-02 PG-PAI Si
128,472 2,018 PASO1**091959 1959-09-16 60 f290f880da72490aa426f50489656954 NA Hombre 2017-07-28 2018-01-31 PG-PR Si
109,762 2,017 PASO1**091996 1996-09-09 23 f290f880da72490aa426f50489656954 NA Hombre 2016-10-24 2017-07-27 PG-PAI Si
90,990 2,016 PASO1**091959 1959-09-26 60 f290f880da72490aa426f50489656954 Hombre 2015-11-10 2016-01-21 PG-PAI Si
111,190 2,017 HEVI1**011996 1996-01-29 23 f2af6029931a1052869c0a0630d8834d NA Hombre 2016-12-01 2017-08-28 PG-PAB Si
92,071 2,016 HEVI1**011946 1946-01-29 73 f2af6029931a1052869c0a0630d8834d Hombre 2016-01-04 2016-04-01 PG-PAB Si
147,062 2,019 VIRA2**031980 1980-03-01 39 f2c55213e9bc0b479df26153a8c61784 NA Mujer 2018-04-16 2019-04-30 PG-PAB Si
106,740 2,017 VIRA2**031996 1996-03-01 23 f2c55213e9bc0b479df26153a8c61784 NA Mujer 2016-03-30 2017-04-28 PG-PAB Si
49,416 2,014 DANA1**101983 1983-10-15 36 f2ce3898de3228aa1ca915fd7acf3fe1 Hombre 2013-06-12 2014-03-26 PG-PAI Si
13,512 2,011 DANA1**101983 1983-10-15 36 f2ce3898de3228aa1ca915fd7acf3fe1 Hombre 2010-11-26 2011-04-29 PG-PAI Si
9,712 2,010 DANA1**111983 1983-11-26 35 f2ce3898de3228aa1ca915fd7acf3fe1 Hombre 2010-12-01 2011-02-01 PG-PAB Si
43,990 2,013 SEMO1**061984 1984-06-13 35 f2d88d021fcdc2c54d5a5285a4e0e92b Hombre 2013-08-19 2013-10-30 PG-PAI Si
17,675 2,011 SEMO1**031982 1982-03-06 37 f2d88d021fcdc2c54d5a5285a4e0e92b Hombre 2011-06-29 2011-08-31 PG-PAI Si
12,515 2,011 SEMO1**031982 1982-03-06 37 f2d88d021fcdc2c54d5a5285a4e0e92b Hombre 2010-12-03 2011-02-14 PG-PAI Si
92,589 2,016 RUGO1**011987 1987-01-02 32 f34ac5e9c0d63f8dd8370cd640e55c7d Hombre 2016-01-05 2016-04-20 PG-PR Si
23,905 2,012 RUGO1**121987 1987-12-02 31 f34ac5e9c0d63f8dd8370cd640e55c7d Hombre 2011-12-22 2012-03-15 PG-PAI Si
145,707 2,019 JORE1**011971 1971-01-20 48 f36d93a301add6974d849fbbb5879b24 NA Hombre 2015-09-11 NA PG-PAI Si
68,646 2,015 JORE1**011970 1970-01-20 49 f36d93a301add6974d849fbbb5879b24 Hombre 2014-09-09 2015-03-02 PG-PAI Si
156,200 2,019 DAZA1**101979 1979-10-13 40 f3982138069c33f9948e8f6ea20a43b5 NA Hombre 2019-04-29 NA PG-PAI Si
26,916 2,012 DAZA1**101974 1974-10-13 45 f3982138069c33f9948e8f6ea20a43b5 Hombre 2012-05-29 2012-10-18 PG-PAB Si
138,012 2,018 SAGO2**011967 1967-01-25 52 f3f2e8429eac8e8c5226fb38ae923897 NA Mujer 2018-05-22 2018-08-31 PG-PAI Si
132,979 2,018 SAGO2**011963 1963-01-25 56 f3f2e8429eac8e8c5226fb38ae923897 NA Mujer 2018-01-04 2018-03-28 PG-PAB Si
303 2,010 SAGO2**011967 1967-01-25 52 f3f2e8429eac8e8c5226fb38ae923897 Mujer 2008-06-25 2010-09-01 PG-PAB Si
20,199 2,011 EDOL1**041988 1988-04-13 31 f4255a4f6d01baa4dac817584f4b4cd7 Hombre 2011-07-05 NA PG-PR No
15,672 2,011 MIES1**101990 1990-10-23 29 f4255a4f6d01baa4dac817584f4b4cd7 Hombre 2011-01-12 NA PG-PR No
11,071 2,011 MIES1**101990 1990-10-23 29 f4255a4f6d01baa4dac817584f4b4cd7 Hombre 2010-08-20 2011-01-24 PG-PAB Si
53,751 2,014 PAMO1**121984 1984-12-10 34 f45772cb607d4301222d3036b044247b Hombre 2014-01-21 2014-04-24 PG-PR Si
44,689 2,013 PAMO1**101984 1984-10-10 35 f45772cb607d4301222d3036b044247b Hombre 2013-09-03 2014-01-21 PG-PAB Si
136,839 2,018 MAFU1**081956 1956-08-23 63 f4b27183d2c9aadce530d5232a10aed7 NA Hombre 2018-04-10 2019-01-02 PG-PAB Si
75,548 2,015 MAFU1**081956 1956-08-23 63 f4b27183d2c9aadce530d5232a10aed7 Hombre 2015-03-16 2015-12-17 PG-PAI Si
47,838 2,014 MAFU1**081963 1963-08-23 56 f4b27183d2c9aadce530d5232a10aed7 Hombre 2011-04-14 2014-03-07 PG-PAB Si
150,146 2,019 GLAR2**081977 1977-08-24 42 f501b527f08d559148c9a750c964b5f5 NA Mujer 2018-10-08 NA M-PAI Si
128,393 2,018 GLAR2**051977 1977-05-24 42 f501b527f08d559148c9a750c964b5f5 NA Mujer 2017-07-12 2018-03-16 M-PAI Si
99,577 2,016 GLAR2**081979 1979-08-24 40 f501b527f08d559148c9a750c964b5f5 Mujer 2016-07-14 2016-12-05 M-PAI Si
53,962 2,014 GLAR2**081977 1977-08-24 42 f501b527f08d559148c9a750c964b5f5 Mujer 2013-12-30 2014-01-03 M-PR Si
49,390 2,014 GLAN2**081977 1977-08-24 42 f501b527f08d559148c9a750c964b5f5 Mujer 2013-06-17 2014-01-27 PG-PAB Si
162,957 2,019 JACO1**111966 1966-11-08 53 f5a5c2f82fd2b22443b3df116ff7843d NA Hombre 2019-08-09 NA PG-PAI Si
155,868 2,019 JACO1**111966 1966-11-08 53 f5a5c2f82fd2b22443b3df116ff7843d NA Hombre 2019-04-03 2019-06-17 PG-PAI Si
142,459 2,018 JACO1**111966 1966-11-08 52 f5a5c2f82fd2b22443b3df116ff7843d NA Hombre 2018-09-12 2019-02-01 PG-PAI Si
126,570 2,018 JACO1**111966 1966-11-08 52 f5a5c2f82fd2b22443b3df116ff7843d NA Hombre 2017-01-09 2018-09-11 PG-PR Si
103,839 2,016 JACO1**111966 1966-11-08 52 f5a5c2f82fd2b22443b3df116ff7843d Hombre 2016-10-24 2017-01-02 PG-PAI Si
38,014 2,013 PACI1**071985 1985-07-06 34 f5bf3ad03561a0960643e1def69fab74 Hombre 2013-03-25 2013-08-22 PG-PAI Si
24,482 2,012 PACI1**071992 1992-07-07 27 f5bf3ad03561a0960643e1def69fab74 Hombre 2011-03-04 2012-03-05 PG-PAI Si
21,166 2,012 PACI1**071985 1985-07-06 34 f5bf3ad03561a0960643e1def69fab74 Hombre 2011-03-04 2012-01-01 PG-PAI Si
108,760 2,017 CRMA1**031996 1996-03-03 23 f5bfdb3a14c0e6dc6edb5e662ef9608a NA Hombre 2016-08-19 2017-12-18 PG-PAI Si
68,323 2,015 CRMA1**031978 1978-03-28 41 f5bfdb3a14c0e6dc6edb5e662ef9608a Hombre 2014-08-25 2015-09-04 PG-PAI Si
47,907 2,014 CRMA1**031978 1978-03-28 41 f5bfdb3a14c0e6dc6edb5e662ef9608a Hombre 2012-07-09 2014-02-06 PG-PAI Si
110,455 2,017 CRMO1**121985 1985-12-15 33 f5de77f087322c02a8c32193f05560e0 NA Hombre 2016-11-16 2017-11-01 PG-PR Si
72,873 2,015 CRMO1**121983 1983-12-15 35 f5de77f087322c02a8c32193f05560e0 Hombre 2015-02-11 2015-04-10 PG-PAI Si
676 2,010 CRMO1**011980 1980-01-15 39 f5de77f087322c02a8c32193f05560e0 Hombre 2009-11-25 2010-04-09 PG-PAI Si
106,006 2,017 ARRO1**111985 1985-11-16 33 f5f06ad1a6912e36dde29a38f784c10c NA Hombre 2015-10-30 2017-05-01 PG-PR Si
72,153 2,015 ARRO1**021985 1985-02-16 34 f5f06ad1a6912e36dde29a38f784c10c Hombre 2014-12-17 2015-02-09 PG-PAB Si
23,225 2,012 ARRO1**111985 1985-11-16 33 f5f06ad1a6912e36dde29a38f784c10c Hombre 2011-11-26 2013-01-22 PG-PR Si
54,345 2,014 FEAR1**081990 1990-08-20 29 f5f876729aec2b936b32516b1f4d9289 Hombre 2014-02-06 2014-03-20 PG-PR Si
9,361 2,010 FEAR1**081989 1989-08-20 30 f5f876729aec2b936b32516b1f4d9289 Hombre 2010-11-05 2010-11-11 PG-PR Si
159,545 2,019 CRDI1**081984 1984-08-08 35 f5fe3e230080424d18576f6abae1b9b0 NA Hombre 2019-07-04 2019-09-30 PG-PAI Si
134,070 2,018 CRDI1**081984 1984-08-19 35 f5fe3e230080424d18576f6abae1b9b0 NA Hombre 2018-02-05 2018-03-29 PG-PAI Si
130,522 2,018 CRDI1**081986 1986-08-19 33 f5fe3e230080424d18576f6abae1b9b0 NA Hombre 2017-10-31 2018-01-24 PG-PR Si
121,973 2,017 CRDI1**081986 1986-08-19 33 f5fe3e230080424d18576f6abae1b9b0 NA Hombre 2017-08-29 2017-10-30 PG-PAI Si
6,512 2,010 CRDI1**081984 1984-08-19 35 f5fe3e230080424d18576f6abae1b9b0 Hombre 2010-07-01 2010-08-31 PG-PAB No
126,353 2,018 JOKU1**101996 1996-10-01 23 f601c5d12a71832064eeb26ce0efb157 NA Hombre 2016-11-03 2018-10-26 PG-PAI Si
85,680 2,016 JOKU1**101966 1966-10-01 53 f601c5d12a71832064eeb26ce0efb157 Hombre 2014-06-02 2016-06-06 PG-PAI Si
114,204 2,017 ALBE1**021984 1984-02-20 35 f75b6b43262a39d839d459e492487fb7 NA Hombre 2017-02-21 2017-12-13 PG-PAI Si
89,846 2,016 ALBE2**121984 1984-12-20 34 f75b6b43262a39d839d459e492487fb7 Mujer 2015-09-24 2016-01-18 PG-PAB Si
24,063 2,012 VEOR2**061975 1975-06-19 44 f769a432775874d3372bbd651e2b8550 Mujer 2012-01-11 2012-04-18 PG-PAI Si
23,044 2,012 VEOR2**071978 1978-07-19 41 f769a432775874d3372bbd651e2b8550 Mujer 2011-11-18 2012-01-31 PG-PAB Si
154,630 2,019 GAVE1**111994 1994-11-12 25 f76d8b5fe586822526d0d30526585230 NA Hombre 2019-03-11 2019-07-31 PG-PR Si
137,848 2,018 GAVE1**111994 1994-11-12 24 f76d8b5fe586822526d0d30526585230 NA Hombre 2018-05-30 2018-09-11 PG-PR Si
136,895 2,018 GAVE1**111994 1994-11-12 24 f76d8b5fe586822526d0d30526585230 NA Hombre 2018-04-10 2018-05-29 PG-PAI Si
162,531 2,019 NEFI1**041963 1963-04-23 56 f78184967158ac095e37d9ab997d25b8 NA Hombre 2019-10-01 NA PG-PAB Si
106,125 2,017 NEFI1**041963 1963-04-23 56 f78184967158ac095e37d9ab997d25b8 NA Hombre 2015-11-10 2017-04-28 PG-PAI Si
33,241 2,013 NEFI1**041963 1963-04-23 56 f78184967158ac095e37d9ab997d25b8 Hombre 2012-06-20 2013-05-24 PG-PAI Si
2,737 2,010 NEFI1**041973 1973-04-23 46 f78184967158ac095e37d9ab997d25b8 Hombre 2009-07-10 2010-02-12 PG-PAI Si
136,797 2,018 JUGA1**101984 1984-10-09 35 f7b25cc747cf5beead9c5a7522a49354 NA Hombre 2018-04-05 2018-11-16 PG-PR No
134,590 2,018 JUGA1**101999 1999-10-09 20 f7b25cc747cf5beead9c5a7522a49354 NA Hombre 2018-02-12 2018-04-04 PG-PAI Si
97,429 2,016 JUGA1**101984 1984-10-09 35 f7b25cc747cf5beead9c5a7522a49354 Hombre 2016-05-03 2016-07-04 PG-PAI Si
86,165 2,016 MARI1**101974 1974-10-09 45 f7f30a89ffebbf3812838acae98c89f8 Hombre 2014-12-02 2016-07-30 PG-PAI Si
48,682 2,014 MARI2**051964 1964-05-06 55 f7f30a89ffebbf3812838acae98c89f8 Mujer 2013-04-01 2014-09-30 PG-PAI Si
80,678 2,015 KAAL2**101982 1982-10-07 37 f80da5caa44166e0fe847a8127eeee9b Mujer 2015-08-24 2015-09-09 M-PR Si
51,183 2,014 KAAL2**101982 1982-10-07 37 f80da5caa44166e0fe847a8127eeee9b Mujer 2013-10-21 2014-07-31 M-PR Si
11,270 2,011 KAAL2**101982 1982-10-07 37 f80da5caa44166e0fe847a8127eeee9b Mujer 2010-09-10 2011-08-01 PG-PAI Si
4,333 2,010 KAAL2**101981 1981-10-07 38 f80da5caa44166e0fe847a8127eeee9b Mujer 2009-05-18 2010-08-05 PG-PAI No
50,890 2,014 YEZA2**071969 1969-07-09 50 f8301dfc83fd4d8e849aa25579f53e3d Mujer 2013-09-27 2014-06-02 M-PR Si
21,984 2,012 JEZA2**061969 1969-06-09 50 f8301dfc83fd4d8e849aa25579f53e3d Mujer 2011-08-08 2012-02-06 PG-PAI Si
24,445 2,012 YEZA1**071969 1969-07-09 50 f8301dfc83fd4d8e849aa25579f53e3d Hombre 2011-05-12 2012-06-15 PG-PAI Si
11,093 2,011 YEZA2**071979 1979-07-09 40 f8301dfc83fd4d8e849aa25579f53e3d Mujer 2010-08-12 2011-03-21 M-PR Si
5,591 2,010 JESA2**071969 1969-07-09 50 f8301dfc83fd4d8e849aa25579f53e3d Mujer 2010-05-17 2010-09-08 PG-PAI Si
95,661 2,016 LULI1**011996 1996-01-25 23 f8803d0b16ea73d6e6181f36381c11c3 Hombre 2016-04-09 2016-07-13 PG-PAB Si
86,866 2,016 LULE1**011999 1999-01-25 20 f8803d0b16ea73d6e6181f36381c11c3 Hombre 2015-03-02 2016-03-11 PG-PAB Si
157,348 2,019 JUVI1**071981 1981-07-22 38 f88604497c807a5c925d44804b6332ac NA Hombre 2019-05-15 NA PG-PAI Si
126,466 2,018 JUVI1**071981 1981-07-22 38 f88604497c807a5c925d44804b6332ac NA Hombre 2016-10-21 2018-04-02 PG-PAI Si
43,596 2,013 JUVI1**071994 1994-07-22 25 f88604497c807a5c925d44804b6332ac Hombre 2013-08-05 2013-09-12 PG-PR Si
12,091 2,011 JUVI1**071981 1981-07-22 38 f88604497c807a5c925d44804b6332ac Hombre 2010-11-25 2011-01-24 PG-PR Si
73,363 2,015 CACI2**061985 1985-06-12 34 f95045707287d7344c287ea1e604fe7e Mujer 2015-03-03 2015-03-27 M-PAI Si
69,205 2,015 CACI2**121985 1985-12-12 33 f95045707287d7344c287ea1e604fe7e Mujer 2014-10-03 2015-03-02 PG-PAI Si
32,644 2,013 MODA2**011980 1980-01-17 39 f962de15f9497f826905d858dbabd4b4 Mujer 2012-03-06 2013-07-05 M-PAI Si
17,945 2,011 MADA2**121980 1980-12-17 38 f962de15f9497f826905d858dbabd4b4 Mujer 2011-06-23 2011-11-18 M-PR Si
16,105 2,011 CADA2**011980 1980-01-17 39 f962de15f9497f826905d858dbabd4b4 Mujer 2011-05-26 2011-06-23 PG-PAI Si
14,061 2,011 CADA2**011990 1990-01-13 29 f962de15f9497f826905d858dbabd4b4 Mujer 2011-02-25 2011-03-17 M-PAI Si
7,740 2,010 MODA2**011980 1980-01-17 39 f962de15f9497f826905d858dbabd4b4 Mujer 2010-09-17 2010-10-22 PG-PAI Si
2,400 2,010 MODA2**011980 1980-01-17 39 f962de15f9497f826905d858dbabd4b4 Mujer 2010-01-12 2010-08-10 M-PR Si
134,275 2,018 JUVA1**021964 1964-02-07 55 f975afc326449b983c33275f50a8749a NA Hombre 2017-07-10 2018-07-26 PG-PAI Si
10,617 2,011 JUVA1**111964 1964-11-07 54 f975afc326449b983c33275f50a8749a Hombre 2010-06-30 2011-10-07 PG-PR Si
41,814 2,013 HERA2**081984 1984-08-11 35 f9cded5aeb18759282c3690253313599 Mujer 2013-07-05 2013-11-27 M-PAI Si
26,166 2,012 HERA2**081984 1984-08-11 35 f9cded5aeb18759282c3690253313599 Mujer 2012-04-02 2013-03-29 M-PAI Si
13,604 2,011 HEVA2**111984 1984-11-11 34 f9cded5aeb18759282c3690253313599 Mujer 2011-02-16 2011-12-01 M-PAI Si
27,080 2,012 BOVE1**021982 1982-02-04 37 f9d4ff0cf2aa0b98bf33da03ced80b05 Hombre 2012-05-22 2012-12-03 PG-PAI Si
12,809 2,011 BOVE1**021981 1981-02-04 38 f9d4ff0cf2aa0b98bf33da03ced80b05 Hombre 2010-11-16 2011-03-01 PG-PAB Si
150,917 2,019 MIFR1**071995 1995-07-15 24 fa567c4827f1331be459984c028b548b NA Hombre 2018-11-30 2019-05-31 PG-PAB Si
129,203 2,018 MIFR1**051994 1994-05-19 25 fa567c4827f1331be459984c028b548b NA Hombre 2017-09-01 2018-06-29 PG-PAB Si
128,892 2,018 DAPA1**031985 1985-03-10 34 faad0f19268fec8f8ae8ea45235aa9c1 NA Hombre 2017-08-24 2018-03-21 PG-PR Si
109,643 2,017 DAPA1**031986 1986-03-10 33 faad0f19268fec8f8ae8ea45235aa9c1 NA Hombre 2016-09-26 2017-08-23 PG-PAI Si
74,317 2,015 DAPA1**031986 1986-03-10 33 faad0f19268fec8f8ae8ea45235aa9c1 Hombre 2015-03-12 2015-05-29 PG-PAB Si
22,461 2,012 DAPA1**031986 1986-03-10 33 faad0f19268fec8f8ae8ea45235aa9c1 Hombre 2011-09-21 2012-03-30 PG-PAB Si
72,569 2,015 MINU2**031984 1984-03-03 35 fabc8d7d593207b5a9031b13e3eebbb6 Mujer 2015-02-04 2015-08-18 M-PAI Si
70,633 2,015 MINU2**031984 1984-03-03 35 fabc8d7d593207b5a9031b13e3eebbb6 Mujer 2014-12-01 2015-01-30 PG-PAI Si
24,590 2,012 MINU2**031984 1984-03-03 35 fabc8d7d593207b5a9031b13e3eebbb6 Mujer 2012-01-27 2012-05-14 PG-PAB Si
7,324 2,010 MINU2**091985 1985-09-04 34 fabc8d7d593207b5a9031b13e3eebbb6 Mujer 2010-08-16 2010-09-01 M-PR Si
4,289 2,010 MINU2**031984 1984-03-03 35 fabc8d7d593207b5a9031b13e3eebbb6 Mujer 2010-03-29 2010-05-24 PG-PAI Si
132,517 2,018 ROBE1**041981 1981-04-06 38 fae274cc05ee7a0c67c65c4fc94e6e1c NA Hombre 2018-01-24 2018-04-18 PG-PAB Si
95,940 2,016 ROBE1**041982 1982-04-06 37 fae274cc05ee7a0c67c65c4fc94e6e1c Hombre 2016-04-15 2016-07-01 PG-PAI Si
127,194 2,018 FAHE2**101971 1971-10-21 48 fb3267eed6501d25eeaeeed7ce865cfc NA Mujer 2017-04-17 2018-11-01 PG-PAB Si
89,666 2,016 FAHE2**101971 1971-10-20 48 fb3267eed6501d25eeaeeed7ce865cfc Mujer 2015-09-10 2016-04-25 PG-PAB Si
12,342 2,011 FAHE2**101972 1972-10-21 47 fb3267eed6501d25eeaeeed7ce865cfc Mujer 2010-11-04 2011-05-30 PG-PAI Si
155,268 2,019 ALAL2**012001 2001-01-09 18 fb74493f56becc488867fe53c5573a08 NA Mujer 2019-03-01 NA M-PAI Si
29,890 2,012 ALAL2**081985 1985-08-24 34 fb74493f56becc488867fe53c5573a08 Mujer 2012-09-17 2013-01-02 PG-PAI Si
91,057 2,016 CLAR1**091990 1990-09-28 29 fba24f5affb5795f58a61bed2019722a Hombre 2015-11-02 2016-05-02 PG-PAI Si
79,452 2,015 CLAR1**091990 1990-09-28 29 fba24f5affb5795f58a61bed2019722a Hombre 2015-07-01 2015-11-01 PG-PAB Si
67,930 2,015 CLAR1**091990 1990-09-28 29 fba24f5affb5795f58a61bed2019722a Hombre 2014-07-23 2015-07-14 PG-PAI Si
58,304 2,014 CLAR1**091990 1990-09-28 29 fba24f5affb5795f58a61bed2019722a Hombre 2014-04-07 2014-07-11 PG-PR Si
57,056 2,014 CLAR1**091990 1990-09-28 29 fba24f5affb5795f58a61bed2019722a Hombre 2014-04-07 2014-04-30 PG-PAI Si
51,529 2,014 CLAR1**091990 1990-09-28 29 fba24f5affb5795f58a61bed2019722a Hombre 2013-10-21 2014-01-30 PG-PR Si
43,168 2,013 CLAR1**091990 1990-09-28 29 fba24f5affb5795f58a61bed2019722a Hombre 2013-07-30 2013-10-18 PG-PAI Si
38,476 2,013 CLAR1**091990 1990-09-28 29 fba24f5affb5795f58a61bed2019722a Hombre 2013-04-09 2013-07-29 PG-PR Si
33,287 2,013 CLAR1**091990 1990-09-28 29 fba24f5affb5795f58a61bed2019722a Hombre 2012-07-04 2013-04-12 PG-PAI Si
27,091 2,012 CLAR1**091990 1990-09-28 29 fba24f5affb5795f58a61bed2019722a Hombre 2012-05-01 2012-07-02 PG-PAI Si
25,113 2,012 CLAR1**091990 1990-09-28 29 fba24f5affb5795f58a61bed2019722a Hombre 2012-02-08 2012-02-24 PG-PR Si
21,802 2,012 CLAR1**091989 1989-09-28 30 fba24f5affb5795f58a61bed2019722a Hombre 2011-07-14 2012-01-31 PG-PAI Si
117,064 2,017 BEOS2**101987 1987-10-15 32 fc27f1486a6ff12c2796b06100d6498f NA Mujer 2017-05-24 2017-10-30 PG-PAI Si
374 2,010 BEOS1**121987 1987-12-15 31 fc27f1486a6ff12c2796b06100d6498f Hombre 2009-08-17 2011-05-26 PG-PAB No
127,037 2,018 LUCH2**061973 1973-06-08 46 fc39ad6ad8580c51ec9e45976499f125 NA Mujer 2017-02-13 2018-11-28 M-PAI Si
51,315 2,014 LUCH2**061975 1975-06-08 44 fc39ad6ad8580c51ec9e45976499f125 Mujer 2013-09-25 2014-02-28 M-PAI Si
134,144 2,018 BLDI2**071956 1956-07-02 63 fc3fa10f304d0cf35152587a0d5add2d NA Mujer 2018-02-26 2018-05-31 M-PR Si
114,027 2,017 BLDI2**071956 1956-07-02 63 fc3fa10f304d0cf35152587a0d5add2d NA Mujer 2017-02-28 2017-07-20 M-PR Si
106,346 2,017 BLDI2**071958 1958-07-02 61 fc3fa10f304d0cf35152587a0d5add2d NA Mujer 2015-12-03 2017-02-27 M-PAI Si
54,686 2,014 BLDI2**071958 1958-07-02 61 fc3fa10f304d0cf35152587a0d5add2d Mujer 2014-02-03 2014-09-29 M-PAI Si
36,341 2,013 BLDI2**071956 1956-07-02 63 fc3fa10f304d0cf35152587a0d5add2d Mujer 2012-04-17 2013-07-31 M-PR Si
17,167 2,011 BLDI2**071956 1956-07-02 63 fc3fa10f304d0cf35152587a0d5add2d Mujer 2011-07-12 2011-09-12 M-PR Si
4,496 2,010 BLDI2**071956 1956-07-02 63 fc3fa10f304d0cf35152587a0d5add2d Mujer 2010-04-05 2010-09-30 M-PR Si
25,684 2,012 RONA1**081992 1992-08-15 27 fc6cb054a0a935d79aebe18145f9c7af Hombre 2012-02-27 2013-01-02 PG-PAI Si
10,062 2,011 RONA1**081979 1979-08-15 40 fc6cb054a0a935d79aebe18145f9c7af Hombre 2009-01-05 2011-10-03 PG-PAI Si
147,146 2,019 JOAL1**051971 1971-05-08 48 fc97e8735ee25093481fb234a1b44136 NA Hombre 2017-12-26 2019-05-20 PG-PAI Si
96,238 2,016 JOAL1**051981 1981-05-08 38 fc97e8735ee25093481fb234a1b44136 Hombre 2016-02-16 2016-09-26 PG-PAI Si
52,182 2,014 JOAL1**051971 1971-05-08 48 fc97e8735ee25093481fb234a1b44136 Hombre 2013-11-25 2014-08-04 PG-PAB Si
90,617 2,016 JUVA1**101965 1965-10-04 54 fd0cf852867375de7a7f4db5acd67b1a Hombre 2015-11-04 2016-05-27 PG-PAI Si
79,405 2,015 JUVA1**101964 1964-10-04 55 fd0cf852867375de7a7f4db5acd67b1a Hombre 2015-07-28 2015-10-05 PG-PR Si
108,126 2,017 ROCA1**111982 1982-11-15 36 fd1d5c33bbe93d48a8a89d9cbfaa83b6 NA Hombre 2016-07-19 2018-01-01 PG-PAI Si
84,480 2,015 RO-C1**011982 1982-01-15 37 fd1d5c33bbe93d48a8a89d9cbfaa83b6 Hombre 2015-11-02 2016-01-26 PG-PAB Si
61,159 2,014 JOSA1**121980 1980-12-30 38 fd3acbacd444ba1526351cfb06450df2 Hombre 2014-08-27 2014-11-10 PG-PAI Si
9,636 2,010 JOSA1**121981 1981-12-30 37 fd3acbacd444ba1526351cfb06450df2 Hombre 2010-12-07 2011-02-01 PG-PAB Si
159,235 2,019 RONE1**111988 1988-11-21 30 fd51494034fcdb8b75dac1d77d08810b NA Hombre 2019-06-21 NA PG-PAB Si
63,786 2,014 RONE1**011988 1988-01-21 31 fd51494034fcdb8b75dac1d77d08810b Hombre 2014-10-30 2014-12-19 PG-PAI Si
134,345 2,018 GOFI1**051984 1984-05-04 35 fd5e27d489f4570826a23592e884380f NA Hombre 2018-02-28 2018-06-04 PG-PAB Si
41,801 2,013 GOFI1**051994 1994-05-05 25 fd5e27d489f4570826a23592e884380f Hombre 2013-07-11 2013-12-19 PG-PAB No
26,397 2,012 LUFI1**121988 1988-12-27 30 fd72e3d7fd9afc50a8a848e3b32072e8 Hombre 2012-03-14 2012-06-30 PG-PR Si
23,897 2,012 LUFI1**011982 1982-01-27 37 fd72e3d7fd9afc50a8a848e3b32072e8 Hombre 2012-01-16 2012-03-14 PG-PAI Si
159,367 2,019 MALA2**031971 1971-03-22 48 fd923c958a13be503541d9a56e0d21ee NA Mujer 2019-07-01 2019-08-26 M-PAI Si
74,467 2,015 MALA2**031976 1976-03-22 43 fd923c958a13be503541d9a56e0d21ee Mujer 2015-03-13 2015-08-04 M-PAI Si
68,851 2,015 MALA2**031971 1971-03-22 48 fd923c958a13be503541d9a56e0d21ee Mujer 2014-09-01 2015-03-12 PG-PAI Si
81,848 2,015 MACH1**101990 1990-10-19 29 fdec0f783770a94571056ea4be552552 Hombre 2015-09-21 2015-09-23 PG-PR Si
76,392 2,015 MACH1**101990 1990-10-19 29 fdec0f783770a94571056ea4be552552 Hombre 2015-05-20 2015-09-16 PG-PAI Si
52,058 2,014 MACH1**101990 1990-10-19 29 fdec0f783770a94571056ea4be552552 Hombre 2013-11-19 2014-03-19 PG-PAB Si
42,683 2,013 MACH1**071994 1994-07-19 25 fdec0f783770a94571056ea4be552552 Hombre 2013-07-24 2013-10-30 PG-PAB Si
103,273 2,016 CRDI1**121987 1987-12-14 31 fe1e2ff4a824ce8be240f858243dd3c1 Hombre 2016-10-26 2016-12-13 PG-PAI Si
93,163 2,016 CRDI1**121986 1986-12-14 32 fe1e2ff4a824ce8be240f858243dd3c1 Hombre 2016-01-27 2016-10-19 PG-PR Si
39,020 2,013 CRDI1**121987 1987-12-14 31 fe1e2ff4a824ce8be240f858243dd3c1 Hombre 2013-04-19 2013-06-10 PG-PR Si
15,159 2,011 CRDI1**121987 1987-12-14 31 fe1e2ff4a824ce8be240f858243dd3c1 Hombre 2011-04-20 2011-07-29 PG-PR Si
155,040 2,019 ANLA2**111998 1998-11-09 21 fe85f6c5ebc9cb810ad6e18b054fb368 NA Mujer 2019-03-27 2019-04-24 PG-PAI Si
112,600 2,017 ANLA2**111998 1998-11-09 20 fe85f6c5ebc9cb810ad6e18b054fb368 NA Mujer 2017-01-25 2017-02-08 M-PR Si
111,293 2,017 CAGA2**091996 1996-09-29 23 fe8d4969d3cd60e120d8b1ae0832dbf5 NA Mujer 2016-12-14 2017-02-08 M-PR Si
97,787 2,016 CAGA1**091994 1994-09-29 25 fe8d4969d3cd60e120d8b1ae0832dbf5 Hombre 2016-04-27 2016-11-11 M-PR Si
68,351 2,015 MYWI1**111973 1973-11-29 45 ff6aca66666c8b72aef0b10d58ebcc63 Hombre 2014-08-29 2015-05-15 PG-PAB Si
21,888 2,012 MYWI1**091973 1973-09-29 46 ff6aca66666c8b72aef0b10d58ebcc63 Hombre 2011-08-09 2012-02-20 PG-PR Si
136,688 2,018 JOAT1**061986 1986-06-11 33 ff850e8afc7979205494daae19d95839 NA Hombre 2018-04-17 2018-08-31 PG-PAI Si
59,508 2,014 JOAT1**111986 1986-11-11 32 ff850e8afc7979205494daae19d95839 Hombre 2014-07-01 2015-01-09 PG-PAI Si
880 2,010 JOAT1**061986 1986-06-11 33 ff850e8afc7979205494daae19d95839 Hombre 2010-01-18 2010-02-04 PG-PAI Si
156,323 2,019 ORCA2**061969 1969-06-22 50 ff91cc14106e2b535f1b879f14d1f28e NA Mujer 2019-04-26 2019-07-31 PG-PAI Si
111,106 2,017 ORCA2**071996 1996-07-22 23 ff91cc14106e2b535f1b879f14d1f28e NA Mujer 2016-12-12 2017-09-04 PG-PAB Si
112,092 2,017 BEDE2**021972 1972-02-23 47 ffcc0046427d1228ec6712ebb13a3b4e NA Mujer 2016-12-22 2017-06-08 PG-PAI Si
99,128 2,016 BEDE2**121972 1972-12-23 46 ffcc0046427d1228ec6712ebb13a3b4e Mujer 2016-07-04 2016-12-20 M-PR Si
#debo reemplazar a fech_nac, id, id_mod, Edad_al_ing, 
  
#    dplyr::select(Edad,HASH_KEY) %>% 
#  dplyr::group_by(HASH_KEY,Edad) %>% tally() %>%  dplyr::mutate(n_col=n) %>%  dplyr::filter(n>1) %>%   as.data.frame() %>%  #reshape::cast(.,Edad+HASH_KEY~n) %>% dplyr::arrange(Edad, HASH_KEY)


From Table 12, we can see some users with different ages because the age is obtained by the difference between the date of birth and the date of retrieval of each yearly dataset. This factor adds some variability among users (let’s say, differences of a few days may translate to differences of age, depending on the date of retrieval of the yearly dataset). Other differences in ages within HASHs could be caused by mistyping in the registry, or other reasons not related to the process of retrieval. The best way to tackle this problem is to replace birth dates of users that have more than one different date.


It must be noted that many variables that may change among individuals can be duplicated per HASH. These are the individual variables that may change and share more than one HASH.

  • Age of Onset of Drug Use (edad_ini_cons) (41,305)
  • Age of Onset of Drug Use Principal Substance (edad_ini_sus_prin) (42,477)
  • Year of Birth (ano_nac) (3,853)
  • Date of Birth (fech_nac) (8,702)
  • Starting Substance (sus_ini) (30,138)
  • Sex (sexo) (1,177)
  • Age (Edad) (4,115)
  • Ethnicity (Etnia) (12,685)
  • Nationality (Nacionalidad) (179)
  • SENDA ID (id) (11,275)
  • Masked SENDA ID (id_mod) (8,674)

###4.1.Rule-based solution to inconsistent dates of birth


In this stage, we changed the age, SENDA ID, year of birth and date of birth, without changing any other variables not related to age. The main reason is that these variables come from a specific date of birth, which in this case, is duplicated. The rest of the variables may be subject to an analysis that should take into account other logical inconsistencies that we may resolve once data is deduplicated.


#plot(CONS_C1_df_dup_ENE_2020_prev2$ano_nac, CONS_C1_df_dup_ENE_2020_prev2$Edad, ylab="Age", xlab="Year of Birth")
knitr::include_graphics(paste0(path, "/SUD_CL/Figures/Fig2_Date of Birth.svg"))
Figure 2a. Decision Tree for the Discard of Duplicated Date of Birth by User

Figure 2a. Decision Tree for the Discard of Duplicated Date of Birth by User


First, we aimed to define a unique date of birth for each user, using the following criteria: recent database, most frequent values, and in the third place, how valid that value was. Additionally, we aimed to reduce the ties in dates of birth following the criteria mentioned above.

#CONS_C1_df_dup_ENE_2020_prev4_edad <- CONS_C1_df_dup_ENE_2020_prev4 %>% group_by(HASH_KEY) %>% dplyr::mutate(edad_por_hash=n_distinct(Edad)) %>% ungroup() %>% dplyr::filter(edad_por_hash>1) %>% dplyr::distinct(HASH_KEY) %>% unlist() %>% as.character()

invisible_edad_fecha_nac=1
if (invisible_edad_fecha_nac==0){
  janitor::tabyl(is.na(CONS_C1_df_dup_ENE_2020_prev4$fech_nac),is.na(CONS_C1_df_dup_ENE_2020_prev4$Edad))
  #por lo visto tienen la misma cantidad de perdidos. No sé si la misma cantidad de inválidos.
}
#_#_#_#_#_#_#_
#DIAGNOSTICO
#_#_#_#_#_#_#_
# Para ver las diferencias agregadas entre usuarios en los valores distintos que tienen.
if (invisible_edad_fecha_nac==0){
  
invisible(try(
  CONS_C1_df_dup_ENE_2020_prev4 %>% 
    dplyr::mutate(Edad_al_ing=lubridate::time_length(difftime(as.Date(fech_ing), as.Date(fech_nac)),"years")) %>%
    dplyr::mutate(Edad_al_ing=replace(Edad_al_ing, is.na(Edad), NA)) %>%
    dplyr::mutate(Edad_al_ing_menos_18=case_when(Edad_al_ing<18~1,TRUE~0))%>%
    group_by(HASH_KEY) %>%
    dplyr::mutate(Edad_al_ing_menos_18=sum(Edad_al_ing_menos_18))%>%
    dplyr::mutate(edad_por_hash=n_distinct(Edad),fech_nac_por_hash=n_distinct(fech_nac),ano_bd_por_hash=n_distinct(ano_bd)) %>% add_tally(name="n_por_hash")%>%dplyr::arrange(HASH_KEY)%>%
    dplyr::filter(edad_por_hash>0,fech_nac_por_hash>1,ano_bd_por_hash>0,n_por_hash>0,Edad_al_ing_menos_18==0)%>% print()
))
}
summ_fech_nac<-CONS_C1_df_dup_ENE_2020_prev4 %>% 
  group_by(HASH_KEY) %>%
  dplyr::mutate(fechnac_por_hash=n_distinct(fech_nac),bds_por_hash=n_distinct(ano_bd), HASH_reps = n()) %>%
  dplyr::filter(fechnac_por_hash>1)%>%
  dplyr::mutate(fech_nac_num=as.numeric(lubridate::time_length(difftime(as.Date(fech_nac), as.Date("1900-01-01")),"days"))) %>%
  dplyr::mutate(fech_nac_num=replace(fech_nac_num, is.na(Edad), NA)) %>%
  # dplyr::select(HASH_KEY, Edad, fech_nac, fech_nac_num)
  add_tally()%>%
  summarise(n=mean(n), fech_nac_p25 = quantile(fech_nac_num, c(0.25),na.rm=T),fech_nac_p50 = quantile(fech_nac_num, c(0.50),na.rm=T),fech_nac_p75 = quantile(fech_nac_num, c(0.75),na.rm=T),
            fech_nacsd=sd(fech_nac_num,na.rm=T), min=min(fech_nac_num, na.rm = T),max=max(fech_nac_num, na.rm = T),mean=mean(fech_nac_num,na.rm=T),ranges=abs(max-min)) %>%
  ungroup()%>%
  dplyr::mutate(diff_p25_p50=abs(fech_nac_p50-fech_nac_p25),diff_p75_p50=abs(fech_nac_p75-fech_nac_p50),min_mean=abs(min-mean), max_mean=abs(max-mean))%>%
  summarise(avg_n=mean(n), sd_n=sd(n),avg_p25_p50=mean(diff_p25_p50),avg_p75_p50=mean(diff_p75_p50),avg_sd=mean(fech_nacsd,na.rm=T),avg_min_mean=mean(min_mean,na.rm=T),
            avg_max_mean=mean(max_mean,na.rm=T),avg_ranges=mean(ranges,na.rm=T),sd_ranges=sd(ranges,na.rm=T),p75_ranges=quantile(ranges, c(0.75),na.rm=T),
            p90_ranges=quantile(ranges, c(0.90),na.rm=T)) %>% 
  round(2) 
add_tally (grouped): new variable 'n' with 12 unique values and 0% NA
`summarise()` ungrouping output (override with `.groups` argument)
summ_edad<-CONS_C1_df_dup_ENE_2020_prev4 %>% 
  group_by(HASH_KEY) %>%
  dplyr::mutate(edad_por_hash=n_distinct(Edad),bds_por_hash=n_distinct(ano_bd), HASH_reps = n()) %>%
  dplyr::filter(edad_por_hash>1)%>%
  # dplyr::select(HASH_KEY, Edad, fech_nac, fech_nac_num)
  add_tally()%>%
  summarise(n=mean(n), Edad_p25 = quantile(Edad, c(0.25),na.rm=T),Edad_p50 = quantile(Edad, c(0.50),na.rm=T),Edad_p75 = quantile(Edad, c(0.75),na.rm=T),
            Edadsd=sd(Edad,na.rm=T), min=min(Edad, na.rm = T),max=max(Edad, na.rm = T),mean=mean(Edad,na.rm=T),ranges=abs(max-min)) %>%
  ungroup()%>%
  dplyr::mutate(diff_p25_p50=abs(Edad_p50-Edad_p25),diff_p75_p50=abs(Edad_p75-Edad_p50),min_mean=abs(min-mean), max_mean=abs(max-mean))%>%
  summarise(avg_n=mean(n), sd_n=sd(n),avg_p25_p50=mean(diff_p25_p50),avg_p75_p50=mean(diff_p75_p50),avg_sd=mean(Edadsd,na.rm=T),avg_min_mean=mean(min_mean,na.rm=T),
            avg_max_mean=mean(max_mean,na.rm=T),avg_ranges=mean(ranges,na.rm=T),sd_ranges=sd(ranges,na.rm=T),p75_ranges=quantile(ranges, c(0.75),na.rm=T),
            p90_ranges=quantile(ranges, c(0.90),na.rm=T)) %>% 
  round(2)
add_tally (grouped): new variable 'n' with 12 unique values and 0% NA
`summarise()` ungrouping output (override with `.groups` argument)
#_#_#_#_#_#_#_
#_#_#_#_#_#_#_
#_______________________
###PARA HACER LA CONVERSION
#_______________________

#_#_#_#_#_#_
##0a. menos 18
edad_al_ing_menos_18_0a<-
  CONS_C1_df_dup_ENE_2020_prev4 %>% 
  dplyr::mutate(Edad_al_ing=lubridate::time_length(difftime(as.Date(fech_ing), as.Date(fech_nac)),"years")) %>%
  dplyr::mutate(Edad_al_ing=replace(Edad_al_ing, is.na(Edad), NA)) %>%
  dplyr::mutate(Edad_al_ing_menos_18=case_when(Edad_al_ing<18~1,TRUE~0))%>%
  group_by(HASH_KEY) %>%
  dplyr::mutate(Edad_al_ing_menos_18=sum(Edad_al_ing_menos_18))%>%
  dplyr::mutate(edad_por_hash=n_distinct(Edad),fech_nac_por_hash=n_distinct(fech_nac),ano_bd_por_hash=n_distinct(ano_bd)) %>% add_tally(name="n_por_hash")%>%dplyr::arrange(HASH_KEY)%>%
  dplyr::filter(edad_por_hash>0,fech_nac_por_hash>1,ano_bd_por_hash>0,n_por_hash>0,Edad_al_ing_menos_18>0)%>% 
  distinct(HASH_KEY) %>% dplyr::ungroup()%>% data.frame()%>% unlist()%>% as.character()
add_tally (grouped): new variable 'n_por_hash' with 13 unique values and 0% NA
CONS_C1_df_dup_ENE_2020_prev4 %>% 
  dplyr::mutate(Edad_al_ing=lubridate::time_length(difftime(as.Date(fech_ing), as.Date(fech_nac)),"years")) %>%
  dplyr::mutate(Edad_al_ing=replace(Edad_al_ing, is.na(Edad), NA)) %>%
  dplyr::filter(HASH_KEY %in% edad_al_ing_menos_18_0a) %>%
  dplyr::group_by(HASH_KEY)%>%
  dplyr::mutate(edad_por_hash=n_distinct(Edad),fech_nac_por_hash=n_distinct(fech_nac),ano_bd_por_hash=n_distinct(ano_bd)) %>% add_tally(name="n_por_hash")%>%dplyr::arrange(HASH_KEY)%>%
  dplyr::mutate(edad_inicio_sus_mayor_a_edad= dplyr::case_when(Edad.Inicio..Sustancia.Principal.>Edad_al_ing|Edad.Inicio.Consumo>Edad_al_ing~1,TRUE~0))%>%
  #Señala haber iniciado consumo después de ingresar
  dplyr::filter(edad_inicio_sus_mayor_a_edad==0)%>%
  dplyr::mutate(min_fech_ing_by_hash=min(fech_ing))%>%
  dplyr::mutate(Edad_al_ing_min=lubridate::time_length(difftime(as.Date(min_fech_ing_by_hash), as.Date(fech_nac)),"years")) %>%
  dplyr::mutate(Edad_al_ing_min=replace(Edad_al_ing_min, is.na(Edad), NA)) %>%
  dplyr::mutate(Edad_al_ing_menos_18_min=case_when(Edad_al_ing_min<18&min_fech_ing_by_hash==fech_ing~1,TRUE~0))%>%
  #En caso de presentar una fecha de nacimiento en particular, la primera fecha de ingreso correspondería a un menor de edad
  #se descarta porque es peligroso incoporarlo, dado que hay muchas fechas que todavía están en los 17 años
  #dplyr::filter(Edad_al_ing_menos_18_min==0)%>% 
  dplyr::filter(!row %in% c('55669', '118299', '70823', '76', '6891', '66127', '73976', '54422', '11837', '54210', '115559', 
                           '72119', '70929', '53222', '68387', '73896', '76915', '72178', '69295', '56077', '48023', '85833', 
                           '76406', '53557', '55779', '45644', '113617', '63549', '119432', '127179'))%>%
  add_tally(name="n_por_hash")%>%
  dplyr::slice(which.min(fech_nac)) %>% 
  dplyr::select(HASH_KEY,fech_nac)%>%
  dplyr::arrange(HASH_KEY)%>% 
  as.data.frame()%>%
  dplyr::mutate(fech_nac=as.character(fech_nac))%>%
  assign("hash_fechnac_edad_ing_menos_18_0a",., envir = .GlobalEnv) #37 valores para 37 usuarios.
add_tally (grouped): new variable 'n_por_hash' with 5 unique values and 0% NA
add_tally (grouped): changed 63 values (82%) of 'n_por_hash' (0 new NA)
#_#_#_#_#_#_
#0b. misma edad- Reemplazar con la fecha de nacimiento promedio
misma_edad_0b<- CONS_C1_df_dup_ENE_2020_prev4 %>% 
  dplyr::mutate(Edad_al_ing=lubridate::time_length(difftime(as.Date(fech_ing), as.Date(fech_nac)),"years")) %>%
  dplyr::mutate(Edad_al_ing=replace(Edad_al_ing, is.na(Edad), NA)) %>%
  dplyr::mutate(Edad_al_ing_menos_18=case_when(Edad_al_ing<18~1,TRUE~0))%>%
  group_by(HASH_KEY) %>%
  dplyr::mutate(Edad_al_ing_menos_18=sum(Edad_al_ing_menos_18))%>%
  dplyr::mutate(edad_por_hash=n_distinct(Edad),fech_nac_por_hash=n_distinct(fech_nac),ano_bd_por_hash=n_distinct(ano_bd)) %>% add_tally(name="n_por_hash")%>%dplyr::arrange(HASH_KEY)%>%
  dplyr::filter(edad_por_hash==1,fech_nac_por_hash>1,ano_bd_por_hash>0,n_por_hash>0,Edad_al_ing_menos_18==0)%>% 
  summarise(mean_fech_nac=mean(fech_nac,na.rm=T))%>%
  dplyr::mutate(mean_fech_nac=as.character(as.Date.character(mean_fech_nac)))
add_tally (grouped): new variable 'n_por_hash' with 13 unique values and 0% NA
`summarise()` ungrouping output (override with `.groups` argument)
CONS_C1_df_dup_ENE_2020_prev4 %>% 
  dplyr::filter(HASH_KEY %in% as.character(unlist(misma_edad_0b[,"HASH_KEY"]))) %>%
  dplyr::group_by(HASH_KEY)%>%
  dplyr::arrange(HASH_KEY)%>% 
  dplyr::select(HASH_KEY, fech_nac)%>%
  summarise(mean_fech_nac=mean(fech_nac, na.rm=T))  %>%
  dplyr::mutate(mean_fech_nac=as.character(as.Date.character(mean_fech_nac)))%>%
  as.data.frame()%>%
  assign("hash_fechnac_misma_edad_0b",., envir = .GlobalEnv) 
`summarise()` ungrouping output (override with `.groups` argument)
#_#_#_#_#_#_
#1. distinta edad, bd tratamiento más reciente- Dejar la fecha del tratamiento más reciente
CONS_C1_df_dup_ENE_2020_prev4 %>% 
  dplyr::mutate(Edad_al_ing=lubridate::time_length(difftime(as.Date(fech_ing), as.Date(fech_nac)),"years")) %>%
  dplyr::mutate(Edad_al_ing=replace(Edad_al_ing, is.na(Edad), NA)) %>%
  dplyr::mutate(Edad_al_ing_menos_18=case_when(Edad_al_ing<18~1,TRUE~0))%>%
  group_by(HASH_KEY) %>%
  dplyr::mutate(Edad_al_ing_menos_18=sum(Edad_al_ing_menos_18))%>%
  dplyr::mutate(edad_por_hash=n_distinct(Edad),fech_nac_por_hash=n_distinct(fech_nac),ano_bd_por_hash=n_distinct(ano_bd)) %>% add_tally(name="n_por_hash")%>%dplyr::arrange(HASH_KEY)%>%
  dplyr::filter(edad_por_hash>1,fech_nac_por_hash>1,ano_bd_por_hash>1,n_por_hash>0,Edad_al_ing_menos_18==0, !is.na(fech_nac))%>% #incorporo perdidos en la fecha de nac.
  #fecha de ingreso mínima por hash contendría una edad menor a 18 años
  dplyr::mutate(min_fech_ing_by_hash=min(fech_ing))%>%
  dplyr::ungroup()%>%
  dplyr::mutate(Edad_al_ing_min=lubridate::time_length(difftime(as.Date(min_fech_ing_by_hash), as.Date(fech_nac)),"years")) %>%
  dplyr::mutate(Edad_al_ing_min=replace(Edad_al_ing_min, is.na(Edad), NA)) %>%
  dplyr::mutate(Edad_al_ing_menos_18_min=case_when(Edad_al_ing_min<18&min_fech_ing_by_hash==fech_ing~1,TRUE~0))%>%
  dplyr::filter(Edad_al_ing_menos_18_min==0)%>% #hay 0
  #  
  dplyr::arrange(HASH_KEY,desc(ano_bd)) %>% #may 2020, agregué descendiente la edad, de más reciente a más antiguo
  dplyr::select(row, HASH_KEY, ano_bd, ano_nac, fech_nac, Edad,fech_ing,Edad_al_ing)%>%
  dplyr::group_by(HASH_KEY,fech_nac)%>%
  add_tally(name="no_of_comb_hash_key_fech_nac")%>%
  dplyr::ungroup()%>%
  group_by(HASH_KEY) %>%
  dplyr::mutate(max_ano=max(ano_bd))%>%
  #dplyr::slice(which.max(ano_bd)) %>% #MAY 2020, dejé como un procedimiento de APR 2020
  dplyr::filter(max_ano==ano_bd) %>% 
  dplyr::ungroup()%>%
  assign("hash_fech_nac_most_recent_db_1a",., envir = .GlobalEnv) %>% # MAY 2020 - 1,320 casos de 1154 usuarios
  dplyr::group_by(HASH_KEY)%>%
  distinct(fech_nac,.keep_all=T)%>%
  dplyr::mutate(n_dis=n_distinct(fech_nac)) %>%
  dplyr::filter(n_dis>1)%>% #45
  dplyr::mutate(fech_nac_=paste0("fech_nac_",row_number()))%>%#
  tidyr::pivot_wider(id_cols =HASH_KEY,names_from = fech_nac_, values_from = fech_nac,names_repair="minimal",values_fill = list(n = ""))%>%
  assign("hash_fech_nac_most_recent_db_more_one_value_1b",., envir = .GlobalEnv) #179, de 78 usuarios
add_tally (grouped): new variable 'n_por_hash' with 13 unique values and 0% NA
add_tally (grouped): new variable 'no_of_comb_hash_key_fech_nac' with 11 unique values and 0% NA
hash_fech_nac_most_recent_db_1a <- hash_fech_nac_most_recent_db_1a%>% #1,076 casos con 1,076 hash distintos
  group_by(HASH_KEY)%>%
  distinct(fech_nac,.keep_all=T)%>%
  dplyr::mutate(n_dis=n_distinct(fech_nac)) %>%
  dplyr::filter(n_dis==1) %>%
  ungroup()%>%
  dplyr::mutate(fech_nac=as.character(fech_nac))%>%
  dplyr::select(HASH_KEY,fech_nac)
  #dplyr::select(-n_dis,-row,-ano_nac,-max_ano,no_of_comb_hash_key_fech_nac)    

#_#_#_#_#_#_
#2a. distinta edad, misma bd tratamiento, más de 2 casos- Dejar la fecha del tratamiento más frecuente

CONS_C1_df_dup_ENE_2020_prev4 %>% 
  dplyr::mutate(Edad_al_ing=lubridate::time_length(difftime(as.Date(fech_ing), as.Date(fech_nac)),"years")) %>%
  dplyr::mutate(Edad_al_ing=replace(Edad_al_ing, is.na(Edad), NA)) %>%
  dplyr::mutate(Edad_al_ing_menos_18=case_when(Edad_al_ing<18~1,TRUE~0))%>%
  group_by(HASH_KEY) %>%
  dplyr::mutate(Edad_al_ing_menos_18=sum(Edad_al_ing_menos_18))%>%
  dplyr::mutate(edad_por_hash=n_distinct(Edad),fech_nac_por_hash=n_distinct(fech_nac),ano_bd_por_hash=n_distinct(ano_bd)) %>% add_tally(name="n_por_hash")%>%dplyr::arrange(HASH_KEY)%>%
  dplyr::filter(edad_por_hash>1,fech_nac_por_hash>1,ano_bd_por_hash==1,n_por_hash>2,Edad_al_ing_menos_18==0, !is.na(fech_nac))%>%
  #fecha de ingreso mínima por hash contendría una edad menor a 18 años
  dplyr::mutate(min_fech_ing_by_hash=min(fech_ing))%>%
  dplyr::ungroup()%>%
  dplyr::mutate(Edad_al_ing_min=lubridate::time_length(difftime(as.Date(min_fech_ing_by_hash), as.Date(fech_nac)),"years")) %>%
  dplyr::mutate(Edad_al_ing_min=replace(Edad_al_ing_min, is.na(Edad), NA)) %>%
  dplyr::mutate(Edad_al_ing_menos_18_min=case_when(Edad_al_ing_min<18&min_fech_ing_by_hash==fech_ing~1,TRUE~0))%>%
  dplyr::filter(Edad_al_ing_menos_18_min==0)%>% #hay 0
  #  
  dplyr::group_by(HASH_KEY,fech_nac) %>%
  dplyr::add_tally(name="n_por_hash") %>%    #agrego un nuevo n, para contar los distintos fech_naces
  dplyr::mutate(min_fech_ing_by_hash=min(fech_ing))%>%
  dplyr::ungroup()%>%
  dplyr::mutate(Edad_al_ing_min=lubridate::time_length(difftime(as.Date(min_fech_ing_by_hash), as.Date(fech_nac)),"years")) %>%
  dplyr::mutate(Edad_al_ing_min=replace(Edad_al_ing_min, is.na(Edad), NA)) %>%
  dplyr::mutate(Edad_al_ing_menos_18_min=case_when(Edad_al_ing_min<18&min_fech_ing_by_hash==fech_ing~1,TRUE~0))%>%
  dplyr::filter(Edad_al_ing_menos_18_min==0)%>%
  dplyr::select(row, HASH_KEY, ano_bd, fech_nac,fech_ing,Edad,Edad_al_ing,dias_trat,SENDA, n_por_hash)%>%
  dplyr::ungroup() %>%
  dplyr::arrange(HASH_KEY,desc(ano_bd),desc(fech_ing),desc(n_por_hash))%>%
  distinct(HASH_KEY,fech_nac,.keep_all=T) %>%
  dplyr::group_by(HASH_KEY) %>%
  #dplyr::slice(which.max(n_por_hash)) %>% #me quedo con la concatenación por hash key que más se repite.
  dplyr::top_n(1,n_por_hash)%>%
  dplyr::ungroup()%>%
  assign("hash_fech_nac_most_freq_value",., envir = .GlobalEnv)%>% #136
  group_by(HASH_KEY)%>%
  add_tally()%>%
  dplyr::filter(n>1)%>% #45
  dplyr::mutate(fech_nac_=paste0("fech_nac_",row_number()))%>%
  tidyr::pivot_wider(id_cols =HASH_KEY,names_from = fech_nac_, values_from = fech_nac,names_repair="minimal",values_fill = list(n = ""))%>%
  dplyr::rename("fech_nac"="fech_nac_1")%>%
  assign("hash_fech_nac_most_freq_value_more_one_value_2a2",., envir = .GlobalEnv) #136
add_tally (grouped): new variable 'n_por_hash' with 13 unique values and 0% NA
add_tally (grouped): new variable 'n' with 2 unique values and 0% NA
#seleccionar los casos en que en la misma base de datos hay sólo un caso que es mayor
hash_fech_nac_most_freq_value_2a1 <- hash_fech_nac_most_freq_value%>% 
  group_by(HASH_KEY)%>%
  add_tally()%>%
  dplyr::filter(n==1) %>%
  dplyr::mutate(fech_nac=as.character(fech_nac))%>%
  dplyr::select(HASH_KEY,fech_nac)
add_tally (grouped): new variable 'n' with 2 unique values and 0% NA
#2b. distinta edad, misma bd tratamiento, más de 2 casos- Dejar la fecha del tratamiento más frecuente. Casos con fecha de trat + reciente
CONS_C1_df_dup_ENE_2020_prev4 %>% 
  dplyr::filter(HASH_KEY %in% as.character(unlist(hash_fech_nac_most_recent_db_more_one_value_1b["HASH_KEY"])))%>%
  dplyr::group_by(HASH_KEY,fech_nac) %>%
  dplyr::add_tally(name="n_por_hash_fech_nac") %>%  
  dplyr::ungroup()%>%
  dplyr::group_by(HASH_KEY) %>%
  dplyr::add_tally(name="n_por_hash") %>%  
  dplyr::arrange(desc(n_por_hash_fech_nac))%>%
  #  dplyr::ungroup()%>%
  dplyr::top_n(1,n_por_hash_fech_nac)%>%
  dplyr::arrange(desc(n_por_hash),HASH_KEY)%>%
  dplyr::distinct(HASH_KEY,fech_nac,.keep_all=T)%>%
  dplyr::select(row, HASH_KEY, ano_bd, fech_nac,fech_ing,Edad,dias_trat,SENDA, n_por_hash,n_por_hash_fech_nac) %>%
  dplyr::group_by(HASH_KEY)%>%
  dplyr::add_tally(name="n_por_hash") %>%
  assign("hash_fech_nac_most_recent_db_more_one_value_mfv_2b1",., envir = .GlobalEnv)

hash_fech_nac_most_recent_db_more_one_value_mfv_2b1 %>%
  dplyr::filter(n_por_hash>1)%>% #45
  dplyr::mutate(fech_nac_=paste0("fech_nac_",row_number()))%>%
  tidyr::pivot_wider(id_cols =HASH_KEY,names_from = fech_nac_, values_from = fech_nac,names_repair="minimal",values_fill = list(n = ""))%>%
  dplyr::rename("fech_nac"="fech_nac_1")%>%
  assign("hash_fech_nac_most_recent_db_more_one_value_mfv_more_one_value_2b2",., envir = .GlobalEnv) 

hash_fech_nac_most_recent_db_more_one_value_mfv_2b1<-
  hash_fech_nac_most_recent_db_more_one_value_mfv_2b1%>%
  dplyr::filter(n_por_hash==1)%>%
  dplyr::mutate(fech_nac=as.character(fech_nac))%>%
  dplyr::select(HASH_KEY,fech_nac)

#_#_#_#_#_#_
# 3. Sólo 2 casos . fechas de nacimiento, en la misma base de datos anual.
CONS_C1_df_dup_ENE_2020_prev4 %>% 
  dplyr::mutate(Edad_al_ing=lubridate::time_length(difftime(as.Date(fech_ing), as.Date(fech_nac)),"years")) %>%
  dplyr::mutate(Edad_al_ing=replace(Edad_al_ing, is.na(Edad), NA)) %>%
  dplyr::mutate(Edad_al_ing_menos_18=case_when(Edad_al_ing<18~1,TRUE~0))%>%
  group_by(HASH_KEY) %>%
  dplyr::mutate(Edad_al_ing_menos_18=sum(Edad_al_ing_menos_18))%>%
  dplyr::mutate(edad_por_hash=n_distinct(Edad),fech_nac_por_hash=n_distinct(fech_nac),ano_bd_por_hash=n_distinct(ano_bd)) %>% add_tally(name="n_por_hash")%>%dplyr::arrange(HASH_KEY)%>%
  dplyr::filter(edad_por_hash>1,fech_nac_por_hash>1,ano_bd_por_hash==1,n_por_hash==2,Edad_al_ing_menos_18==0, !is.na(fech_nac))%>%
  
  dplyr::mutate(fech_nac_=paste0("fech_nac_",row_number()))%>%
  dplyr::arrange(HASH_KEY) %>%
  dplyr::ungroup()%>%
  tidyr::pivot_wider(id_cols =HASH_KEY,names_from = fech_nac_, values_from = fech_nac,names_repair="minimal",values_fill = list(n = ""))%>%
  data.frame() %>%
  assign("hash_fech_nac_misma_bd_2_casos_3",., envir = .GlobalEnv)  
add_tally (grouped): new variable 'n_por_hash' with 13 unique values and 0% NA
#_#_#_#_#_#_EXPLORACION DE CASOS ANOMALOS
#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_
#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_
#_#_#_#_#_#_

invisible(
  CONS_C1_df_dup_ENE_2020_prev4 %>% 
    dplyr::filter(HASH_KEY %in% c(as.character(unlist(hash_fech_nac_most_recent_db_more_one_value_mfv_more_one_value_2b2["HASH_KEY"])),
                                  as.character(unlist(hash_fech_nac_most_freq_value_more_one_value_2a2["HASH_KEY"])),
                                  as.character(unlist(hash_fech_nac_misma_bd_2_casos_3["HASH_KEY"]))))%>%
    dplyr::select(row,HASH_KEY, id, Edad,ano_bd,fech_ing,fech_nac,`Escolaridad..último.año.cursado.`, Estado.Conyugal, 
                  `Número.de.Hijos`, `Número.de.Hijos.Ingreso.Tratamiento.Residencial`,Edad.Inicio.Consumo,Edad.Inicio..Sustancia.Principal.,
                  Fecha.Ultimo.Tratamiento)%>% 
    guardar_tablas("empates y 2 valores misma bd")
)

#Para revisar la mediana
summ_fech_nac_empates<-
    CONS_C1_df_dup_ENE_2020_prev4 %>% 
    dplyr::filter(HASH_KEY %in% c(as.character(unlist(hash_fech_nac_most_recent_db_more_one_value_mfv_more_one_value_2b2["HASH_KEY"])),
                                  as.character(unlist(hash_fech_nac_most_freq_value_more_one_value_2a2["HASH_KEY"])),
                                  as.character(unlist(hash_fech_nac_misma_bd_2_casos_3["HASH_KEY"]))))%>%
    group_by(HASH_KEY)%>%
    dplyr::mutate(fechnac_por_hash=n_distinct(fech_nac),bds_por_hash=n_distinct(ano_bd), HASH_reps = n()) %>%
    dplyr::filter(fechnac_por_hash>1)%>%
    dplyr::mutate(fech_nac_num=as.numeric(lubridate::time_length(difftime(as.Date(fech_nac), as.Date("1900-01-01")),"days"))) %>%
    dplyr::mutate(fech_nac_num=replace(fech_nac_num, is.na(Edad), NA)) %>%
    # dplyr::select(HASH_KEY, Edad, fech_nac, fech_nac_num)
    add_tally()%>%
    summarise(n=mean(n), fech_nac_p25 = quantile(fech_nac_num, c(0.25),na.rm=T),fech_nac_p50 = quantile(fech_nac_num, c(0.50),na.rm=T),fech_nac_p75 = quantile(fech_nac_num, c(0.75),na.rm=T),
              fech_nacsd=sd(fech_nac_num,na.rm=T), min=min(fech_nac_num, na.rm = T),max=max(fech_nac_num, na.rm = T),mean=mean(fech_nac_num,na.rm=T),ranges=abs(max-min)) %>%
    ungroup()%>%
    dplyr::mutate(diff_p25_p50=abs(fech_nac_p50-fech_nac_p25),diff_p75_p50=abs(fech_nac_p75-fech_nac_p50),min_mean=abs(min-mean), max_mean=abs(max-mean))%>%
    summarise(avg_n=mean(n), sd_n=sd(n),avg_p25_p50=mean(diff_p25_p50)/365.25,avg_p75_p50=mean(diff_p75_p50)/365.25,avg_sd=mean(fech_nacsd,na.rm=T)/365.25,
              avg_min_mean=mean(min_mean,na.rm=T)/365.25,avg_max_mean=mean(max_mean,na.rm=T)/365.25,avg_ranges=mean(ranges,na.rm=T)/365.25,sd_ranges=sd(ranges,na.rm=T)/365.25,
              p25_ranges=quantile(ranges, c(0.25),na.rm=T)/365.25,p50_ranges=quantile(ranges, c(0.5),na.rm=T)/365.25,p75_ranges=quantile(ranges, c(0.75),na.rm=T)/365.25,
              p90_ranges=quantile(ranges, c(0.90),na.rm=T)/365.25) %>% 
    round(2) 
add_tally (grouped): new variable 'n' with 3 unique values and 0% NA
`summarise()` ungrouping output (override with `.groups` argument)
#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:
#ÚLTIMOS DESCARTES- MANUAL REVIEW, 2B2 2A2 Y 3
#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:

#1. Casos que tienen una edad menor a la fecha de inicio de consumo de sustancias
hash_fechnac_2b2_2a2_misma_bd_2_casos_3_edad_ini_con_4c<- 
      CONS_C1_df_dup_ENE_2020_prev4 %>% 
      dplyr::mutate(Edad_al_ing=lubridate::time_length(difftime(as.Date(fech_ing), as.Date(fech_nac)),"years")) %>%
      dplyr::mutate(Edad_al_ing=replace(Edad_al_ing, is.na(Edad), NA)) %>%
      dplyr::mutate(edad_inicio_sus_mayor_a_edad= dplyr::case_when(Edad.Inicio..Sustancia.Principal.>Edad_al_ing|Edad.Inicio.Consumo>Edad_al_ing~1,TRUE~0))%>%
      dplyr::filter(HASH_KEY %in% c(as.character(unlist(hash_fech_nac_most_recent_db_more_one_value_mfv_more_one_value_2b2["HASH_KEY"])),
                                    as.character(unlist(hash_fech_nac_most_freq_value_more_one_value_2a2["HASH_KEY"])),
                                    as.character(unlist(hash_fech_nac_misma_bd_2_casos_3["HASH_KEY"]))))%>%
      group_by(HASH_KEY)%>%
      dplyr::mutate(edad_inicio_sus_mayor_a_edad=sum(edad_inicio_sus_mayor_a_edad))%>%
      ungroup()%>%
      dplyr::filter(edad_inicio_sus_mayor_a_edad==1)%>%
      group_by(HASH_KEY)%>%
      dplyr::slice(which.min(fech_nac)) %>%
      dplyr::mutate(fech_nac=as.character(fech_nac))%>%
      dplyr::select(HASH_KEY,fech_nac)

#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_
#2. Menor o igual de la mediana
hash_fechnac_2b2_2a2_misma_bd_2_casos_3_mediana_menor_hash<- 
      CONS_C1_df_dup_ENE_2020_prev4 %>% 
      dplyr::filter(HASH_KEY %in% c(as.character(unlist(hash_fech_nac_most_recent_db_more_one_value_mfv_more_one_value_2b2["HASH_KEY"])),
                                    as.character(unlist(hash_fech_nac_most_freq_value_more_one_value_2a2["HASH_KEY"])),
                                    as.character(unlist(hash_fech_nac_misma_bd_2_casos_3["HASH_KEY"]))))%>%
      dplyr::filter(!HASH_KEY %in% as.character(unlist(hash_fechnac_2b2_2a2_misma_bd_2_casos_3_edad_ini_con_4c["HASH_KEY"])))%>% #Casos que tienen una edad menor a la fecha de inicio de consumo de sustancias
      group_by(HASH_KEY)%>%
      dplyr::mutate(fech_nac_num=as.numeric(lubridate::time_length(difftime(as.Date(fech_nac), as.Date("1900-01-01")),"days"))) %>%
      dplyr::mutate(fech_nac_num=replace(fech_nac_num, is.na(Edad), NA)) %>%
      # dplyr::select(HASH_KEY, Edad, fech_nac, fech_nac_num)
      add_tally()%>%
      summarise(n=mean(n), fech_nac_p25 = quantile(fech_nac_num, c(0.25),na.rm=T),fech_nac_p50 = quantile(fech_nac_num, c(0.50),na.rm=T),fech_nac_p75 = quantile(fech_nac_num, c(0.75),na.rm=T),
                fech_nacsd=sd(fech_nac_num,na.rm=T), min=min(fech_nac_num, na.rm = T),max=max(fech_nac_num, na.rm = T),mean=mean(fech_nac_num,na.rm=T),ranges=abs(max-min)) %>%
      ungroup()%>%
      dplyr::filter(ranges<=as.numeric(summ_fech_nac_empates["p50_ranges"])*365.25)%>%
      as.data.frame()%>%
      distinct(HASH_KEY)%>%
      unlist()%>%
      as.character()
add_tally (grouped): new variable 'n' with 3 unique values and 0% NA
`summarise()` ungrouping output (override with `.groups` argument)
#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_
#3. Mayor o igual de la mediana
hash_fechnac_2b2_2a2_misma_bd_2_casos_3_mediana_mayor_hash<- 
  CONS_C1_df_dup_ENE_2020_prev4 %>% 
  dplyr::filter(HASH_KEY %in% c(as.character(unlist(hash_fech_nac_most_recent_db_more_one_value_mfv_more_one_value_2b2["HASH_KEY"])),
                                as.character(unlist(hash_fech_nac_most_freq_value_more_one_value_2a2["HASH_KEY"])),
                                as.character(unlist(hash_fech_nac_misma_bd_2_casos_3["HASH_KEY"]))))%>%
  dplyr::filter(!HASH_KEY %in% as.character(unlist(hash_fechnac_2b2_2a2_misma_bd_2_casos_3_edad_ini_con_4c["HASH_KEY"])))%>% #Casos que tienen una edad menor a la fecha de inicio de consumo de sustancias
  group_by(HASH_KEY)%>%
  dplyr::mutate(fech_nac_num=as.numeric(lubridate::time_length(difftime(as.Date(fech_nac), as.Date("1900-01-01")),"days"))) %>%
  dplyr::mutate(fech_nac_num=replace(fech_nac_num, is.na(Edad), NA)) %>%
  # dplyr::select(HASH_KEY, Edad, fech_nac, fech_nac_num)
  add_tally()%>%
  summarise(n=mean(n), fech_nac_p25 = quantile(fech_nac_num, c(0.25),na.rm=T),fech_nac_p50 = quantile(fech_nac_num, c(0.50),na.rm=T),fech_nac_p75 = quantile(fech_nac_num, c(0.75),na.rm=T),
            fech_nacsd=sd(fech_nac_num,na.rm=T), min=min(fech_nac_num, na.rm = T),max=max(fech_nac_num, na.rm = T),mean=mean(fech_nac_num,na.rm=T),ranges=abs(max-min)) %>%
  ungroup()%>%
  dplyr::filter(ranges>=as.numeric(summ_fech_nac_empates["p50_ranges"])*365.25)%>%
  as.data.frame()%>%
  distinct(HASH_KEY)%>%
  unlist()%>%
  as.character()
add_tally (grouped): new variable 'n' with 3 unique values and 0% NA
`summarise()` ungrouping output (override with `.groups` argument)
#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_
#TRANSFORMACIÓN DE VARIABLES
#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_

#2. Sacar la media de los casos con valores menores a la mediana.
CONS_C1_df_dup_ENE_2020_prev4 %>% 
  dplyr::filter(HASH_KEY %in% hash_fechnac_2b2_2a2_misma_bd_2_casos_3_mediana_menor_hash) %>%
  
  dplyr::arrange(HASH_KEY)%>% 
  #dplyr::select(HASH_KEY, fech_nac)%>%
  dplyr::group_by(HASH_KEY)%>%
  dplyr::mutate(min_fech_ing_by_hash=min(fech_ing))%>%
  dplyr::mutate(Edad_al_ing_min=lubridate::time_length(difftime(as.Date(min_fech_ing_by_hash), as.Date(fech_nac)),"years")) %>%
  dplyr::mutate(Edad_al_ing_min=replace(Edad_al_ing_min, is.na(Edad), NA)) %>%
  dplyr::mutate(Edad_al_ing_menos_18_min=case_when(Edad_al_ing_min<18~1,TRUE~0))%>%
  dplyr::filter(Edad_al_ing_menos_18_min==0)%>%
  summarise(mean_fech_nac=mean(fech_nac,na.rm=T))%>%
  dplyr::mutate(mean_fech_nac=as.character(as.Date.character(mean_fech_nac)))%>%
  as.data.frame()%>%
  assign("promedio_fech_nac_2b2_2a2_4a",., envir = .GlobalEnv) 
`summarise()` ungrouping output (override with `.groups` argument)
#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_
#3. Los casos más problemáticos, que están en la mediana para arriba en términos de rangos por usuarios
CONS_C1_df_dup_ENE_2020_prev4 %>% 
  dplyr::filter(HASH_KEY %in% hash_fechnac_2b2_2a2_misma_bd_2_casos_3_mediana_mayor_hash) %>%
  group_by(HASH_KEY)%>%
  dplyr::mutate(min_fech_ing_by_hash=min(fech_ing))%>%
  dplyr::mutate(Edad_al_ing_min=lubridate::time_length(difftime(as.Date(min_fech_ing_by_hash), as.Date(fech_nac)),"years")) %>%
  dplyr::mutate(Edad_al_ing_min=replace(Edad_al_ing_min, is.na(Edad), NA)) %>%
  dplyr::mutate(Edad_al_ing_menos_18_min=case_when(Edad_al_ing_min<18&min_fech_ing_by_hash==fech_ing~1,TRUE~0))%>%
  dplyr::filter(Edad_al_ing_menos_18_min==0)%>% #0.
  dplyr::select(row,HASH_KEY, id,Comuna.Residencia, Edad,ano_bd,fech_ing,fech_nac,`Escolaridad..último.año.cursado.`, Estado.Conyugal, 
                `Número.de.Hijos`, `Número.de.Hijos.Ingreso.Tratamiento.Residencial`,Edad.Inicio.Consumo,Edad.Inicio..Sustancia.Principal.,
                Fecha.Ultimo.Tratamiento)%>% 
  dplyr::arrange(HASH_KEY)%>%
  #desde aquí, empiezo a ver qué casos tienen más de una fecha de nacimiento, pero un caso con más de una edad. (4b1)
  dplyr::mutate(n_distinct_age_by_hash=n_distinct(fech_nac))%>% # distintas fechas de nacimiento por usuario
  dplyr::group_by(HASH_KEY,Edad)%>%
  dplyr::mutate(n_ages_by_hash=n())%>% # 
  dplyr::ungroup()%>%
  dplyr::mutate(conservar=if_else(n_distinct_age_by_hash>1&n_ages_by_hash>1,1,0,0))%>%
  dplyr::group_by(HASH_KEY)%>%
  dplyr::mutate(discard_por_hash=sum(conservar))%>%
  dplyr::mutate(discard_final=if_else(discard_por_hash>0&conservar==0,1,0,0))%>%
  dplyr::filter(discard_final!=1)%>%
  #:#:#:#:#:#:#:#### 4b1
  # Estos casos son de hash que tienen distintas fechas de nacimiento, pero más de un caso con la misma edad.
  #dplyr::filter(row %in% c("10331","114190","100401","67438","115299","95798","122674"))%>%  
  #dplyr::filter(!HASH_KEY %in% c("1b59e62ebd06769d773df3bfaaa76820","39f02a1487a3c26128a28036c059c570","56ab5055a4e57bea456d76e91ef50cca",
   #                             "b0f58a11b9a9ae46f44d2e3e57120269","cd5ab28ad842d4dd604ebf759cc4aebd","d892e8ce80db54e5c5ff500b0a954565"))%>%
  dplyr::slice(which.min(fech_nac))%>%
  dplyr::mutate(fech_nac=as.character(fech_nac))%>%
  dplyr::select(HASH_KEY,fech_nac, Edad)%>%
  assign("menor_fech_nac_2b2_2a2_3_4b",., envir = .GlobalEnv) 

#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_
#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_

#hash_fechnac_edad_ing_menos_18_0a
#hash_fechnac_misma_edad_0b
#hash_fech_nac_most_recent_db_1a #dttm
#hash_fech_nac_most_freq_value_2a1 #dttm
#hash_fech_nac_most_recent_db_more_one_value_mfv_2b1 #dttm
#hash_fechnac_2b2_2a2_misma_bd_2_casos_3_edad_ini_con_4c #dttm
#promedio_fech_nac_2b2_2a2_4a
#menor_fech_nac_2b2_2a2_3_4b #dttm

CONS_C1_df_dup_ENE_2020_prev4 %>%
  dplyr::left_join(hash_fechnac_edad_ing_menos_18_0a, by="HASH_KEY",suffix=c("","_0a")) %>%
  dplyr::mutate(OBS=case_when(HASH_KEY %in% as.character(as.vector(unlist(as.data.table(unlist(hash_fechnac_edad_ing_menos_18_0a["HASH_KEY"])))))~glue::glue("{OBS};1.6.01.0a"),TRUE~OBS))%>%  
  dplyr::mutate(fech_nac= ifelse(!is.na(fech_nac_0a),fech_nac_0a,as.character(fech_nac))) %>%
  dplyr::select(-ends_with("_0a")) %>% 
  dplyr::left_join(hash_fechnac_misma_edad_0b, by="HASH_KEY",suffix=c("","_0b")) %>%
  dplyr::mutate(OBS=case_when(HASH_KEY %in% as.character(as.vector(unlist(as.data.table(unlist(hash_fechnac_misma_edad_0b["HASH_KEY"])))))~glue::glue("{OBS};1.6.02.0b"),TRUE~OBS))%>%  
  dplyr::mutate(fech_nac= ifelse(!is.na(mean_fech_nac),mean_fech_nac,as.character(fech_nac))) %>%
  dplyr::select(-ends_with("_0b"),-mean_fech_nac) %>% 
  dplyr::left_join(hash_fech_nac_most_recent_db_1a, by="HASH_KEY",suffix=c("","_1a")) %>%
  dplyr::mutate(OBS=case_when(HASH_KEY %in% as.character(as.vector(unlist(as.data.table(unlist(hash_fech_nac_most_recent_db_1a["HASH_KEY"])))))~glue::glue("{OBS};1.6.03.1a"),TRUE~OBS))%>%  
  dplyr::mutate(fech_nac= ifelse(!is.na(fech_nac_1a),fech_nac_1a,as.character(fech_nac))) %>%
  dplyr::select(-ends_with("_1a")) %>% 
  dplyr::left_join(hash_fech_nac_most_freq_value_2a1, by="HASH_KEY",suffix=c("","_2a1")) %>%
  dplyr::mutate(OBS=case_when(HASH_KEY %in% as.character(as.vector(unlist(as.data.table(unlist(hash_fech_nac_most_freq_value_2a1["HASH_KEY"])))))~glue::glue("{OBS};1.6.04.2a1"),TRUE~OBS))%>%
  dplyr::mutate(fech_nac= ifelse(!is.na(fech_nac_2a1),fech_nac_2a1,as.character(fech_nac))) %>%
  dplyr::select(-ends_with("_2a1")) %>% 
  dplyr::left_join(hash_fech_nac_most_recent_db_more_one_value_mfv_2b1, by="HASH_KEY",suffix=c("","_2b1")) %>%
  dplyr::mutate(OBS=case_when(HASH_KEY %in% as.character(as.vector(unlist(as.data.table(unlist(hash_fech_nac_most_recent_db_more_one_value_mfv_2b1["HASH_KEY"])))))~glue::glue("{OBS};1.6.05.2b1"),TRUE~OBS))%>%  
  dplyr::mutate(fech_nac= ifelse(!is.na(fech_nac_2b1),fech_nac_2b1,as.character(fech_nac))) %>%
  dplyr::select(-ends_with("_2b1")) %>% 
  dplyr::left_join(hash_fechnac_2b2_2a2_misma_bd_2_casos_3_edad_ini_con_4c, by="HASH_KEY",suffix=c("","_4c")) %>%
  dplyr::mutate(OBS=case_when(HASH_KEY %in% as.character(as.vector(unlist(as.data.table(unlist(hash_fechnac_2b2_2a2_misma_bd_2_casos_3_edad_ini_con_4c["HASH_KEY"])))))~glue::glue("{OBS};1.6.06.4c"),TRUE~OBS))%>%  
  dplyr::mutate(fech_nac= ifelse(!is.na(fech_nac_4c),fech_nac_4c,as.character(fech_nac))) %>%
  dplyr::select(-ends_with("_4c")) %>% 
  dplyr::left_join(promedio_fech_nac_2b2_2a2_4a, by="HASH_KEY",suffix=c("","_4a")) %>%
  dplyr::mutate(OBS=case_when(HASH_KEY %in% as.character(as.vector(unlist(as.data.table(unlist(promedio_fech_nac_2b2_2a2_4a["HASH_KEY"])))))~glue::glue("{OBS};1.6.07.4a"),TRUE~OBS))%>%  
  dplyr::mutate(fech_nac= ifelse(!is.na(mean_fech_nac),mean_fech_nac,as.character(fech_nac))) %>%
  dplyr::select(-ends_with("_4a"),mean_fech_nac) %>% 
  dplyr::left_join(menor_fech_nac_2b2_2a2_3_4b, by="HASH_KEY",suffix=c("","_4b")) %>%
  dplyr::mutate(OBS=case_when(HASH_KEY %in% as.character(as.vector(unlist(as.data.table(unlist(menor_fech_nac_2b2_2a2_3_4b["HASH_KEY"])))))~glue::glue("{OBS};1.6.08.4b"),TRUE~OBS))%>%  
  dplyr::mutate(fech_nac= ifelse(!is.na(fech_nac_4b),fech_nac_4b,as.character(fech_nac))) %>%
  dplyr::select(-ends_with("_4b")) %>% 
#as.Date(
  dplyr::mutate(id=`substr<-`(id,6,13,gsub("-", "",format(as.Date(lubridate::parse_date_time(as.Date(fech_nac),"Ymd")),"%d%m%Y")))) %>%
  #dplyr::mutate(id=`substr<-`(id,6,13,fech_nac)) %>%
  dplyr::mutate(id_mod=sub("(.{5}).", "\\1*",id)) %>%
  dplyr::mutate(id_mod=sub("(.{6}).", "\\1*",id_mod)) %>%
  dplyr::mutate(fech_nac=lubridate::parse_date_time(as.character(as.Date(fech_nac)),"Ymd")) %>%
  dplyr::mutate(ano_nac= as.numeric(stringi::stri_sub(as.character(fech_nac),1,4))) %>%
  dplyr::mutate(Edad= as.integer(lubridate::time_length(difftime(as.Date("2019-11-13"),as.Date(fech_nac)),"years"))) %>%
  dplyr::mutate(Edad_al_ing=lubridate::time_length(difftime(as.Date(fech_ing), as.Date(fech_nac)),"years")) %>%
  dplyr::mutate(Edad_al_ing=replace(Edad_al_ing, is.na(Edad), NA)) %>%
  assign("CONS_C1_df_dup_ENE_2020_prev5",., envir = .GlobalEnv)


#plot(CONS_C1_df_dup_ENE_2020_prev2$ano_nac, CONS_C1_df_dup_ENE_2020_prev2$Edad, ylab="Age", xlab="Year of Birth")
knitr::include_graphics(paste0(path, "/SUD_CL/Figures/Fig2b_Date of Birth._less_18.svg"))
Figure 2b. Decision Tree for the Discard of Duplicated Date of Birth by User. Discard invalid data, <18 years at admission

Figure 2b. Decision Tree for the Discard of Duplicated Date of Birth by User. Discard invalid data, <18 years at admission


Subsequently, we aimed to rule out birth dates based on the validity of the age at admission (>=18 years at admission). If a user had an age at admission of 18 or less, and more than one date of birth, we replaced the date of birth with the oldest value, regardless of the criteria by which the invalid date was selected.


#_#_#_#_#PARA VER LOS MENORES A 18 AÑOS DE EDAD
#CONS_C1_df_dup_ENE_2020_prev5 %>% dplyr::filter(HASH_KEY %in% menos_18_hash) %>% 
#  dplyr::mutate(Edad_al_ing=lubridate::time_length(difftime(as.Date(fech_ing), as.Date(fech_nac)),"years")) %>%
#  dplyr::mutate(Edad_al_ing=replace(Edad_al_ing, is.na(Edad), NA)) %>%
#  dplyr::arrange(HASH_KEY)%>% dplyr::select(HASH_KEY,id,id_mod,Edad,fech_nac,Edad_al_ing)

#CONS_C1_df_dup_ENE_2020_prev5 %>% dplyr::filter(HASH_KEY %in% menos_18_hash) %>% dplyr::arrange(HASH_KEY)%>% dplyr::select(HASH_KEY,id,id_mod,fech_nac,Edad,Edad_al_ing)
#CONS_C1_df_dup_ENE_2020_prev5 %>% dplyr::filter(HASH_KEY=="403b2b7d583202300ec9b1a22f62925f") %>% dplyr::arrange(HASH_KEY)%>% dplyr::select(HASH_KEY,id,id_mod,Edad,Edad_al_ing)
#CONS_C1_df_dup_ENE_2020_prev5 %>% dplyr::filter(HASH_KEY=="7a4bf59c6210afe06194e942d349b900") %>% dplyr::arrange(HASH_KEY)%>% dplyr::select(HASH_KEY,id,id_mod,Edad,Edad_al_ing)

menos_18_hash<-
  CONS_C1_df_dup_ENE_2020_prev5 %>% as.data.frame() %>% dplyr::filter(Edad_al_ing<18) %>% distinct(HASH_KEY) %>% unlist() %>% as.character()
#183 filas; 175 hashs

less_18_hash_more_one_age<-CONS_C1_df_dup_ENE_2020_prev4 %>%
  dplyr::filter(HASH_KEY %in% menos_18_hash)%>%
  dplyr::arrange(HASH_KEY)%>%
  dplyr::select(HASH_KEY,id,id_mod,Edad,fech_nac)%>% 
  dplyr::group_by(HASH_KEY)%>% 
  dplyr::mutate(n=n_distinct(fech_nac)) %>% 
  dplyr::ungroup()%>%
  dplyr::filter(n>1)%>%
  dplyr::group_by(HASH_KEY)%>%
  dplyr::slice(which.min(fech_nac))%>%
  dplyr::ungroup()                

#CONS_C1_df_dup_ENE_2020_prev5 %>% dplyr::filter(HASH_KEY %in% menos_18_hash) %>% dplyr::select(HASH_KEY,id,id_mod,Edad,Edad_al_ing)
menos_18_hash_caso_unico<-
  CONS_C1_df_dup_ENE_2020_prev5 %>%
  dplyr::filter(HASH_KEY %in% menos_18_hash)%>%
  dplyr::filter(!HASH_KEY %in% as.character(unlist(less_18_hash_more_one_age[,"HASH_KEY"])))%>% distinct(HASH_KEY)

#son 59 hash distintos que se verían afectados
invisible(distinct(less_18_hash_more_one_age,HASH_KEY))

CONS_C1_df_dup_ENE_2020_prev5 %>%
  dplyr::left_join(less_18_hash_more_one_age, by="HASH_KEY", suffix= c("","_more_age")) %>%
  dplyr::mutate(OBS= dplyr::case_when(!is.na(fech_nac_more_age)~paste0(as.character(OBS),";","1.6.XX.1.Age at admission less 18 years & had an older date of birth that could be replaced"), TRUE ~ as.character(OBS)))%>%
  dplyr::mutate(fech_nac= dplyr::case_when(!is.na(fech_nac_more_age)~fech_nac_more_age,TRUE ~ fech_nac))%>%
  dplyr::mutate(id= dplyr::case_when(!is.na(id_more_age)~id_more_age,TRUE ~ id))%>%
  dplyr::mutate(id_mod= dplyr::case_when(!is.na(id_mod_more_age)~id_mod_more_age,TRUE ~ id_mod))%>%
  dplyr::mutate(id_mod=sub("(.{5}).", "\\1*",id)) %>%
  dplyr::mutate(id_mod=sub("(.{6}).", "\\1*",id_mod)) %>%
  dplyr::mutate(fech_nac= as.POSIXct(fech_nac, origin="1970-01-02")) %>%
  dplyr::mutate(fech_nac= stringi::stri_sub(as.character.Date(fech_nac),1,10)) %>%
  dplyr::mutate(fech_nac= lubridate::parse_date_time(fech_nac,"Ymd")) %>%
  dplyr::mutate(Edad= dplyr::case_when(!is.na(Edad_more_age)~Edad_more_age,TRUE ~ Edad))%>%
  dplyr::mutate(Edad_al_ing=lubridate::time_length(difftime(as.Date(fech_ing), as.Date(fech_nac)),"years")) %>%
  dplyr::mutate(Edad_al_ing=replace(Edad_al_ing, is.na(Edad), NA)) %>%
  as.data.frame() %>%
  dplyr::select(-ends_with("_more_age"),-n,-mean_fech_nac)%>%
  dplyr::mutate(OBS= dplyr::case_when(HASH_KEY %in% as.character(unlist(menos_18_hash_caso_unico))~
                                        paste0(as.character(OBS),";","1.6.XX.2.Age at admission less 18 years & had another date of birth that could be replaced"), TRUE ~ as.character(OBS)))%>%
  assign("CONS_C1_df_dup_ENE_2020_prev52",., envir = .GlobalEnv) 

menos_18_hash_2<- CONS_C1_df_dup_ENE_2020_prev52 %>% as.data.frame() %>% dplyr::filter(Edad_al_ing<18) %>% distinct(HASH_KEY) %>% unlist() %>% as.character()

#16ffdf18efeffe5f0c9c78d547dc392_2014_6_13 1996-06-30
#616a9f5147684b5bb649eff9936db849_2014_1_15 1998-07-18
casos_emblematicos<-
    #CONS_C1_df_dup_ENE_2020_prev52 %>%
    CONS_C1_df_dup_ENE_2020_prev52 %>%
      dplyr::filter(HASH_KEY %in% menos_18_hash_2)%>%
      dplyr::filter(HASH_KEY %in% as.character(unlist(less_18_hash_more_one_age)))%>% 
      dplyr::select(HASH_KEY,id,fech_ing,Edad_al_ing, Edad,fech_nac)%>% data.frame()

invisible(
  #c("aqui se muestra que incluso la fecha de nacimiento más antigua", "sigue dejando una edad de ingreso menor a 18")
  CONS_C1_df_dup_ENE_2020_prev4 %>%
    dplyr::filter(HASH_KEY %in% menos_18_hash_2)%>%
    dplyr::filter(HASH_KEY %in% as.character(unlist(less_18_hash_more_one_age)))%>% 
    dplyr::select(HASH_KEY,id,fech_ing,Edad,fech_nac)%>% 
    dplyr::mutate(Edad_al_ing=lubridate::time_length(difftime(as.Date(fech_ing), as.Date(fech_nac)),"years")) %>%
    dplyr::mutate(Edad_al_ing=replace(Edad_al_ing, is.na(Edad), NA)) %>%
    data.frame()
)
#invisible(
 # CONS_C1_df_dup_ENE_2020_prev52 %>%
#    dplyr::filter(grepl("1.6.XX.2.",OBS))%>% glimpse()
#)

#1.6.XX.2.

After this process, we still ended with 135 users that had at least one date of admission with less than 18 years old. Additionally, 2 users both had distinct dates of birth with ages at admission of less than 18 years old. Lastly, 230 users did not have a valid date of admission.


###4.2.Imputation of inconsistent dates of birth through Neural Networks

We used a neural network model to obtain valid dates of birth for the 230 users that did not have a valid date of birth and for those cases that had an age at the date of admission of less than 15 years old. We did not select the cut-off mark at 16 years old, because one user (616a9f5147684b5bb649eff9936db849) had an age at admission of 15 years old, but also had another entry with the same date of birth in the 2019 dataset. This led us to think that in specific cases, users of 15 years old could be admissible (n= 16).


library(radiant)          
no_es=1
          if (no_es==0){
            rstudioapi::jobRunScript(path = "path_to_Jobs_script", importEnv = TRUE)
          }
          
          #cases that do not have age or date of birth or a correct ID
          #table(is.na(CONS_C1_df_dup_MAY_2020_prev0$id)) = table(is.na(CONS_C1_df_dup_MAY_2020_prev0$edad))
          
          C1_fech_nac_nas<- CONS_C1_df_dup_ENE_2020_prev52 %>% dplyr::filter(is.na(fech_nac))%>% distinct(HASH_KEY)
          
          if (no_es==0){
            print(
            "Estos casos terminan siendo inválidos, por eso se declaran perdidos después. Tamopco tienen edad ni ID. 
            El problema es que al momento de elaboración de la base de datos, en prev3 de enero, estos casos siguen sin ser reconocidos."
                  )
          CONS_C1_df_dup_ENE_2020_prev3 %>% 
            dplyr::filter(HASH_KEY %in% as.character(unlist(C1_fech_nac_nas)))
          }
          #NAs
          # SELECTING THE SAMPLE, CASES THAT DO NOT HAVE PROBLEMS
          #_#_#_#_#_
          set.seed(1245)
          C1_fech_nac_not_ties<-     
            CONS_C1_df_dup_ENE_2020_prev3 %>% 
            dplyr::filter(!HASH_KEY %in% c(as.character(unlist(hash_fech_nac_most_recent_db_more_one_value_mfv_more_one_value_2b2["HASH_KEY"])),
                                           as.character(unlist(hash_fech_nac_most_freq_value_more_one_value_2a2["HASH_KEY"])),
                                           as.character(unlist(C1_fech_nac_nas)),
                                           as.character(unlist(menos_18_hash_caso_unico["HASH_KEY"])),
                                           as.character(unlist(hash_fech_nac_misma_bd_2_casos_3["HASH_KEY"]))))%>%
            dplyr::mutate(fech_nac=lubridate::parse_date_time(stringi::stri_sub(id,-8,-1),"dmY")) %>% 
            dplyr::mutate(Edad_al_ing=lubridate::time_length(difftime(as.Date(fech_ing), as.Date(fech_nac)),"years"))%>% #AGREGADO EN APR 2020.
            dplyr::mutate(Edad_al_ing=replace(Edad_al_ing, is.na(Edad), NA)) %>% #AGREGADO EN APR 2020.
            dplyr::as_tibble()%>%
            janitor::clean_names()%>%
            dplyr::select(row,hash_key,fech_ing, edad_al_ing, ano_bd, escolaridad_ultimo_ano_cursado,estado_conyugal,
                          numero_de_hijos,numero_de_hijos_ingreso_tratamiento_residencial,
                          edad_inicio_consumo,edad_inicio_sustancia_principal,fecha_ultimo_tratamiento)%>%
           # sample_frac(.05)%>%
            na.omit()%>%
            dplyr::mutate(rn=row_number())
          
          #escolaridad último año cursado
          C1_fech_nac_not_ties_1<-
            C1_fech_nac_not_ties %>% 
            dplyr::mutate(var = 1) %>% 
            dplyr::select(var,escolaridad_ultimo_ano_cursado,rn)%>%
            tidyr::spread(escolaridad_ultimo_ano_cursado, var, fill = 0, sep = "_") %>% 
            left_join(C1_fech_nac_not_ties, by=c("rn"="rn"))
left_join: added 12 columns (row, hash_key, fech_ing, edad_al_ing, ano_bd, …)
           > rows only in x        0
           > rows only in y  (     0)
           > matched rows     57,972
           >                 ========
           > rows total       57,972
          #estado conyugal
          C1_fech_nac_not_ties_1<-
            C1_fech_nac_not_ties %>% 
            dplyr::mutate(var = 1) %>% 
            dplyr::select(var,estado_conyugal,rn)%>%
            tidyr::spread(estado_conyugal, var, fill = 0, sep = "_") %>% 
            left_join(C1_fech_nac_not_ties_1, by=c("rn"="rn"))
left_join: added 22 columns (escolaridad_ultimo_ano_cursado_BASICA COMPLETA, escolaridad_ultimo_ano_cursado_BASICA INCOMPLETA, escolaridad_ultimo_ano_cursado_MEDIA COMPLETA, escolaridad_ultimo_ano_cursado_MEDIA INCOMPLETA, escolaridad_ultimo_ano_cursado_NO SABE O NO SE APLICA, …)
           > rows only in x        0
           > rows only in y  (     0)
           > matched rows     57,972
           >                 ========
           > rows total       57,972
          #fecha último tratamiento
          C1_fech_nac_not_ties_summ<-
            C1_fech_nac_not_ties_1 %>% 
            dplyr::mutate(var = 1) %>%
            dplyr::select(var,fecha_ultimo_tratamiento,rn)%>%
            tidyr::spread(fecha_ultimo_tratamiento, var, fill = 0, sep = "_") %>% 
            left_join(C1_fech_nac_not_ties_1, by=c("rn"="rn")) %>% 
            dplyr::select(-estado_conyugal,-escolaridad_ultimo_ano_cursado,-fecha_ultimo_tratamiento,-rn)%>%
            dplyr::select(row:edad_inicio_sustancia_principal,starts_with("estado_conyugal"),
                          starts_with("escolaridad_ultimo"),starts_with("fecha_ultimo_trat"))
left_join: added 31 columns (estado_conyugal_Anulado, estado_conyugal_Casado, estado_conyugal_Conviviente, estado_conyugal_conviviente civil, estado_conyugal_Divorciado, …)
           > rows only in x        0
           > rows only in y  (     0)
           > matched rows     57,972
           >                 ========
           > rows total       57,972
          #_#_#_#_#_#_#_
          #nunca poner na.omit aquí, porque necesitamos imputar todos los casos
          set.seed(1245)
          C1_fech_nac_ties<-     
            CONS_C1_df_dup_ENE_2020_prev3 %>% 
            dplyr::filter(HASH_KEY %in% c(as.character(unlist(hash_fech_nac_most_recent_db_more_one_value_mfv_more_one_value_2b2["HASH_KEY"])),
                                           as.character(unlist(hash_fech_nac_most_freq_value_more_one_value_2a2["HASH_KEY"])),
                                           as.character(unlist(C1_fech_nac_nas)),
                                           as.character(unlist(menos_18_hash_caso_unico["HASH_KEY"])),
                                           as.character(unlist(hash_fech_nac_misma_bd_2_casos_3["HASH_KEY"]))))%>%
            dplyr::mutate(fech_nac=lubridate::parse_date_time(stringi::stri_sub(id,-8,-1),"dmY")) %>% 
            dplyr::mutate(Edad_al_ing=lubridate::time_length(difftime(as.Date(fech_ing), as.Date(fech_nac)),"years")) %>% #AGREGADO EN APR 2020.
            dplyr::mutate(Edad_al_ing=replace(Edad_al_ing, is.na(Edad), NA)) %>% #AGREGADO EN APR 2020.
            dplyr::as_tibble()%>%
            janitor::clean_names()%>%
            dplyr::select(row,hash_key,edad,fech_nac,fech_ing, edad_al_ing, ano_bd, escolaridad_ultimo_ano_cursado,estado_conyugal,
                          numero_de_hijos,numero_de_hijos_ingreso_tratamiento_residencial,
                          edad_inicio_consumo,edad_inicio_sustancia_principal,fecha_ultimo_tratamiento)%>%
            # sample_frac(.05)%>%
            dplyr::mutate(rn=row_number())
          
          C1_fech_nac_ties_1<-
            C1_fech_nac_ties %>% 
            dplyr::mutate(var = 1) %>% 
            dplyr::select(var,escolaridad_ultimo_ano_cursado,rn)%>%
            tidyr::spread(escolaridad_ultimo_ano_cursado, var, fill = 0, sep = "_") %>% 
            left_join(C1_fech_nac_ties, by=c("rn"="rn"))
left_join: added 14 columns (row, hash_key, edad, fech_nac, fech_ing, …)
           > rows only in x     0
           > rows only in y  (  0)
           > matched rows     666
           >                 =====
           > rows total       666
          #estado conyugal
          C1_fech_nac_ties_1<-
            C1_fech_nac_ties %>% 
            dplyr::mutate(var = 1) %>% 
            dplyr::select(var,estado_conyugal,rn)%>%
            tidyr::spread(estado_conyugal, var, fill = 0, sep = "_") %>% 
            left_join(C1_fech_nac_ties_1, by=c("rn"="rn"))
left_join: added 24 columns (escolaridad_ultimo_ano_cursado_BASICA COMPLETA, escolaridad_ultimo_ano_cursado_BASICA INCOMPLETA, escolaridad_ultimo_ano_cursado_MEDIA COMPLETA, escolaridad_ultimo_ano_cursado_MEDIA INCOMPLETA, escolaridad_ultimo_ano_cursado_NO SABE O NO SE APLICA, …)
           > rows only in x     0
           > rows only in y  (  0)
           > matched rows     666
           >                 =====
           > rows total       666
          #fecha último tratamiento
          C1_fech_nac_ties_summ<-
            C1_fech_nac_ties_1 %>% 
            dplyr::mutate(var = 1) %>%
            dplyr::select(var,fecha_ultimo_tratamiento,rn)%>%
            tidyr::spread(fecha_ultimo_tratamiento, var, fill = 0, sep = "_") %>% 
            left_join(C1_fech_nac_ties_1, by=c("rn"="rn")) %>% 
            dplyr::select(-estado_conyugal,-escolaridad_ultimo_ano_cursado,-fecha_ultimo_tratamiento,-rn)%>%
            dplyr::select(row:edad_inicio_sustancia_principal,starts_with("estado_conyugal"),
                          starts_with("escolaridad_ultimo"),starts_with("fecha_ultimo_trat"))%>%
            #dejo los nas como 0.
            dplyr::mutate(edad_inicio_consumo=replace_na(edad_inicio_consumo,0))%>%
            dplyr::mutate(numero_de_hijos_ingreso_tratamiento_residencial=replace_na(numero_de_hijos_ingreso_tratamiento_residencial,0))
left_join: added 31 columns (estado_conyugal_Casado, estado_conyugal_Conviviente, estado_conyugal_Divorciado, estado_conyugal_Nocontesta, estado_conyugal_Separado, …)
           > rows only in x     0
           > rows only in y  (  0)
           > matched rows     666
           >                 =====
           > rows total       666
          #C1_fech_nac_ties_summ: Para probar todos los NAs
          #nrow(C1_fech_nac_ties_summ[!complete.cases(C1_fech_nac_ties_summ), ])
          
          #2022
          C1_fech_nac_ties_summ_lapply<-
            unlist(lapply(C1_fech_nac_ties_summ, class))
          
          C1_fech_nac_ties_summ_m_mat<-
            data.matrix(C1_fech_nac_ties_summ)
          C1_fech_nac_ties_summ_mat<-
            data.table(C1_fech_nac_ties_summ)
          
#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_
#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_
          
          #nn: Neural Networks using nnet
          #https://rdrr.io/cran/radiant.model/man/nn.html
          #https://radiant-rstats.github.io/radiant.model/reference/nn.html
          #https://radiant-rstats.github.io/docs/model/nn.html
          #result <- radiant::nn(C1_fech_nac_ties, "fech_nac", "edad:edad_inicio_sustancia_principal", type = "regression")
            result_fech_nac0<- nn(
              C1_fech_nac_not_ties_summ, 
              rvar = "edad_al_ing", #The response variable in the model
              evar = c(
                "ano_bd",
                "numero_de_hijos", 
                "edad_inicio_consumo", 
                "edad_inicio_sustancia_principal"
              ), #Explanatory variables in the model
              type = "regression", #Model type (i.e., "classification" or "regression")
              #lev= The level in the response variable defined as _success_
              #size= Number of units (nodes) in the hidden layer
              #decay=  Parameter decay
              #wts=  Weights to use in estimation
              #seed= Random seed to use as the starting point
              #check=  Optional estimation parameters ("standardize" is the default)
              #data_filter= Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
              #form=   Optional formula to use instead of rvar and evar // Ocupar formula
              seed = 1245
            )
          #The model can be “tuned” by changing the Size (i.e., the number of nodes in the hidden layer) 
            #and by adjusting the Decay rate. The higher the value set for Decay, the higher the penalty on 
            #the size of (the sum of squares of) the weights. When Decay is set to 0, the model has the most 
            #flexibility to fit the (training) data accurately. However, without Decay the model is also more 
            #likely to overfit.
            
          #The best way to determine the optimal values for Size and Decays is to use Cross-Validation. 
            #In radiant, you can use the cv.nn function for this purpose. 
            
            #cv.nn: Cross-validation for a Neural Network
            #https://radiant-rstats.github.io/radiant.model/reference/cv.nn.html
            #K= número de cv pasa para usar
            #repeats= cv repetido
            #decay= decaimiento en parámetros
            #size=número de nodos en la capa oculta
            #seed= semilla aleatoria como inicio
            #trace= imprimir progreso
            #fun= función para usar evaluación del modelo (auc para clasificación, RMSE para regresión; también está Rsq)
            #https://rdrr.io/cran/radiant.model/man/auc.html
            #https://rdrr.io/cran/radiant.model/man/RMSE.html
            #https://rdrr.io/cran/radiant.model/man/profit.html
            
            result_fech_nac_all_cv<- cv.nn(result_fech_nac0, K= 10, decay = seq(0, 1, .5), size = 1:5, fun = RMSE, trace=T, seed=1245)
Working on size 1 decay 0 
Working on size 1 decay 0.5 
Working on size 1 decay 1 
Working on size 2 decay 0 
Working on size 2 decay 0.5 
Working on size 2 decay 1 
Working on size 3 decay 0 
Working on size 3 decay 0.5 
Working on size 3 decay 1 
Working on size 4 decay 0 
Working on size 4 decay 0.5 
Working on size 4 decay 1 
Working on size 5 decay 0 
Working on size 5 decay 0.5 
Working on size 5 decay 1 
            #cv.nn(result, decay = seq(0, 1, .5), size = 1:2, fun = profit, cost = 1, margin = 5)
            #30 minutos se demora en sacar size 1:4 con 4 fragmentos en decay
            
            #selecciono los parámetros que permitan hacer la mejor estimación
            nn_fech_nac_par<-result_fech_nac_all_cv[which(result_fech_nac_all_cv$`RMSE (mean)`==min(result_fech_nac_all_cv$`RMSE (mean)`)),c("decay","size","RMSE (mean)")]
            result_fech_nac<- nn(
              data.frame(C1_fech_nac_ties_summ_m_mat)[c("edad_al_ing", "ano_bd","numero_de_hijos","edad_inicio_consumo","edad_inicio_sustancia_principal")],
              #2020
                                #C1_fech_nac_not_ties_summ[c("edad_al_ing", "ano_bd","numero_de_hijos","edad_inicio_consumo","edad_inicio_sustancia_principal")], 
                                rvar = "edad_al_ing",
                                evar = c(
                                  "ano_bd",
                                  "numero_de_hijos", 
                                  "edad_inicio_consumo", 
                                  "edad_inicio_sustancia_principal"
                                ), 
                                type = "regression", 
                                decay= as.numeric(nn_fech_nac_par[1]),
                                size= as.numeric(nn_fech_nac_par[2]),
                                seed = 1245
            )
            
            #33 MINUTOS DURA
            
          #predict(result, pred_cmd = "carat = 1:3")
            #https://radiant-rstats.github.io/radiant.model/reference/predict.nn.html
            #pred_data= Provide the dataframe to generate predictions (e.g., diamonds). The dataset must contain all columns used in the estimation
            #pred_cmd= Generate predictions using a command. For example, `pclass = levels(pclass)` would produce predictions 
              #for the different levels of factor `pclass`. To add another variable, create a vector of prediction strings, 
              #(e.g., c('pclass = levels(pclass)', 'age = seq(0,100,20)')
              #dec=  Number of decimals to show
              #envir= Environment to extract data from
#' 2022, modificaciones= Predict method for the nn function
#'
#' @details See \url{https://radiant-rstats.github.io/docs/model/nn.html} for an example in Radiant
#'
#' @param object Return value from \code{\link{nn}}
#' @param pred_data Provide the dataframe to generate predictions (e.g., diamonds). The dataset must contain all columns used in the estimation
#' @param pred_cmd Generate predictions using a command. For example, `pclass = levels(pclass)` would produce predictions for the different levels of factor `pclass`. To add another variable, create a vector of prediction strings, (e.g., c('pclass = levels(pclass)', 'age = seq(0,100,20)')
#' @param dec Number of decimals to show
#' @param envir Environment to extract data from
#' @param ... further arguments passed to or from other methods
#'
#' @examples
#' result <- nn(titanic, "survived", c("pclass", "sex"), lev = "Yes")
#' predict(result, pred_cmd = "pclass = levels(pclass)")
#' result <- nn(diamonds, "price", "carat:color", type = "regression")
#' predict(result, pred_cmd = "carat = 1:3")
#' predict(result, pred_data = diamonds) %>% head()
#'
#' @seealso \code{\link{nn}} to generate the result
#' @seealso \code{\link{summary.nn}} to summarize results
#'
#' @export
predict.nn <- function(
  object, pred_data = NULL, pred_cmd = "",
  dec = 3, envir = parent.frame(), ...
) {

  if (is.character(object)) return(object)

  ## ensure you have a name for the prediction dataset
  if (is.data.frame(pred_data)) {
    df_name <- deparse(substitute(pred_data))
  } else {
    df_name <- pred_data
  }

  pfun <- function(model, pred, se, conf_lev) {
    pred_val <- try(sshhr(predict(model, pred)), silent = TRUE)

    if (!inherits(pred_val, "try-error")) {
      pred_val %<>% as.data.frame(stringsAsFactors = FALSE) %>%
        select(1) %>%
        set_colnames("Prediction")
    }

    pred_val
  }

  predict_model(object, pfun, "nn.predict", pred_data, pred_cmd, conf_lev = 0.95, se = FALSE, dec, envir = envir) %>%
    set_attr("radiant_pred_data", df_name)
}

#' Print method for predict.nn
#'
#' @param x Return value from prediction method
#' @param ... further arguments passed to or from other methods
#' @param n Number of lines of prediction results to print. Use -1 to print all lines
#'
#' @export
print.nn.predict <- function(x, ..., n = 10)
  print_predict_model(x, ..., n = n, header = "Neural Network")

#' Cross-validation for a Neural Network
#'
#' @details See \url{https://radiant-rstats.github.io/docs/model/nn.html} for an example in Radiant
#'
#' @param object Object of type "nn" or "nnet"
#' @param K Number of cross validation passes to use
#' @param repeats Repeated cross validation
#' @param size Number of units (nodes) in the hidden layer
#' @param decay Parameter decay
#' @param seed Random seed to use as the starting point
#' @param trace Print progress
#' @param fun Function to use for model evaluation (i.e., auc for classification and RMSE for regression)
#' @param ... Additional arguments to be passed to 'fun'
#'
#' @return A data.frame sorted by the mean of the performance metric
#'
#' @seealso \code{\link{nn}} to generate an initial model that can be passed to cv.nn
#' @seealso \code{\link{Rsq}} to calculate an R-squared measure for a regression
#' @seealso \code{\link{RMSE}} to calculate the Root Mean Squared Error for a regression
#' @seealso \code{\link{MAE}} to calculate the Mean Absolute Error for a regression
#' @seealso \code{\link{auc}} to calculate the area under the ROC curve for classification
#' @seealso \code{\link{profit}} to calculate profits for classification at a cost/margin threshold
#'
#' @importFrom nnet nnet.formula
#' @importFrom shiny getDefaultReactiveDomain withProgress incProgress
#'
#' @examples
#' \dontrun{
#' result <- nn(dvd, "buy", c("coupon", "purch", "last"))
#' cv.nn(result, decay = seq(0, 1, .5), size = 1:2)
#' cv.nn(result, decay = seq(0, 1, .5), size = 1:2, fun = profit, cost = 1, margin = 5)
#' result <- nn(diamonds, "price", c("carat", "color", "clarity"), type = "regression")
#' cv.nn(result, decay = seq(0, 1, .5), size = 1:2)
#' cv.nn(result, decay = seq(0, 1, .5), size = 1:2, fun = Rsq)
#' }
#'
#' @export


#a 4-5-1 network with 31 weights
  result_fech_nac_all_cv_pred<- predict(result_fech_nac, pred_data = C1_fech_nac_ties_summ)
       check_obj("result_fech_nac_all_cv_pred")

                 #debemos eliminar los NAs
            if (no_es==0){
              print(paste0("comprobar si se reemplazó los valores perdidos por un 0.", 
                    "Independiente de ello, si los lleno, al final los casos hacen un match perfecto a futuro"))
              C1_fech_nac_ties_1[!complete.cases(C1_fech_nac_ties_1[, c("ano_bd","numero_de_hijos", "edad_inicio_consumo", "edad_inicio_sustancia_principal")]),
                               c("ano_bd","numero_de_hijos", "edad_inicio_consumo", "edad_inicio_sustancia_principal")]
          }
            result_fech_nac_all_cv_pred<- 
              result_fech_nac_all_cv_pred %>%
              mutate(concat=paste0(ano_bd,"_",numero_de_hijos,"_",edad_inicio_consumo,"_",edad_inicio_sustancia_principal))
            
       #     rm(list= ls()[!(ls() %in% c('result_fech_nac','C1_fech_nac_ties_summ', 'result_fech_nac_all_cv','nn_fech_nac_par','result_fech_nac_all_cv_pred'))])
   
      C1_fech_nac_ties_summ <-C1_fech_nac_ties_summ%>%
                    mutate(concat=paste0(ano_bd,"_",numero_de_hijos,"_",edad_inicio_consumo,"_",edad_inicio_sustancia_principal))

       exists("C1_fech_nac_ties_summ") 
[1] TRUE
      #para los que tienen empates:
      #saco un promedio de las edades al ingreso originales predichas.
      #veo cuál d e las edades empatadas se acerca más a este promedio.
      #me quedo con esa.
       
      fech_nac_edad_al_ing_replace_mas_un_caso <-
                  result_fech_nac_all_cv_pred%>%
                    dplyr::rename("numero_de_hijos2"="numero_de_hijos",
                                  "edad_inicio_consumo2"="edad_inicio_consumo",
                                  "edad_inicio_sustancia_principal2"="edad_inicio_sustancia_principal",
                                  "concat3"="concat")%>% 
                    cbind(C1_fech_nac_ties_summ[c("row","hash_key", "fech_nac","edad_al_ing","fech_ing")])%>%
                    dplyr::select(-starts_with("concat"))%>%
                    dplyr::mutate(fech_nac_corr= ifelse(ano_bd==2019,
                                                          as.Date("2019-11-13")-Prediction*365.25, #as.numeric(as.Date("2019-11-13")) 
                                                          as.Date("2019-11-05")-Prediction*365.25))%>%#18213 #as.numeric(as.Date("2019-11-05"))
                    dplyr::mutate(fech_nac_corr=zoo::as.Date(fech_nac_corr))%>%
                    dplyr::group_by(hash_key)%>%
                    dplyr::mutate(mean_pr=mean(fech_nac_corr),
                                  diff_pr_ed_ing=as.Date(as.character(fech_nac))-fech_nac_corr,
                                  n_por_hash=n())%>%
                    dplyr::filter(n_por_hash>=2,diff_pr_ed_ing==min(diff_pr_ed_ing))
      
      fech_nac_edad_al_ing_replace <-
                  result_fech_nac_all_cv_pred%>%
                    dplyr::rename("numero_de_hijos2"="numero_de_hijos",
                                  "edad_inicio_consumo2"="edad_inicio_consumo",
                                  "edad_inicio_sustancia_principal2"="edad_inicio_sustancia_principal",
                                  "concat3"="concat")%>% 
                    cbind(C1_fech_nac_ties_summ[c("row","hash_key", "fech_nac","edad_al_ing","fech_ing")])%>%
                    dplyr::select(-starts_with("concat"))%>%
                    dplyr::mutate(fech_nac_corr= ifelse(ano_bd==2019,
                                                          as.Date("2019-11-13")-Prediction*365.25, #as.numeric(as.Date("2019-11-13")) 
                                                          as.Date("2019-11-05")-Prediction*365.25))%>%#18213 #as.numeric(as.Date("2019-11-05"))
                    dplyr::mutate(fech_nac_corr=zoo::as.Date(fech_nac_corr))%>%
                    dplyr::group_by(hash_key)%>%
                    dplyr::mutate(mean_pr=mean(fech_nac_corr),
                                  diff_pr_ed_ing=as.Date(as.character(fech_nac))-fech_nac_corr,
                                  n_por_hash=n())
      
      fech_nac_edad_replace_nas <-
                    result_fech_nac_all_cv_pred%>%
                    dplyr::rename("numero_de_hijos2"="numero_de_hijos",
                                  "edad_inicio_consumo2"="edad_inicio_consumo",
                                  "edad_inicio_sustancia_principal2"="edad_inicio_sustancia_principal",
                                  "concat3"="concat")%>% 
                    cbind(C1_fech_nac_ties_summ[c("row","hash_key","edad", "fech_nac","edad_al_ing","fech_ing")])%>%
                    dplyr::select(-starts_with("concat"))%>%
                    dplyr::mutate(fech_nac_corr= ifelse(ano_bd==2019,
                                                        as.Date("2019-11-13")-Prediction*365.25, #as.numeric(as.Date("2019-11-13")) 
                                                        as.Date("2019-11-05")-Prediction*365.25))%>%#18213 #as.numeric(as.Date("2019-11-05")) #18213 -8
                    dplyr::mutate(fech_nac_corr=zoo::as.Date(fech_nac_corr))%>%
                    dplyr::group_by(hash_key)%>%
                    dplyr::mutate(n_por_hash=n())%>%
                    dplyr::filter(n_por_hash<2)%>%
                    dplyr::filter(is.na(edad))
      check_obj("fech_nac_edad_al_ing_replace_mas_un_caso")


To obtain valid dates, we predicted the date of admission of each case. We generated a total of 10 cross-validations, with alternatives of 1 to 5 layers, and a threshold of 0, 0.5 and 1 in every model (10x5x3). The model that obtained the best fit (RMSE (mean)= 8.68) had a size of 5 layers, and a threshold for weights of 0 (L2 penalty).


#plot(CONS_C1_df_dup_ENE_2020_prev2$ano_nac, CONS_C1_df_dup_ENE_2020_prev2$Edad, ylab="Age", xlab="Year of Birth")
#https://github.com/radiant-rstats/radiant.model/blob/master/R/nn.R
#' Plot method for the nn function
#'
#' @details See \url{https://radiant-rstats.github.io/docs/model/nn.html} for an example in Radiant
#'
#' @param x Return value from \code{\link{nn}}
#' @param shiny Did the function call originate inside a shiny app
#' @param plots Plots to produce for the specified Neural Network model. Use "" to avoid showing any plots (default). Options are "olden" or "garson" for importance plots, or "net" to depict the network structure
#' @param size Font size used
#' @param pad_x Padding for explanatory variable labels in the network plot. Default value is 0.9, smaller numbers (e.g., 0.5) increase the amount of padding
#' @param nrobs Number of data points to show in dashboard scatter plots (-1 for all)
#' @param custom Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and \url{https://ggplot2.tidyverse.org} for options.
#' @param ... further arguments passed to or from other methods
#'
#' @examples
#' result <- nn(titanic, "survived", c("pclass", "sex"), lev = "Yes")
#' plot(result, plots = "net")
#' plot(result, plots = "olden")
#'
#' @seealso \code{\link{nn}} to generate results
#' @seealso \code{\link{summary.nn}} to summarize results
#' @seealso \code{\link{predict.nn}} for prediction
#'
#' @importFrom NeuralNetTools plotnet olden garson
#' @importFrom graphics par
#'
#' @export
plot.nn <- function(
  x, plots = "garson", size = 12, pad_x = 0.9, nrobs = -1,
  shiny = FALSE, custom = FALSE, ...
) {

  if (is.character(x) || !inherits(x$model, "nnet")) return(x)
  plot_list <- list()
  ncol <- 1

  if ("olden" %in% plots || "olsen" %in% plots) { ## legacy for typo
    plot_list[["olsen"]] <- NeuralNetTools::olden(x$model, x_lab = x$coefnames, cex_val = 4) +
      coord_flip() +
      theme_set(theme_gray(base_size = size)) +
      theme(legend.position = "none") +
      labs(title = paste0("Olden plot of variable importance (size = ", x$size, ", decay = ", x$decay, ")"))
  }

  if ("garson" %in% plots) {
    plot_list[["garson"]] <- NeuralNetTools::garson(x$model, x_lab = x$coefnames) +
      coord_flip() +
      theme_set(theme_gray(base_size = size)) +
      theme(legend.position = "none") +
      labs(title = paste0("Garson plot of variable importance (size = ", x$size, ", decay = ", x$decay, ")"))
  }

  if ("net" %in% plots) {
    ## don't need as much spacing at the top and bottom
    mar <- par(mar = c(0, 4.1, 0, 2.1))
    on.exit(par(mar = mar$mar))
    return(do.call(NeuralNetTools::plotnet, list(mod_in = x$model, x_names = x$coefnames, pad_x = pad_x, cex_val = size / 16)))
  }

  if ("pdp" %in% plots) {
    ncol <- 2
    for (pn in x$evar) {
      plot_list[[pn]] <- pdp::partial(
        x$model, pred.var = pn, plot = TRUE, rug = TRUE,
        prob = x$type == "classification", plot.engine = "ggplot2"
      ) + labs(y = "")
    }
  }

  if (x$type == "regression" && "dashboard" %in% plots) {
    plot_list <- plot.regress(x, plots = "dashboard", lines = "line", nrobs = nrobs, custom = TRUE)
    ncol <- 2
  }

  if (length(plot_list) > 0) {
    if (custom) {
      if (length(plot_list) == 1) plot_list[[1]] else plot_list
    } else {
      patchwork::wrap_plots(plot_list, ncol = ncol) %>%
        {if (shiny) . else print(.)}
    }
  }
}


mar <- par(mar = c(0, 0, 0, 0))

on.exit(par(mar = mar$mar))

plot(result_fech_nac, plots = "net", custom=T,size = 9, pad_x = 0.8, nrobs = -1,cex_val = 3)
Figure 3. Neural Network of Date of Birth

Figure 3. Neural Network of Date of Birth

#          C1_fech_nac_nas<- CONS_C1_df_dup_ENE_2020_prev52 %>% dplyr::filter(is.na(fech_nac))%>% distinct(HASH_KEY)

#plot(result_fech_nac, plots = "net", custom=T,size = 9, pad_x = 0.9, nrobs = -1,cex_val = 3)

summary(result_fech_nac)
Neural Network
Activation function  : Linear (regression)
Data                 : data.frame(C1_fech_nac_ties_summ_m_mat)[c("edad_al_ing", "ano_bd",      "numero_de_hijos", "edad_inicio_consumo", "edad_inicio_sustancia_principal")]
Response variable    : edad_al_ing
Explanatory variables: ano_bd, numero_de_hijos, edad_inicio_consumo, edad_inicio_sustancia_principal 
Network size         : 5 
Parameter decay      : 0 
Seed                 : 1245 
Network              : 4-5-1 with 31 weights
Nr obs               : 436 
Weights              :
    b->h1  i1->h1  i2->h1  i3->h1  i4->h1 
   -92.38    2.32 -464.17   18.38 -182.88 
    b->h2  i1->h2  i2->h2  i3->h2  i4->h2 
    69.27   10.05  161.87 -205.72  452.75 
    b->h3  i1->h3  i2->h3  i3->h3  i4->h3 
    -1.19    6.17  -10.09   -0.46   -2.56 
    b->h4  i1->h4  i2->h4  i3->h4  i4->h4 
   -31.31    7.03 -313.62  -13.41  -17.58 
    b->h5  i1->h5  i2->h5  i3->h5  i4->h5 
     0.98    4.89    0.15   -0.71    4.47 
     b->o   h1->o   h2->o   h3->o   h4->o   h5->o 
     0.25   -0.88   -0.37   -0.72    0.60    0.52  
CONS_C1_df_dup_ENE_2020_prev52_NA<-
 CONS_C1_df_dup_ENE_2020_prev52 %>%
  dplyr::filter(HASH_KEY %in% as.character(unlist(C1_fech_nac_nas[,c("HASH_KEY")])))%>%
    janitor::clean_names()%>%
            dplyr::select(row,hash_key,fech_nac,fech_ing, edad_al_ing, ano_bd, escolaridad_ultimo_ano_cursado,estado_conyugal,
                          numero_de_hijos,numero_de_hijos_ingreso_tratamiento_residencial,
                          edad_inicio_consumo,edad_inicio_sustancia_principal,fecha_ultimo_tratamiento)%>%
   dplyr::left_join(fech_nac_edad_replace_nas,"row", suffix=c("","_y"))%>%
   dplyr::rename("fech_nac_original"="fech_nac_y")%>%
   dplyr::select(-ends_with("_y"),-edad_inicio_sustancia_principal2, -edad_inicio_consumo2)%>%
   #sacar fechas de nacimiento inválidas, es decir, aquellas que son menores a la edad de inicio de consumo. Sólo un caso
   dplyr::mutate(edad_invalida=ifelse((edad_inicio_sustancia_principal>Prediction)|(edad_inicio_consumo>Prediction),1,0))%>%
   dplyr::filter(edad_invalida==0)%>%
    dplyr::mutate(fech_nac_corr=as.character(fech_nac_corr))

#39 usuarios
less_15_hash_more_one_age<-
      CONS_C1_df_dup_ENE_2020_prev52 %>%
      dplyr::filter(Edad_al_ing<15)%>%
        distinct(HASH_KEY)

CONS_C1_df_dup_ENE_2020_prev52_menos_15<-
CONS_C1_df_dup_ENE_2020_prev52 %>%
    dplyr::filter(HASH_KEY %in% as.character(unlist(less_15_hash_more_one_age[,c("HASH_KEY")])))%>%
   # dplyr::filter(HASH_KEY!="616a9f5147684b5bb649eff9936db849")%>%
    janitor::clean_names()%>%
            dplyr::select(row,hash_key,fech_nac,fech_ing, edad_al_ing, ano_bd, escolaridad_ultimo_ano_cursado,estado_conyugal,
                          numero_de_hijos,numero_de_hijos_ingreso_tratamiento_residencial,
                          edad_inicio_consumo,edad_inicio_sustancia_principal,fecha_ultimo_tratamiento)%>%
   dplyr::left_join(fech_nac_edad_al_ing_replace,"row", suffix=c("","_y"))%>%
   dplyr::rename("fech_nac_original"="fech_nac_y")%>%
   dplyr::select(-ends_with("_y"),-edad_inicio_sustancia_principal2, -edad_inicio_consumo2)%>%
   #sacar fechas de nacimiento inválidas, es decir, aquellas que son menores a la edad de inicio de consumo. Sólo un caso
   dplyr::mutate(edad_invalida=ifelse((edad_inicio_sustancia_principal>Prediction)|(edad_inicio_consumo>Prediction),1,0))%>%
   dplyr::filter(edad_invalida==0)%>%
    dplyr::mutate(fech_nac_corr=as.character(fech_nac_corr))


#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_
#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_
#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_
#HACER REEMPLAZO. 

#CONS_C1_df_dup_ENE_2020_prev52_NA
#CONS_C1_df_dup_ENE_2020_prev52_menos_16

CONS_C1_df_dup_ENE_2020_prev52 %>%
#NAs
  dplyr::left_join(CONS_C1_df_dup_ENE_2020_prev52_NA, by=c("HASH_KEY"="hash_key"),suffix=c("","_NAs")) %>%
  dplyr::mutate(OBS=case_when(HASH_KEY %in% as.character(as.vector(unlist(as.data.table(unlist(CONS_C1_df_dup_ENE_2020_prev52_NA["hash_key"])))))~glue::glue("{OBS};1.6.XX.NAs_ANN"),TRUE~OBS))%>%  
  dplyr::mutate(fech_nac= ifelse(!is.na(fech_nac_corr),as.character(fech_nac_corr),as.character(fech_nac))) %>%
  dplyr::select(-ends_with("_NAs")) %>% 
  dplyr::select(-edad_al_ing, -escolaridad_ultimo_ano_cursado, -estado_conyugal, -numero_de_hijos,
                -numero_de_hijos_ingreso_tratamiento_residencial, -edad_inicio_consumo, -edad_inicio_sustancia_principal, -fech_nac_corr,
                -fecha_ultimo_tratamiento, -numero_de_hijos2, -edad, -fech_nac_original, -n_por_hash, -edad_invalida)%>% #fech_nac_corr
  # dplyr::filter(!is.na(fech_nac_corr))%>%
  dplyr::rename("Edad_al_ing_NAs"="Prediction")%>%
#menos 15
  dplyr::left_join(CONS_C1_df_dup_ENE_2020_prev52_menos_15, by=c("HASH_KEY"="hash_key"),suffix=c("","_menos_15")) %>%
  dplyr::mutate(OBS=case_when(HASH_KEY %in% as.character(as.vector(unlist(as.data.table(unlist(CONS_C1_df_dup_ENE_2020_prev52_menos_15["hash_key"])))))~glue::glue("{OBS}1.6.XX.Age of less than 15 at admission"),TRUE~OBS))%>%  
  dplyr::mutate(fech_nac= ifelse(!is.na(fech_nac_corr),fech_nac_corr,as.character(fech_nac))) %>%
  dplyr::select(-ends_with("_menos_15")) %>% 
  dplyr::rename("Edad_al_ing_less15"="Prediction")%>%
  dplyr::select(-edad_al_ing, -escolaridad_ultimo_ano_cursado, -estado_conyugal, -numero_de_hijos, -numero_de_hijos_ingreso_tratamiento_residencial, -edad_inicio_consumo, -edad_inicio_sustancia_principal, -fecha_ultimo_tratamiento, -numero_de_hijos2, -fech_nac_original, -mean_pr, -diff_pr_ed_ing, -n_por_hash, -edad_invalida, -fech_nac_corr)%>%
#transformación de variables
  dplyr::mutate(id=`substr<-`(id,6,13,gsub("-", "",format(as.Date(lubridate::parse_date_time(as.Date(fech_nac),"Ymd")),"%d%m%Y")))) %>%
  #dplyr::mutate(id=`substr<-`(id,6,13,fech_nac)) %>%
  dplyr::mutate(id_mod=sub("(.{5}).", "\\1*",id)) %>%
  dplyr::mutate(id_mod=sub("(.{6}).", "\\1*",id_mod)) %>%
  dplyr::mutate(fech_nac=lubridate::parse_date_time(as.character(as.Date(fech_nac)),"Ymd")) %>%
  dplyr::mutate(ano_nac= as.numeric(stringi::stri_sub(as.character(fech_nac),1,4))) %>%
  dplyr::mutate(Edad= as.integer(lubridate::time_length(difftime(as.Date("2019-11-13"),as.Date(fech_nac)),"years"))) %>%
  dplyr::mutate(Edad_al_ing=lubridate::time_length(difftime(as.Date(fech_ing), as.Date(fech_nac)),"years")) %>%
  dplyr::mutate(Edad_al_ing=replace(Edad_al_ing, is.na(Edad), NA)) %>%
  assign("CONS_C1_df_dup_ENE_2020_prev53",., envir = .GlobalEnv)

save.image(paste0(path,"/1_5.Rdata"))


4.3. Summary

By doing this, we lowered as much as possible the quantity of distinct information by HASH that may be contradictory. However, many of these inconsistencies can be resolved with SENDA professionals.

  • Age (Edad) (0)
  • SENDA ID (id) (3,413)
  • Masked SENDA ID (id_mod) (3,413)
  • Year of Birth (ano_nac) (0)
  • Date of Birth (fech_nac) (0)


5. Standardization of Some Variables

In this stage, we applied most of the recommendations made by SENDAs professionals:

  • Deletion of cases in Parole (n= 1)
  • Collapse the different plan types into the following: PG-PAB, PG-PAI, PG-PR, M-PAB, M-PAI, and M-PR.
  • Standardize type of plan by sex and gender identity
  • Declare as invalid the age of onset of drug use if they are higher than the current age
  • Declare as invalid if the age of drug use of the main substance.
  • Declare pregnancy as invalid data in men
  • Declare days treated as invalid if their value is less than 0
  • Define early and late drop-outs
  • Collapse and Standardize Substances into the following categories: hallucinogens (such as LSD, mushrooms); cocaine; amphetamine-type stimulants (eg., methamphetamine, ecstasy); inhalants; marijuana; opioids (eg., heroin, methadone, painkillers); cocaine paste base and crack; other substances; sedatives, hypnotics and tranquilizers; and others (such as anabolic steroids)
  • Declare as an invalid value the category “No substance use” in substance variables
  • Collapse marital status into the following categories: Married or in shared living arrangements; separated or divorced; single; and widowed
  • Collapse the occupational condition into an occupational status composed of three categories: Employed, Unemployed and Inactive
  • Restrict the occupational category exclusively to users that responded as actively working
  • Collapse Ages into five groups: More than 45 years, 36-45 years, 30-35 years, 25-29 years, and 18 to 24 years
  • Collapse motive of admission to treatment into spontaneous consultation, referral from a health center (primary health care level or others from the private and public health network),referral from an SUD treatment center (or other drug-related programs such as FONODROGAS), stated from the judicial system (such as First instance and guarantee courts, family courts, or other attorney offices), and other (such as the educational system, work, or social services not related to justice and health)
  • Collapse educational attainment into three categories: completed primary school or less, completed or incomplete high school, more than high school
  • Declare the category “Unknown” of the route of administration of the main substance as an invalid value
  • Declare the category “Unknown” of the frequency of consumption of the main Substance as an invalid value


CONS_C1_df_dup_ENE_2020_prev53 %>%
  dplyr::filter(is.na(Tipo.de.Plan) | Tipo.de.Plan != "PAI LV") %>% #Deletion of cases in Parole. OJO, TAMBIÉN ELIMINO A NA'S, BAJO A 188086 CASOS. Rows= 57716, 9972 Y 6736. Con el is.na, los mantengo.
# Ver si se pueden reemlpazar. La verdad es que no hay otro ingreso.
#CONS_C1_df_dup_ENE_2020_prev5 %>% dplyr::filter(concat %in% c("ebc40285ab6f4db453d9830453ec578a_2014_5_19", #"72c54d822de128e52f10511f3eb2d19f_2009_12_14", "03390de37aa8a95707905d07c33c0a97_2010_7_30"))
#LV se elimina el tipo de plan
  dplyr::mutate(OBS= case_when(Tipo.de.Plan %in% c("M-PAI2","M-PR2","PG PAI 2","Otro","CALLE") ~paste0(as.character(OBS),";","1.7.01. Collapsed Treatment Plans"),
                               TRUE ~ as.character(OBS)))%>%
  dplyr::mutate(tipo_de_plan=dplyr::recode(Tipo.de.Plan,"M-PAI2"= "M-PAI", "M-PR2"="M-PR","PG PAI 2"="PG-PAI", "Otro"="PG-PR", "CALLE"="PG-PR"))%>%
#Table 10. Type of Plan by Gender Identity and Sex
#En SER 2020, dejé los Calle y Otro en PG-PAB, pero ahora lo dejaré en PG-PR
  dplyr::mutate(OBS= case_when(identidad.de.genero=="Masculino" & sexo=="Hombre" & tipo_de_plan %in% c("M-PAI", "M-PR", "M-PAB") ~paste0(as.character(OBS),";","1.7.02. Standardized Plans By Sex & Gender Id"),
                               TRUE ~ as.character(OBS)))%>%
  dplyr::mutate(tipo_de_plan=ifelse(identidad.de.genero=="Masculino" & sexo=="Hombre" & tipo_de_plan=="M-PAI","PG-PAI", as.character(tipo_de_plan))) %>%
  dplyr::mutate(tipo_de_plan=ifelse(identidad.de.genero=="Masculino" & sexo=="Hombre" & tipo_de_plan=="M-PR","PG-PR", as.character(tipo_de_plan))) %>%
  dplyr::mutate(tipo_de_plan=ifelse(identidad.de.genero=="Masculino" & sexo=="Hombre" & tipo_de_plan=="M-PAB","PG-PAB", as.character(tipo_de_plan))) %>%
  dplyr::mutate(tipo_de_plan=as.factor(tipo_de_plan)) %>%
#Si la edad de inicio de consumo es mayor a la edad actual, lo mismo la edad de iniciación a la sustancia principal, las declaro perdidas.
  dplyr::mutate(OBS=case_when(Edad.Inicio.Consumo>Edad ~ paste0(as.character(OBS),";","1.7.03. Invalid Age Of Onset of Drug Use, Higher than age"),
                              TRUE ~ as.character(as.character(OBS))))%>% #dplyr::filter(Edad.Inicio.Consumo>Edad)
  dplyr::mutate(edad_ini_cons= ifelse(Edad.Inicio.Consumo<=Edad, Edad.Inicio.Consumo, NA)) %>%
  dplyr::mutate(OBS=case_when(Edad.Inicio..Sustancia.Principal.>Edad ~ paste0(as.character(OBS),";","1.7.04. Invalid Age Of Onset of Primary Substance, Higher than age"),
                           TRUE ~ as.character(OBS)))%>%
  dplyr::mutate(edad_ini_sus_prin= ifelse(Edad.Inicio..Sustancia.Principal.<=Edad, Edad.Inicio..Sustancia.Principal., NA)) %>% #dplyr::filter(Edad.Inicio..Sustancia.Principal.>Edad)
  #CONS_C1_df_dup_ENE_2020_prev5 %>% dplyr::filter(Edad.Inicio.Consumo>20) %>% dplyr::mutate(edad_ini_cons= ifelse(Edad.Inicio.Consumo<=Edad, Edad.Inicio.Consumo, NA)) %>% dplyr::select(Edad, Edad.Inicio.Consumo, edad_ini_cons)
#Si se inicia en la sustancia principal o inicia el consum a una edad menor a 5 años, lo declaro como perdido.
  dplyr::mutate(OBS=case_when(edad_ini_cons<5 ~ paste0(as.character(OBS),";","1.7.05. Invalid Age Of Onset of Drug Use, < 5 yrs age"),
                              TRUE ~ as.character(OBS)))%>%
  dplyr::mutate(edad_ini_cons= ifelse(edad_ini_cons<5,NA,edad_ini_cons)) %>%
  dplyr::mutate(OBS=case_when(edad_ini_sus_prin<5 ~ paste0(as.character(OBS),";","1.7.06. Invalid Age Of Onset of Primary Substance, < 5 yrs age"),
                              TRUE ~ as.character(OBS)))%>%
  dplyr::mutate(edad_ini_sus_prin= ifelse(edad_ini_sus_prin<5,NA,edad_ini_sus_prin)) %>%
  #CONS_C1_df_dup_ENE_2020_prev3 %>% dplyr::filter(embarazo=="Si") %>% group_by(sexo) %>% summarise(n())
#Embarazos en hombres se declaran como perdidos
 #dplyr::mutate(OBS=if_else(embarazo=="Si" & sexo=="Hombre",paste0(as.character(OBS),";","1.7.07. Invalid Pregnancy= Pregnant Man"),  as.character(OBS)))%>%
   dplyr::mutate(OBS=case_when(embarazo=="Si" & sexo=="Hombre" ~paste0(as.character(OBS),";","1.7.07. Invalid Pregnancy= Pregnant Man"),
                                TRUE ~ as.character(OBS)))%>%
  dplyr::mutate(embarazo= ifelse(embarazo=="Si" & sexo=="Hombre",NA,as.character(embarazo))) %>%
  #dplyr::mutate(embarazo= dplyr::recode("1"="No","2"="Si")) %>%
  dplyr::mutate(embarazo=as.factor(embarazo)) %>%
#     mutate(mpg=replace(mpg, cyl==4, NA)) %>%
#CAMBIOS DIAS
  dplyr::mutate(OBS=case_when(dias_trat<0 ~ paste0(as.character(OBS),";","1.7.08. Negative Treatment Days, Changed Treat Days"),
                           TRUE ~ as.character(OBS)))%>%
  dplyr::mutate(dias_trat=replace(dias_trat,dias_trat<0, NA)) %>%
    assign("CONS_C1_df_dup_ENE_2020_prev6",., envir = .GlobalEnv) 
#glue::glue("{OBS};1.7.07. Invalid Pregnancy= Pregnant Man"),OBS))
#157322 156785  dplyr::filter(row %in% c("157322", "156785"))
#dplyr::filter(row %in% c("157322", "156775","156785"))
#View(table(CONS_C1_df_dup_ENE_2020_prev6$OBS))
#View(table(CONS_C1_df_dup_ENE_2020$obs))

  #CONS_C1_df_dup_ENE_2020_prev3 %>% dplyr::mutate(dias_trat_alta_temprana=ifelse(dias_trat>90,0,1)) %>% dplyr::group_by(dias_trat_alta_temprana,motivodeegreso) %>% summarise(n())
  CONS_C1_df_dup_ENE_2020_prev6 %>% 
  dplyr::mutate(dias_trat_alta_temprana=ifelse(dias_trat>=90,0,1)) %>%
  dplyr::mutate(dias_trat_alta_temprana=as.factor(dias_trat_alta_temprana)) %>%
  dplyr::mutate(dias_trat_alta_temprana= dplyr::recode(dias_trat_alta_temprana, "1"="Menos de 90 días", "0"="Mayor o igual a 90 días")) %>%
  dplyr::mutate(motivodeegreso_mod= ifelse(dias_trat_alta_temprana=="Menos de 90 días" & motivodeegreso=="Abandono", "Abandono Temprano",as.character(motivodeegreso))) %>% 
  dplyr::mutate(motivodeegreso_mod= ifelse(dias_trat_alta_temprana=="Mayor o igual a 90 días" & motivodeegreso=="Abandono", "Abandono Tardio",as.character(motivodeegreso_mod))) %>%
      dplyr::mutate(motivodeegreso_mod= dplyr::case_when(grepl("trativa",as.character(motivodeegreso_mod))~"Alta Administrativa",TRUE~as.character(motivodeegreso_mod)))%>%
  dplyr::mutate(motivodeegreso_mod=as.factor(motivodeegreso_mod)) %>%
  #data.table(table(CONS_C1_df_dup_ENE_2020_prev3$Sustancia.Principal))
  dplyr::mutate(sus_principal= as.character(Sustancia.Principal)) %>%
  dplyr::mutate(sus_principal= dplyr::recode(sus_principal,
                                             "Hipnóticos "= "Tranquilizantes e Hipnóticos",
                                             "Sedantes:  diazepam, Valium, clonazepam, Ravotril, alprazolam, adax, barbitúricos, fenobarbital." = "Tranquilizantes e Hipnóticos",
                                             "Anfetaminas"="Estimulante tipo anfetaminas",
                                             "Extasis"="Estimulante tipo anfetaminas",
                                             "Fenilciclidina"="Estimulante tipo anfetaminas",
                                             "Metanfetaminas y otros derivados"="Estimulante tipo anfetaminas",
                                             "Otros Estimulantes"="Estimulante tipo anfetaminas",
                                             "LSD"="Alucinógenos",
                                             "Otros Alucinógenos"="Alucinógenos",
                                             "Crack"="Pasta Base",
                                             "Heroína"="Opioides",
                                             "Metadona"="Opioides",
                                             "Otros Opioides Analgésicos: morfina, codeína, meperidina,  demerol, tramadol, tramal."="Opioides",
                                             "Inhalables: neopren, GHB, óxido nitroso (gas hilarante), \"poppers\", solventes, gasolina, diluyente"="Inhalables",
                                             "Esteroides Anabólicos"="Otros")) %>%
dplyr::mutate(sus_principal=as.factor(sus_principal)) %>%
#data.table(table(CONS_C1_df_dup_ENE_2020_prev3$Otras.Sustancias.nº1))
  dplyr::mutate(otras_sus1=as.character(`Otras.Sustancias.nº1`)) %>%
  dplyr::mutate(otras_sus1= dplyr::recode(otras_sus1,
                                              "Hipnóticos "= "Tranquilizantes e Hipnóticos",
                                              "Sedantes:  diazepam, Valium, clonazepam, Ravotril, alprazolam, adax, barbitúricos, fenobarbital." = "Tranquilizantes e Hipnóticos",
                                              "Anfetaminas"="Estimulante tipo anfetaminas",
                                              "Extasis"="Estimulante tipo anfetaminas",
                                              "Fenilciclidina"="Estimulante tipo anfetaminas",
                                              "Metanfetaminas y otros derivados"="Estimulante tipo anfetaminas",
                                              "Otros Estimulantes"="Estimulante tipo anfetaminas",
                                              "LSD"="Alucinógenos",
                                              "Otros Alucinógenos"="Alucinógenos",
                                              "Crack"="Pasta Base",
                                              "Heroína"="Opioides",
                                              "Metadona"="Opioides",
                                              "Otros Opioides Analgésicos: morfina, codeína, meperidina,  demerol, tramadol, tramal."="Opioides",
                                              "Inhalables: neopren, GHB, óxido nitroso (gas hilarante), \"poppers\", solventes, gasolina, diluyente"="Inhalables",
                                              "Esteroides Anabólicos"="Otros",
                                              "Hongos"="Alucinógenos")) %>%
dplyr::mutate(OBS=case_when(otras_sus1=="SIN CONSUMO" ~ paste0(OBS,";","1.7.09. Other Substances1, Invalid due to No Consumption"),
                            TRUE ~ OBS))%>%
dplyr::mutate(otras_sus1= dplyr::na_if(otras_sus1, "SIN CONSUMO")) %>%
dplyr::mutate(otras_sus1=as.factor(otras_sus1)) %>%        
#data.table(table(CONS_C1_df_dup_ENE_2020_prev3$Otras.Sustancias.nº2))
  dplyr::mutate(otras_sus2=as.character(`Otras.Sustancias.nº2`)) %>%
  dplyr::mutate(otras_sus2= dplyr::recode(otras_sus2,
                                              "Hipnóticos "= "Tranquilizantes e Hipnóticos",
                                              "Sedantes:  diazepam, Valium, clonazepam, Ravotril, alprazolam, adax, barbitúricos, fenobarbital." = "Tranquilizantes e Hipnóticos",
                                              "Anfetaminas"="Estimulante tipo anfetaminas",
                                              "Extasis"="Estimulante tipo anfetaminas",
                                              "Fenilciclidina"="Estimulante tipo anfetaminas",
                                              "Metanfetaminas y otros derivados"="Estimulante tipo anfetaminas",
                                              "Otros Estimulantes"="Estimulante tipo anfetaminas",
                                              "LSD"="Alucinógenos",
                                              "Otros Alucinógenos"="Alucinógenos",
                                              "Crack"="Pasta Base",
                                              "Heroína"="Opioides",
                                              "Metadona"="Opioides",
                                              "Otros Opioides Analgésicos: morfina, codeína, meperidina,  demerol, tramadol, tramal."="Opioides",
                                              "Inhalables: neopren, GHB, óxido nitroso (gas hilarante), \"poppers\", solventes, gasolina, diluyente"="Inhalables",
                                              "Esteroides Anabólicos"="Otros",
                                              "Hongos"="Alucinógenos")) %>%
dplyr::mutate(OBS=case_when(otras_sus2=="SIN CONSUMO"~paste0(OBS,";","1.7.10. Other Substances2, Invalid due to No Consumption"),
                         TRUE ~ OBS))%>%    
dplyr::mutate(otras_sus2= dplyr::na_if(otras_sus2, "SIN CONSUMO")) %>%
dplyr::mutate(otras_sus2=as.factor(otras_sus2)) %>%    
#data.table(table(CONS_C1_df_dup_ENE_2020_prev3$Otras.Sustancias.nº3))
  dplyr::mutate(otras_sus3=as.character(`Otras.Sustancias.nº3`)) %>%
  dplyr::mutate(otras_sus3= dplyr::recode(otras_sus3,
                                              "Hipnóticos "= "Tranquilizantes e Hipnóticos",
                                              "Sedantes:  diazepam, Valium, clonazepam, Ravotril, alprazolam, adax, barbitúricos, fenobarbital." = "Tranquilizantes e Hipnóticos",
                                              "Anfetaminas"="Estimulante tipo anfetaminas",
                                              "Extasis"="Estimulante tipo anfetaminas",
                                              "Fenilciclidina"="Estimulante tipo anfetaminas",
                                              "Metanfetaminas y otros derivados"="Estimulante tipo anfetaminas",
                                              "Otros Estimulantes"="Estimulante tipo anfetaminas",
                                              "LSD"="Alucinógenos",
                                              "Otros Alucinógenos"="Alucinógenos",
                                              "Crack"="Pasta Base",
                                              "Heroína"="Opioides",
                                              "Metadona"="Opioides",
                                              "Otros Opioides Analgésicos: morfina, codeína, meperidina,  demerol, tramadol, tramal."="Opioides",
                                              "Inhalables: neopren, GHB, óxido nitroso (gas hilarante), \"poppers\", solventes, gasolina, diluyente"="Inhalables",
                                              "Esteroides Anabólicos"="Otros",
                                              "Hongos"="Alucinógenos")) %>%
dplyr::mutate(OBS=case_when(otras_sus3=="SIN CONSUMO"~paste0(OBS,";","1.7.11. Other Substances3, Invalid due to No Consumption"),
                         TRUE ~ OBS))%>%    
dplyr::mutate(otras_sus3= dplyr::na_if(otras_sus3, "SIN CONSUMO")) %>%
dplyr::mutate(otras_sus3=as.factor(otras_sus3)) %>%    
#data.table(table(CONS_C1_df_dup_ENE_2020_prev3$Sustancia.de.Inicio))
dplyr::mutate(sus_ini=as.character(Sustancia.de.Inicio)) %>%
dplyr::mutate(sus_ini= dplyr::recode(sus_ini,
                                              "Hipn?os "= "Tranquilizantes e Hipnóticos",
                                              "Sedantes:  diazepam, Valium, clonazepam, Ravotril, alprazolam, adax, barbit?os, fenobarbital." = "Tranquilizantes e Hipnóticos",
                                              "Anfetaminas"="Estimulante tipo anfetaminas",
                                              "Extasis"="Estimulante tipo anfetaminas",
                                              "Fenilciclidina"="Estimulante tipo anfetaminas",
                                              "Metanfetaminas y otros derivados"="Estimulante tipo anfetaminas",
                                              "Otros Estimulantes"="Estimulante tipo anfetaminas",
                                              "LSD"="Alucinógenos",
                                              "Otros Alucin?os"="Alucinógenos",
                                              "Crack"="Pasta Base",
                                              "Hero?"="Opioides",
                                              "Coca?"="Cocaína",
                                              "Metadona"="Opioides",
                                              "Otros Opioides Analg?cos: morfina, code?, meperidina,  demerol, tramadol, tramal."="Opioides",
                                              "Inhalables: neopren, GHB, ?o nitroso (gas hilarante), \"poppers\", solventes, gasolina, diluyente"="Inhalables",
                                              "Esteroides Anabólicos"="Otros",
                                              "Hongos"="Alucinógenos")) %>% 
dplyr::mutate(sus_ini=as.factor(sus_ini)) %>%    
#data.table(table(CONS_C1_df_dup_ENE_2020_prev3$Estado.Conyugal))
#marital status (single, married/with partner, separated/divorced, widow)
dplyr::mutate(estado_conyugal=ifelse(as.character(Estado.Conyugal)=="Casado"|as.character(Estado.Conyugal)=="Conviviente"|as.character(Estado.Conyugal)=="conviviente civil", "Casado/Conviviente",stringr::str_trim(as.character(Estado.Conyugal)))) %>%
dplyr::mutate(estado_conyugal=ifelse(estado_conyugal=="Separado"|estado_conyugal=="Divorciado"|estado_conyugal=="Anulado", "Separado/Divorciado",estado_conyugal)) %>% 
dplyr::mutate(OBS=case_when(estado_conyugal=="Nocontesta"~paste0(OBS,";","1.7.12. Marital State, Invalid due to No Response"),
                            TRUE~OBS))%>%    
dplyr::mutate(estado_conyugal=ifelse(estado_conyugal=="Nocontesta",NA,estado_conyugal)) %>%
dplyr::mutate(estado_conyugal=as.factor(estado_conyugal)) %>%
#occupational status (inactive, unemployed, employed)  
#data.table(table(CONS_C1_df_dup_ENE_2020_prev3$Condicion.Ocupacional))
#
#Esta variable busca establecer si la persona desarrolló alguna actividad laboral o productiva, es decir, si participó en la producción de un bien o servicio para la venta o para el autoconsumo, por un mínimo de una hora semanal en la semana anterior (lunes a domingo) a la entrevista. Los quehaceres del hogar no son considerados una actividad productiva o ‘razón de ocupación’.
#Si la respuesta es afirmativa se debe seleccionar la opción “Trabajando actualmente” Si la persona No Trabajó, interesa saber si está Desocupada (“busca trabajo por primera vez” o “cesante”) o Inactiva (que corresponde al resto de la opciones, quehaceres del hogar, estudiando, jubilado, etc.) 
#
#Inactivo, desempleado, empleado
#     Buscando trabajo por primera vez |        245        0.21        0.21
#                              Cesante |     43,299       36.67       36.87
#              Estudiando sin trabajar |      1,353        1.15       38.02
#Incapacitado permanente para trabajar |        294        0.25       38.27
#                                   NA |          1        0.00       38.27
#                     No busca Trabajo |      1,250        1.06       39.33
#                           Otra razón |      1,348        1.14       40.47
#   Pensionado o jubilado sin trabajar |      1,872        1.59       42.05
#                 Quehaceres del hogar |      7,683        6.51       48.56
#                             Rentista |         78        0.07       48.63
#                        Sin actividad |      7,449        6.31       54.93
#               Trabajando actualmente |     53,120       44.98       99.92
#              Trabajando y estudiando |         97        0.08      100.00
dplyr::mutate(estatus_ocupacional=ifelse(Condicion.Ocupacional=="Trabajando actualmente","Empleado",
                                         ifelse(Condicion.Ocupacional=="Buscando trabajo por primera vez"|Condicion.Ocupacional=="Cesante",
                                                "Desempleado","Inactivo"))) %>%
dplyr::mutate(estatus_ocupacional=as.factor(estatus_ocupacional)) %>%
#Comprende la relación entre una persona económicamente activa y su trabajo o empleo. Sólo se aplica aquellas personas que se encuentran trabajando al momento de ingresar a tratamiento (las que respondieron 1 en la pregunta anterior). Para las personas que no están trabajando (estudiantes, cesante, etc.) esta opción estará bloqueada.
#data.table(table(CONS_C1_df_dup_ENE_2020_prev3$Categoría.Ocupacional))
dplyr::mutate(cat_ocupacional=ifelse(Condicion.Ocupacional!="Trabajando actualmente",NA,as.character(`Categoría.Ocupacional`))) %>%
dplyr::mutate(cat_ocupacional=as.factor(cat_ocupacional)) %>%
#18-24, 25- 29, 30-35, 36-45, and 45+.
dplyr::mutate(Edad_grupos=ifelse(Edad>45,">45",
      ifelse(Edad>=36,"36-45",
      ifelse(Edad>=30,"30-35",
      ifelse(Edad>=25,"25-29",
      ifelse(Edad>=18,"18-24",
      NA)))))) %>%
dplyr::mutate(Edad_grupos=as.factor(Edad_grupos)) %>%
# motive of admission to treatment (spontaneous consultation, referral from a health center, indicated in the judicial system, other)
#data.table(table(CONS_C1_df_dup_ENE_2020_prev3$Origen.de.Ingreso))
dplyr::mutate(origen_ingreso=ifelse(as.character(Origen.de.Ingreso)=="Consulta Espontánea", "Consulta Espontánea",as.character(Origen.de.Ingreso))) %>%
dplyr::mutate(origen_ingreso=ifelse(origen_ingreso=="Establecimiento Educacional"|origen_ingreso=="Otros"|origen_ingreso=="Trabajo (empresa o empleador)"|origen_ingreso=="Servicios Sociales u otros (iglesia, Mideplan, ser. comunitarios, etc.)", "Otros",origen_ingreso)) %>%
dplyr::mutate(origen_ingreso=ifelse(origen_ingreso=="Juzgado con Competencia en Crimen"|origen_ingreso=="Juzgado de Garantía"|origen_ingreso=="Libertad Vigilada"|origen_ingreso=="Juzgado de Familia"|origen_ingreso=="Juzgado de Policía"|origen_ingreso=="Otros (fiscalía)","Sector Justicia",origen_ingreso)) %>%
dplyr::mutate(origen_ingreso=ifelse(origen_ingreso=="Otros de la Red de Salud General Privado"|origen_ingreso=="Estab. de APS"|origen_ingreso=="Estab. de APS "|origen_ingreso=="Otros de la Red de Salud General Público", "Sector Salud", origen_ingreso)) %>%
dplyr::mutate(origen_ingreso=ifelse(origen_ingreso=="Otro Centro Tratamiento Drogas"|origen_ingreso=="FONODROGAS"|origen_ingreso=="Previene","Otro Centro Tratamiento Drogas/FONODROGAS/Previene",origen_ingreso)) %>%
dplyr::mutate(origen_ingreso=as.factor(origen_ingreso)) %>%
# education attainment (completed primary school or less, completed or incomplete high school, more that high school)
# data.table(table(CONS_C1_df_dup_ENE_2020_prev3$Escolaridad..último.año.cursado.))
dplyr::mutate(escolaridad=ifelse(as.character(`Escolaridad..último.año.cursado.`)=="BASICA COMPLETA"|as.character(`Escolaridad..último.año.cursado.`)=="BASICA INCOMPLETA"|as.character(`Escolaridad..último.año.cursado.`)=="SIN ESTUDIOS","Ed Primaria Completa o Menor",as.character(`Escolaridad..último.año.cursado.`))) %>%
dplyr::mutate(OBS=case_when(escolaridad=="NO SABE O NO SE APLICA"~paste0(OBS,";","1.7.13. Educational Attainment, Invalid due to No Response"),
                            TRUE ~ OBS))%>%    
dplyr::mutate(escolaridad=ifelse(escolaridad=="MEDIA COMPLETA"|escolaridad=="MEDIA INCOMPLETA","Ed Secundaria Completa o Menor",
      ifelse(escolaridad=="NO SABE O NO SE APLICA",NA,
      ifelse(escolaridad %in% c("TECNICA COMPLETA", "TECNICA INCOMPLETA", "UNIVERSITARIA COMPLETA O MAS", "UNIVERSITARIA INCOMPLETA"), "Mayor a Ed Secundaria",escolaridad)))) %>%
dplyr::mutate(escolaridad=as.factor(escolaridad)) %>%
# pattern of drug used (daily, 4 to 6 days a week, 2 to 3 days a week, 1 day a week or less),
    #data.table(table(CONS_C1_df_dup_ENE_2020_prev3$Vía.Administración..Sustancia.Principal.))
dplyr::mutate(via_adm_sus_prin=as.character(`Vía.Administración..Sustancia.Principal.`))%>%
dplyr::mutate(OBS=case_when(via_adm_sus_prin== "No sabe"~paste0(OBS,";","1.7.14. Route of Adm Primary Substance, Invalid due to Unknown"),
                            TRUE ~ OBS))%>%    
dplyr::mutate(via_adm_sus_prin=ifelse(via_adm_sus_prin== "No sabe",NA,as.character(via_adm_sus_prin))) %>%
dplyr::mutate(via_adm_sus_prin=as.factor(via_adm_sus_prin)) %>%
#data.table(table(CONS_C1_df_dup_ENE_2020_prev3$Frecuencia.de.Consumo..Sustancia.Principal.))
dplyr::mutate(freq_cons_sus_prin=as.character(Frecuencia.de.Consumo..Sustancia.Principal.))%>%
dplyr::mutate(OBS=case_when(freq_cons_sus_prin== "Desconocida"~paste0(OBS,";","1.7.15. Frequency of Consumption Primary Substance, Invalid due to Unknown"),
                            TRUE ~ OBS))%>%    
dplyr::mutate(freq_cons_sus_prin=ifelse(freq_cons_sus_prin== "Desconocida",NA,as.character(freq_cons_sus_prin))) %>%
dplyr::mutate(freq_cons_sus_prin=as.factor(freq_cons_sus_prin)) %>%
as.data.frame(.) %>%  
assign("CONS_C1_df_dup_ENE_2020",., envir = .GlobalEnv)
  
codebook::val_labels(CONS_C1_df_dup_ENE_2020$`Diagnóstico.Trs..Psiquiátrico.CIE.10`) <- c('En estudio(NA)' = 1,
'Esquizofrenia, trastorno esquizotípico y trastornos de ideas delirantes(F20-29)' = 2,
'Retraso Mental(F70-79)' = 3,
'Sin trastorno(NA)' = 4,
'Trastornos de la conducta alimentaria(F50)' = 5,
'Trastornos de la personalidad y del comportamiento del adulto(F60-69)' = 6,
'Trastornos de los hábitos y del control de los impulsos(F63)' = 7,
'Trastornos del comportamiento asociados a disfunciones fisiológicas y a factores somáticos(F50-59)' = 8,
'Trastornos del Desarrollo Psicológico(F80-89)' = 9,
'Trastornos del humor (afectivos).(F30-39)' = 10,
'Trastornos mentales orgánicos, incluidos los sintomáticos(F00-09)' = 11,
'Trastornos neuróticos, secundarios a situaciones estresantes y somatomorfos(F40-49)' = 12,
'Trs. del comportamiento y de las emociones de comienzo habitual en la infancia y adolescencia(F90-98)' = 13)
codebook::val_labels(CONS_C1_df_dup_ENE_2020$`X2.Diagnóstico.Trs..Psiquiátrico.CIE.10`) <- c('En estudio(NA)' = 1,
'Esquizofrenia, trastorno esquizotípico y trastornos de ideas delirantes(F20-29)' = 2,
'Retraso Mental(F70-79)' = 3,
'Sin trastorno(NA)' = 4,
'Trastornos de la conducta alimentaria(F50)' = 5,
'Trastornos de la personalidad y del comportamiento del adulto(F60-69)' = 6,
'Trastornos de los hábitos y del control de los impulsos(F63)' = 7,
'Trastornos del comportamiento asociados a disfunciones fisiológicas y a factores somáticos(F50-59)' = 8,
'Trastornos del Desarrollo Psicológico(F80-89)' = 9,
'Trastornos del humor (afectivos).(F30-39)' = 10,
'Trastornos mentales orgánicos, incluidos los sintomáticos(F00-09)' = 11,
'Trastornos neuróticos, secundarios a situaciones estresantes y somatomorfos(F40-49)' = 12,
'Trs. del comportamiento y de las emociones de comienzo habitual en la infancia y adolescencia(F90-98)' = 13)
codebook::val_labels(CONS_C1_df_dup_ENE_2020$`X3.Diagnóstico.Trs..Psiquiátrico.CIE.10`) <- c('En estudio(NA)' = 1,
'Esquizofrenia, trastorno esquizotípico y trastornos de ideas delirantes(F20-29)' = 2,
'Retraso Mental(F70-79)' = 3,
'Sin trastorno(NA)' = 4,
'Trastornos de la conducta alimentaria(F50)' = 5,
'Trastornos de la personalidad y del comportamiento del adulto(F60-69)' = 6,
'Trastornos de los hábitos y del control de los impulsos(F63)' = 7,
'Trastornos del comportamiento asociados a disfunciones fisiológicas y a factores somáticos(F50-59)' = 8,
'Trastornos del Desarrollo Psicológico(F80-89)' = 9,
'Trastornos del humor (afectivos).(F30-39)' = 10,
'Trastornos mentales orgánicos, incluidos los sintomáticos(F00-09)' = 11,
'Trastornos neuróticos, secundarios a situaciones estresantes y somatomorfos(F40-49)' = 12,
'Trs. del comportamiento y de las emociones de comienzo habitual en la infancia y adolescencia(F90-98)' = 13)
codebook::val_labels(CONS_C1_df_dup_ENE_2020$`Diagnóstico.Trs..Psiquiátrico.SUB.CIE.10`) <- c('Abuso de sustancias que no producen dependencia(F55X)' = 1,
'Delirium no inducido por alcohol u otras sustancias psicotropas(F059)' = 2,
'Demencia en enfermedades clasificadas en otro lugar(F02)' = 3,
'Demencia sin especificación(F03)' = 4,
'Demencia vascular(F01)' = 5,
'Episodios depresivos(F32)' = 6,
'Factores psicológicos y del comportamiento en trastornos o enfermedades clasificados en otro lugar(F54)' = 7,
'Otros trastornos de ansiedad(F41)' = 8,
'Otros trastornos de la personalidad y del comportamiento del adulto(F68)' = 9,
'Otros trastornos de las emociones y del comportamiento de comienzo habitual en la infancia y adolescencia(F98)' = 10,
'Otros trastornos del desarrollo psicológico(F88)' = 11,
'Otros trastornos del humor (afectivos)(F38)' = 12,
'Otros trastornos mentales debidos a lesión o disfunción cerebral o a enfermedad somática(F06)' = 13,
'Otros trastornos neuróticos(F48)' = 14,
'Otros trastornos psicóticos no orgánicos(F28)' = 15,
'Psicosis no orgánica sin especificación(F29)' = 16,
'Reacciones a estrés grave y trastornos de adaptación(F43)' = 17,
'Síndrome amnésico orgánico no inducido por alcohol u otras sustancias psicotropas(F04)' = 18,
'Transformación persistente de la personalidad no atribuible a lesión o enfermedad cerebral(F62)' = 19,
'Trastorno bipolar(F31)' = 20,
'Trastorno de ideas delirantes inducidas(F24)' = 21,
'Trastorno de la personalidad y del comportamiento del adulto sin especificación(F69)' = 22,
'Trastorno del desarrollo psicológico sin especificación(F89)' = 23,
'Trastorno depresivo recurrente(F33)' = 24,
'Trastorno específico del desarrollo mixto(F83)' = 25,
'Trastorno esquizotípico.(F21)' = 26,
'Trastorno generalizado del desarrollo sin especificación(F849)' = 27,
'Trastorno mental orgánico o sintomático sin especificación(F09)' = 28,
'Trastorno mental sin especificación(F99)' = 29,
'Trastorno obsesivo-compulsivo(F42)' = 30,
'Trastornos de ideas delirantes persistentes.(F22)' = 31,
'Trastornos de la identidad sexual(F64)' = 32,
'Trastornos de la inclinación sexual(F65)' = 33,
'Trastornos de la personalidad y del comportamiento debidos a enfermedad, lesión o disfunción cerebral(F07)' = 34,
'Trastornos de las emociones de comienzo habitual en la infancia(F93)' = 35,
'Trastornos de los hábitos y del control de los impulsos(F63)' = 36,
'Trastornos del comportamiento asociados a disfunciones fisiológicas y a factores somáticos sin especificación(F59)' = 37,
'Trastornos del comportamiento social de comienzo habitual en la infancia y adolescencia(F94)' = 38,
'Trastornos del humor (afectivos) persistentes(F34)' = 39,
'Trastornos disociales(F91)' = 40,
'Trastornos disociales y de las emociones mixtos(F92)' = 41,
'Trastornos disociativos (de conversión)(F44)' = 42,
'Trastornos específicos de la personalidad(F60)' = 43,
'Trastornos específicos del desarrollo del aprendizaje escolar(F81)' = 44,
'Trastornos esquizoafectivos(F25)' = 45,
'Trastornos generalizados del desarrollo(F84)' = 46,
'Trastornos Hipercineticos(F90)' = 47,
'Trastornos mentales y del comportamiento en el puerperio no clasificados en otro lugar(F53)' = 48,
'Trastornos mixtos y otros trastornos de la personalidad(F61)' = 49,
'Trastornos no orgánicos del sueño(F51)' = 50,
'Trastornos psicológicos y del comportamiento del desarrollo y orientación sexuales(F66)' = 51,
'Trastornos psicóticos agudos y transitorios(F23)' = 52,
'Trastornos somatomorfos(F45)' = 53)
codebook::val_labels(CONS_C1_df_dup_ENE_2020$`X2.Diagnóstico.Trs..Psiquiátrico.SUB.CIE.10`) <- c('Abuso de sustancias que no producen dependencia(F55X)' = 1,
'Delirium no inducido por alcohol u otras sustancias psicotropas(F059)' = 2,
'Demencia en enfermedades clasificadas en otro lugar(F02)' = 3,
'Demencia en la enfermedad de Alzheimer(F00)' = 4,
'Disfunción sexual no orgánica(F52)' = 5,
'Episodios depresivos(F32)' = 6,
'Factores psicológicos y del comportamiento en trastornos o enfermedades clasificados en otro lugar(F54)' = 7,
'Otros trastornos de ansiedad(F41)' = 8,
'Otros trastornos de la personalidad y del comportamiento del adulto(F68)' = 9,
'Otros trastornos de las emociones y del comportamiento de comienzo habitual en la infancia y adolescencia(F98)' = 10,
'Otros trastornos del desarrollo psicológico(F88)' = 11,
'Otros trastornos del humor (afectivos)(F38)' = 12,
'Otros trastornos mentales debidos a lesión o disfunción cerebral o a enfermedad somática(F06)' = 13,
'Otros trastornos neuróticos(F48)' = 14,
'Otros trastornos psicóticos no orgánicos(F28)' = 15,
'Psicosis no orgánica sin especificación(F29)' = 16,
'Reacciones a estrés grave y trastornos de adaptación(F43)' = 17,
'Síndrome amnésico orgánico no inducido por alcohol u otras sustancias psicotropas(F04)' = 18,
'Transformación persistente de la personalidad no atribuible a lesión o enfermedad cerebral(F62)' = 19,
'Trastorno bipolar(F31)' = 20,
'Trastorno de ideas delirantes inducidas(F24)' = 21,
'Trastorno de la personalidad y del comportamiento del adulto sin especificación(F69)' = 22,
'Trastorno del desarrollo psicológico sin especificación(F89)' = 23,
'Trastorno depresivo recurrente(F33)' = 24,
'Trastorno esquizotípico.(F21)' = 25,
'Trastorno generalizado del desarrollo sin especificación(F849)' = 26,
'Trastorno mental orgánico o sintomático sin especificación(F09)' = 27,
'Trastorno mental sin especificación(F99)' = 28,
'Trastorno obsesivo-compulsivo(F42)' = 29,
'Trastornos de ideas delirantes persistentes.(F22)' = 30,
'Trastornos de la conducta alimentaria(F50)' = 31,
'Trastornos de la identidad sexual(F64)' = 32,
'Trastornos de la inclinación sexual(F65)' = 33,
'Trastornos de la personalidad y del comportamiento debidos a enfermedad, lesión o disfunción cerebral(F07)' = 34,
'Trastornos de las emociones de comienzo habitual en la infancia(F93)' = 35,
'Trastornos de los hábitos y del control de los impulsos(F63)' = 36,
'Trastornos del comportamiento asociados a disfunciones fisiológicas y a factores somáticos sin especificación(F59)' = 37,
'Trastornos del comportamiento social de comienzo habitual en la infancia y adolescencia(F94)' = 38,
'Trastornos del humor (afectivos) persistentes(F34)' = 39,
'Trastornos disociales(F91)' = 40,
'Trastornos disociales y de las emociones mixtos(F92)' = 41,
'Trastornos disociativos (de conversión)(F44)' = 42,
'Trastornos específicos de la personalidad(F60)' = 43,
'Trastornos específicos del desarrollo del aprendizaje escolar(F81)' = 44,
'Trastornos esquizoafectivos(F25)' = 45,
'Trastornos generalizados del desarrollo(F84)' = 46,
'Trastornos Hipercineticos(F90)' = 47,
'Trastornos mixtos y otros trastornos de la personalidad(F61)' = 48,
'Trastornos no orgánicos del sueño(F51)' = 49,
'Trastornos psicóticos agudos y transitorios(F23)' = 50,
'Trastornos somatomorfos(F45)' = 51)
codebook::val_labels(CONS_C1_df_dup_ENE_2020$`X3.Diagnóstico.Trs..Psiquiátrico.SUB.CIE.10`) <- c('Delirium no inducido por alcohol u otras sustancias psicotropas(F059)' = 1,
'Demencia vascular(F01)' = 2,
'Episodios depresivos(F32)' = 3,
'Factores psicológicos y del comportamiento en trastornos o enfermedades clasificados en otro lugar(F54)' = 4,
'Otros trastornos de ansiedad(F41)' = 5,
'Otros trastornos de la personalidad y del comportamiento del adulto(F68)' = 6,
'Otros trastornos de las emociones y del comportamiento de comienzo habitual en la infancia y adolescencia(F98)' = 7,
'Otros trastornos del desarrollo psicológico(F88)' = 8,
'Otros trastornos del humor (afectivos)(F38)' = 9,
'Otros trastornos mentales debidos a lesión o disfunción cerebral o a enfermedad somática(F06)' = 10,
'Otros trastornos neuróticos(F48)' = 11,
'Otros trastornos psicóticos no orgánicos(F28)' = 12,
'Psicosis no orgánica sin especificación(F29)' = 13,
'Reacciones a estrés grave y trastornos de adaptación(F43)' = 14,
'Síndrome amnésico orgánico no inducido por alcohol u otras sustancias psicotropas(F04)' = 15,
'Transformación persistente de la personalidad no atribuible a lesión o enfermedad cerebral(F62)' = 16,
'Trastorno bipolar(F31)' = 17,
'Trastorno de ideas delirantes inducidas(F24)' = 18,
'Trastorno de la personalidad y del comportamiento del adulto sin especificación(F69)' = 19,
'Trastorno del desarrollo psicológico sin especificación(F89)' = 20,
'Trastorno depresivo recurrente(F33)' = 21,
'Trastorno específico del desarrollo mixto(F83)' = 22,
'Trastorno específico del desarrollo psicomotor(F82)' = 23,
'Trastorno esquizotípico.(F21)' = 24,
'Trastorno mental orgánico o sintomático sin especificación(F09)' = 25,
'Trastorno mental sin especificación(F99)' = 26,
'Trastorno obsesivo-compulsivo(F42)' = 27,
'Trastornos de ideas delirantes persistentes.(F22)' = 28,
'Trastornos de la conducta alimentaria(F50)' = 29,
'Trastornos de la identidad sexual(F64)' = 30,
'Trastornos de la inclinación sexual(F65)' = 31,
'Trastornos de la personalidad y del comportamiento debidos a enfermedad, lesión o disfunción cerebral(F07)' = 32,
'Trastornos de las emociones de comienzo habitual en la infancia(F93)' = 33,
'Trastornos de los hábitos y del control de los impulsos(F63)' = 34,
'Trastornos del comportamiento asociados a disfunciones fisiológicas y a factores somáticos sin especificación(F59)' = 35,
'Trastornos del comportamiento social de comienzo habitual en la infancia y adolescencia(F94)' = 36,
'Trastornos del humor (afectivos) persistentes(F34)' = 37,
'Trastornos disociales y de las emociones mixtos(F92)' = 38,
'Trastornos disociativos (de conversión)(F44)' = 39,
'Trastornos específicos de la personalidad(F60)' = 40,
'Trastornos específicos del desarrollo del aprendizaje escolar(F81)' = 41,
'Trastornos esquizoafectivos(F25)' = 42,
'Trastornos Hipercineticos(F90)' = 43,
'Trastornos mixtos y otros trastornos de la personalidad(F61)' = 44,
'Trastornos no orgánicos del sueño(F51)' = 45,
'Trastornos psicológicos y del comportamiento del desarrollo y orientación sexuales(F66)' = 46,
'Trastornos psicóticos agudos y transitorios(F23)' = 47,
'Trastornos somatomorfos(F45)' = 48)

#http://www.edras.cl/wg/data.edras.cl/resources-files-repository/Clasificacion_de_trastornos_mentales_CIE10.pdf
write.csv2(CONS_C1_df_dup_ENE_2020, file ="CONS_C1_df_dup_ENE_2020.csv")

 

6. Exploratory Probabilistic Deduplication

One of the main objectives of this stage of the project is to identify and separate each treatment for each user in a given time as a unique entity. This is shown in diagram of data preparation. The standardization of the age let us reduce a great amount of comparisons between every pair of records, making matching more feasible in terms of computational resources. For example, if we decided to compare each pair under consideration, we would have the number of cases (n= 118,088) multiplied by itself, leading to a total of 13,944,775,744 comparisons. To reach our objective, it was necessary to explore the principal causes that explain why or how a case matched with another. From duplicated cases, we knew how many records shared the same HASH and date of admission. But we needed to explore whether there would be other possible rules that would help to identify distinct treatments.

6.1 Perfect Duplicates of HASH and Date of Admission

#create the duplicated dataset, following the recommendation to separate columns
duplicated_rows_concat <- data.frame(duplicated_HASH_date = duplicated(CONS_C1_df_dup_ENE_2020[,c("HASH_KEY","fech_ing_ano","fech_ing_mes","fech_ing_dia")]), 
                                     row_dup_HASH_date = 1:nrow(CONS_C1_df_dup_ENE_2020[,c("HASH_KEY","fech_ing_ano","fech_ing_mes","fech_ing_dia")])) #%>%
  #arroja 117,620 casos únicos, aunque son muchos menos
as.data.table(CONS_C1_df_dup_ENE_2020)[, dup_hash_date := .N, by = c("HASH_KEY","fech_ing_ano","fech_ing_mes","fech_ing_dia")] %>% ##dim() #arroja 117,190 casos únicos. PERO CUIDADO: EN LOS QUE TIENEN 2, 3, 4, 5 Y MÁS, HAY CASOS QUE SON ÚNICOS TAMBIÉN (POR ESO UN DISTINCT NO LOS CAPTURA)
  dplyr::group_by(dup_hash_date) %>%
  dplyr::summarise(n=n()) %>%
  dplyr::mutate(perc = round(n / sum(n),2)*100) %>%
  dplyr::mutate(perc = paste0(perc,"%")) %>%
  dplyr::mutate(Tot.Cases = n/dup_hash_date) %>%
# Duplicated rows
#  data.frame(table(duplicated_rows_concat$duplicated_HASH_date,exclude=NULL),
#            `%`=paste0(round(prop.table(table(duplicated_rows_concat$duplicated_HASH_date,exclude=NULL)),3)*100,"%")) %>%
# as.data.frame(.) %>%  
  knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
                   caption="Table 13. Times that the combination of HASH-Key & Date of Admission may appear in the dataset", 
               col.names= c("Times", " Frequencies", "Percentage", "Unique Cases"),  align =rep('c', 4))  %>%
     kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 12)
`summarise()` ungrouping output (override with `.groups` argument)
Table 13. Times that the combination of HASH-Key & Date of Admission may appear in the dataset
Times Frequencies Percentage Unique Cases
1 117,189 99% 117,189
2 798 1% 399
3 72 0% 24
4 24 0% 6
5 5 0% 1


In Table 13 we can see that most of the cases had at least one case with the same combination of HASH-Key and date of admission.


require(zoo)
#CONS_C1_df_dup_ENE_2020 %>%
as.data.table(CONS_C1_df_dup_ENE_2020)[, dup_hash_date := .N, by = c("HASH_KEY","fech_ing_ano","fech_ing_mes","fech_ing_dia")] %>% 
  dplyr::mutate(fech_ing_qrt=zoo::as.yearqtr(fech_ing)) %>%
  dplyr::select(fech_ing_qrt,dup_hash_date) %>%  dplyr::group_by(fech_ing_qrt) %>% 
  dplyr::summarise(duplicated = sum(dup_hash_date>1),n = sum(dup_hash_date), perc_dup=duplicated/n) %>%
  dplyr::filter(fech_ing_qrt>=2007) %>%
  ggplot2::ggplot(aes(x = fech_ing_qrt, y = perc_dup, label = paste0("n=",n))) +
  geom_line(color = "#0076A8", size=1) +
  #geom_text(aes(x = fech_ing_qrt, y = perc_dup-0.05, label = paste0(n)), vjust = -1,hjust = 0, angle=45, size=3) +
  theme_bw() +
  labs(y="% of Duplicated Data",x="Years & Quarters, Date of Admission",caption="Note. Two cases with date of admission before 2007 were ignored; Percentages indicate the number of entries that have the \n same HASH & date of admission one or more times divided by the number of cases that are admitted in each quarter and \nyear.") + 
  scale_y_continuous(limits=c(0, .075),labels = scales::percent) +
  scale_x_yearqtr(format="%YQ%q", n=20) +
  theme(axis.text.x = element_text(vjust = 0.5,hjust = 0.5,angle = 60), plot.caption=element_text(hjust=0)) 
Figure 4. Duplicated entries by year and quarter

Figure 4. Duplicated entries by year and quarter

#PARA RESULTADOS
dup_cases_quarter_n<-data.table::as.data.table(CONS_C1_df_dup_ENE_2020)[, dup_hash_date := .N, by = c("HASH_KEY","fech_ing_ano","fech_ing_mes","fech_ing_dia")] %>% dplyr::filter(dup_hash_date>1) %>% nrow()


From Figure 4, we can see that people admitted to treatments from 2007 to 2008 presented most of the duplicated cases, while treatments that started from the second semester of 2015 had almost no duplicated cases. (n= 899).


Cases shown in Table 13 represent exact matches. But at this stage of the research, we needed to detect more complex patterns, in terms of cases with similar HASH-Key and date of admission. This approach is merely exploratory and aims to find cases with imperfect agreements on one or more of the variables. Once some variables are standardized, we would be able to use this approach to detect and replace values and erase duplicated cases. We ran data into a package in the software Stata called dtalink, with the following criteria:

  1. Hash Key: if matched, add 25 points; if not, subtract 25 points
  2. SENDA ID: if matched, add 25 points; if not, subtract 25 points
  3. Sex: if matched, add 10 points
  4. Center ID: if matched, add 10 points
  5. Date of Admission: if matched, add 30 points; if not, subtract 30 points. Also, we added a caliper of 5 days to still be considered as a match with a difference of 5 days or less.
  6. We added a Blocking variable of Age to reduce the time of computation and match each case within people with the same Age.
  7. We consider a significant match if it accumulates at least 70 points.


The code used in stata is shown here:

# import delimited "G:\Mi unidad\Alvacast\SISTRAT 2019 (github)\SUD_CL\CONS_C1_df_dup_ENE_2020.csv", delimiter(";") clear 
# 
# cap gen date_in = mdy(real_fech_ing_mes, real_fech_ing_dia, real_fech_ing_ano)
# cap gen date_in = mdy(fech_ing_mes, fech_ing_dia, fech_ing_ano)
# 
# generate id_match = _n
# cap drop _id
# dtalink hash_key 25 -25 id 25 -25 sexo 10 0 idcentro 10 0 date_in 30 -30 5, block(edad) cutoff(70)
# drop if missing(_score)
# qui save "G:\Mi unidad\Alvacast\SISTRAT 2019 (github)\Stata Duplicates Match\_CONS_C1_df_match70_2020_02_11.dta", replace

#####to_export_labels
# export<-
#   rbind(paste0('import delimited "', gsub('/', '\\', path, fixed=T),'\\CONS_C1_df_dup_ENE_2020.csv"')) %>% 
#   rbind('delimiter(";") clear')%>%
#   rbind('cap gen date_in = mdy(real_fech_ing_mes, real_fech_ing_dia, real_fech_ing_ano)') %>% 
#   rbind(
 export<-
 data.frame(final="clear all") %>% 
  rbind("ssc install dtalink") %>% 
  rbind(paste0('import delimited "', gsub('/', '\\', path, fixed=T),'\\CONS_C1_df_dup_ENE_2020.csv"'))%>%
  dplyr::rename("*final"="final") %>% 
  #rbind('delimiter(";") clear')%>%
  rbind('cap gen date_in = mdy(real_fech_ing_mes, real_fech_ing_dia, real_fech_ing_ano)') %>% 
  rbind('cap gen date_in = mdy(fech_ing_mes, fech_ing_dia, fech_ing_ano)') %>% 
  rbind('generate id_match = _n') %>% 
  rbind('cap drop _id') %>% 
  rbind('dtalink hash_key 25 -25 id 25 -25 sexo 10 0 idcentro 10 0 date_in 30 -30 5, block(edad) cutoff(70)')%>%   rbind('drop if missing(_score)')%>%
  rbind(paste0('qui save "', gsub('/', '\\', path, fixed=T),'\\_CONS_C1_df_match70_2020_02_11.dta", replace'))

export %>% knitr::kable("html") %>% 
kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size =10) 
*final
clear all
ssc install dtalink
import delimited “C:Fondecytunidad (github)_C1_df_dup_ENE_2020.csv”
cap gen date_in = mdy(real_fech_ing_mes, real_fech_ing_dia, real_fech_ing_ano)
cap gen date_in = mdy(fech_ing_mes, fech_ing_dia, fech_ing_ano)
generate id_match = _n
cap drop _id
dtalink hash_key 25 -25 id 25 -25 sexo 10 0 idcentro 10 0 date_in 30 -30 5, block(edad) cutoff(70)
drop if missing(_score)
qui save “C:Fondecytunidad (github)_CONS_C1_df_match70_2020_02_11.dta”, replace
write.table(export, file = paste0(path,"/SUD_CL/__stata_dtalink.do"), sep = "",row.names = FALSE, quote = FALSE,fileEncoding="UTF-8")


*should be in the same folder of the .Rmd
cap do __stata_dtalink.do


matches_from_stata_c1 <- haven::read_dta(paste0(path,"/Stata Duplicates Match/_CONS_C1_df_match70_2020_02_11.dta"))
matches_from_stata_c1 <-matches_from_stata_c1 %>% dplyr::rename(score = 3, matchID = 1, row_id=2) 
matches_from_stata_c1  %>%
  dplyr::arrange(score,matchID,hash_key) %>%
  dplyr::select(score, matchID, hash_key, ano_bd, idcentro, date_in, fech_ing, fech_egres, edad, dias_trat) %>%
  as.data.frame() %>%
    knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
                   caption="Table 14. Preliminary View of Matches from Stata", align =rep('c', 100),
                 col.names= c("Score", " Pair ID", "HASH Key", "Yearly Dataset", "Center ID", "Date of\n Admission (num)", "Date of\nAdmission", "Date of\nDischarge", "Age", "Days of\n Treatment")) %>%
     kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 8) %>%
    kableExtra::scroll_box(width = "100%", height = "350px")
Table 14. Preliminary View of Matches from Stata
Score Pair ID HASH Key Yearly Dataset Center ID Date of Admission (num) Date of Admission Date of Discharge Age Days of Treatment
90 25 cae3ce4f0d72b2bc5caec9bb0c248cbb 2,017 427 20,165 2015-03-18 2017-02-28 32 713
90 25 cae3ce4f0d72b2bc5caec9bb0c248cbb 2,015 258 20,170 2015-03-23 2015-06-01 32 70
90 26 da8446e2a23cc414fe90cdef5c328393 2,017 109 20,493 2016-02-09 2017-05-18 36 464
90 26 da8446e2a23cc414fe90cdef5c328393 2,016 652 20,488 2016-02-04 2016-02-08 36 4
90 29 0420d8b5c6e37ec61fac25b8e7420098 2,016 215 20,411 2015-11-19 2016-03-02 25 104
90 29 0420d8b5c6e37ec61fac25b8e7420098 2,015 205 20,409 2015-11-17 2015-11-19 25 2
90 34 53bc5e00bb156a94ac9d28c3e4ea6bad 2,016 290 20,622 2016-06-17 2016-07-18 31 31
90 34 53bc5e00bb156a94ac9d28c3e4ea6bad 2,016 497 20,618 2016-06-13 2016-06-16 31 3
90 36 605f41215fb434557f055dbe69425ca7 2,016 591 19,848 2014-05-05 2016-02-25 63 661
90 36 605f41215fb434557f055dbe69425ca7 2,014 221 19,848 2014-05-05 2015-01-28 63 268
90 43 8ff9ddb833c166772b47ef7b213ee1fe 2,016 215 20,755 2016-10-28 2016-12-12 26 45
90 43 8ff9ddb833c166772b47ef7b213ee1fe 2,016 490 20,752 2016-10-25 2016-10-27 26 2
90 44 a251bc3b8a8c9d5379c9f143e361beae 2,016 591 19,948 2014-08-13 2016-03-16 36 581
90 44 a251bc3b8a8c9d5379c9f143e361beae 2,014 221 19,948 2014-08-13 2015-01-28 36 168
90 45 a7303a4d5ebe8f9cd997b4a5c94a1063 2,016 591 19,929 2014-07-25 2016-02-25 51 580
90 45 a7303a4d5ebe8f9cd997b4a5c94a1063 2,014 221 19,929 2014-07-25 2015-01-28 51 187
90 47 d21691fef499fdd7950e08ffbe4bd85e 2,016 591 19,953 2014-08-18 2016-03-30 65 590
90 47 d21691fef499fdd7950e08ffbe4bd85e 2,014 221 19,953 2014-08-18 2015-01-28 65 163
90 52 02f14eea313de5469675fd320aced2f0 2,015 591 19,757 2014-02-03 2015-09-14 50 588
90 52 02f14eea313de5469675fd320aced2f0 2,014 221 19,757 2014-02-03 2015-01-28 50 359
90 53 048d3d2bb9bcf7abb349df2eba2159a9 2,015 591 19,948 2014-08-13 2015-02-27 27 198
90 53 048d3d2bb9bcf7abb349df2eba2159a9 2,014 221 19,948 2014-08-13 2015-01-28 27 168
90 54 05dff3bdb42240fc43957a6164c72614 2,015 202 19,703 2013-12-11 2015-03-31 41 475
90 54 05dff3bdb42240fc43957a6164c72614 2,013 209 19,702 2013-12-10 2013-12-13 41 3
90 56 091097377864a64fc815e91874889a39 2,015 591 19,850 2014-05-07 2015-04-22 38 350
90 56 091097377864a64fc815e91874889a39 2,014 221 19,850 2014-05-07 2015-01-28 38 266
90 57 0f4f97817b2d74b2acfba08f84bd6864 2,015 591 19,880 2014-06-06 2015-09-30 50 481
90 57 0f4f97817b2d74b2acfba08f84bd6864 2,014 221 19,880 2014-06-06 2015-01-28 50 236
90 58 134b7ea569aa9ed5ba59d5ad22b16a69 2,015 591 19,512 2013-06-03 2015-02-27 73 634
90 58 134b7ea569aa9ed5ba59d5ad22b16a69 2,014 221 19,512 2013-06-03 2015-01-28 73 604
90 60 155df34fb2da8a81811226b70d301dd7 2,015 591 19,948 2014-08-13 2015-02-27 31 198
90 60 155df34fb2da8a81811226b70d301dd7 2,014 221 19,948 2014-08-13 2015-01-28 31 168
90 62 17e82828a754c5fbb4f83967371346cc 2,015 502 19,646 2013-10-15 2015-03-26 45 527
90 62 17e82828a754c5fbb4f83967371346cc 2,013 123 19,646 2013-10-15 2014-01-29 45 106
90 66 273d6328b26f3efabfa81453964bd948 2,015 591 19,848 2014-05-05 2015-02-27 53 298
90 66 273d6328b26f3efabfa81453964bd948 2,015 221 19,848 2014-05-05 2015-01-28 53 268
90 67 27fc4f766852f125b1206a32768ec0c9 2,015 201 20,135 2015-02-16 2015-03-25 36 37
90 67 27fc4f766852f125b1206a32768ec0c9 2,015 141 20,130 2015-02-11 2015-02-19 36 8
90 69 3128223a53c6fd5073cc754afacf3082 2,015 234 19,776 2014-02-22 2015-03-06 40 377
90 69 3128223a53c6fd5073cc754afacf3082 2,014 488 19,776 2014-02-22 2014-02-28 40 6
90 71 3237eebf40a8eb9bafd18e8507a2dc9e 2,015 591 19,906 2014-07-02 2015-03-31 37 272
90 71 3237eebf40a8eb9bafd18e8507a2dc9e 2,014 221 19,906 2014-07-02 2015-01-28 37 210
90 73 36922b8b1d7f029f7a01cba3afe9d581 2,015 591 19,960 2014-08-25 2015-05-29 46 277
90 73 36922b8b1d7f029f7a01cba3afe9d581 2,014 221 19,960 2014-08-25 2015-01-28 46 156
90 75 3998e69d517e1f4883f96bb55a15d9fa 2,015 591 19,848 2014-05-05 2015-09-15 57 498
90 75 3998e69d517e1f4883f96bb55a15d9fa 2,014 221 19,848 2014-05-05 2015-01-28 57 268
90 92 6f7b6e9d16e34de12f8653909c0a0a03 2,015 591 19,759 2014-02-05 2015-04-28 40 447
90 92 6f7b6e9d16e34de12f8653909c0a0a03 2,014 221 19,759 2014-02-05 2015-01-28 40 357
90 94 721bc3745874465f0999251d780a23ff 2,015 502 19,652 2013-10-21 2015-01-30 43 466
90 94 721bc3745874465f0999251d780a23ff 2,013 123 19,655 2013-10-24 2014-01-29 43 97
90 100 82e1dd6e553705eeef9fac96639c3998 2,015 591 19,764 2014-02-10 2015-04-14 39 428
90 100 82e1dd6e553705eeef9fac96639c3998 2,014 221 19,764 2014-02-10 2015-01-28 39 352
90 102 922d7529b6791c741669408d2e66a06b 2,015 104 20,251 2015-06-12 2015-12-01 37 172
90 102 922d7529b6791c741669408d2e66a06b 2,015 163 20,248 2015-06-09 2015-06-12 37 3
90 108 9ebfd4884f69716970b5fb8a413dfe13 2,015 502 19,645 2013-10-14 2015-05-28 39 591
90 108 9ebfd4884f69716970b5fb8a413dfe13 2,013 328 19,645 2013-10-14 2014-01-29 39 107
90 112 ae5e1c9f295e13b4e0e837bf7c0f5ea8 2,015 502 19,680 2013-11-18 2015-03-31 48 498
90 112 ae5e1c9f295e13b4e0e837bf7c0f5ea8 2,013 328 19,680 2013-11-18 2014-01-29 48 72
90 114 b2c468656911cf9b07bf48e53b7b7d98 2,015 291 19,876 2014-06-02 2015-02-11 39 254
90 114 b2c468656911cf9b07bf48e53b7b7d98 2,014 432 19,878 2014-06-04 2014-06-23 39 19
90 117 c76270d8d96a911bc658b16cd821d092 2,015 591 19,905 2014-07-01 2015-09-25 67 451
90 117 c76270d8d96a911bc658b16cd821d092 2,014 221 19,905 2014-07-01 2015-01-28 67 211
90 128 fad29ba5696619f25d981f9c3630b945 2,015 591 19,933 2014-07-29 2015-03-18 70 232
90 128 fad29ba5696619f25d981f9c3630b945 2,014 221 19,933 2014-07-29 2015-01-28 70 183
90 130 0d8e8fbed25c1091a9774a541928df4f 2,014 141 19,943 2014-08-08 2014-09-30 40 53
90 130 0d8e8fbed25c1091a9774a541928df4f 2,014 474 19,942 2014-08-07 2014-11-05 40 90
90 134 1f1695fa0918bcb6635f1d179bb9baee 2,014 502 19,704 2013-12-12 2015-01-29 29 413
90 134 1f1695fa0918bcb6635f1d179bb9baee 2,013 328 19,702 2013-12-10 2014-01-29 29 50
90 137 3e52d76d1a3eb2bc29033bcebe9c6527 2,014 502 19,614 2013-09-13 2014-07-29 27 319
90 137 3e52d76d1a3eb2bc29033bcebe9c6527 2,013 123 19,614 2013-09-13 2013-11-29 27 77
90 138 429718cc352bec4dff3cd8c5733dccb3 2,014 502 19,674 2013-11-12 2014-09-01 38 293
90 138 429718cc352bec4dff3cd8c5733dccb3 2,013 123 19,674 2013-11-12 2014-01-29 38 78
90 140 4869357c9d0a2fc7eb4ace9bdcd7a0b9 2,014 234 19,705 2013-12-13 2014-01-31 29 49
90 140 4869357c9d0a2fc7eb4ace9bdcd7a0b9 2,014 488 19,705 2013-12-13 2014-01-31 29 49
90 142 5107e6c772efe72ef73768500f771391 2,014 502 19,337 2012-12-10 2014-05-06 41 512
90 142 5107e6c772efe72ef73768500f771391 2,013 328 19,337 2012-12-10 2014-01-29 41 415
90 143 54d05d802656b0ffd3a4cb836c7d68ad 2,014 358 19,275 2012-10-09 2014-04-17 55 555
90 143 54d05d802656b0ffd3a4cb836c7d68ad 2,012 147 19,275 2012-10-09 2013-02-04 55 118
90 144 56ebb38e7d4cc24e6e97cc53ae447801 2,014 502 19,508 2013-05-30 2014-05-07 44 342
90 144 56ebb38e7d4cc24e6e97cc53ae447801 2,013 123 19,508 2013-05-30 2013-11-29 44 183
90 147 657addcf6decb77c802458436ee56c4e 2,014 271 19,905 2014-07-01 2014-12-31 47 183
90 147 657addcf6decb77c802458436ee56c4e 2,014 434 19,900 2014-06-26 2014-07-17 47 21
90 154 9155114c1bcfe7d222cb5e8728b8aedd 2,014 502 19,561 2013-07-22 2014-01-22 30 184
90 154 9155114c1bcfe7d222cb5e8728b8aedd 2,013 328 19,561 2013-07-22 2014-01-29 30 191
90 157 9ccc5cfc0851138860ce51a4d89d77be 2,014 502 19,375 2013-01-17 2014-08-01 26 561
90 157 9ccc5cfc0851138860ce51a4d89d77be 2,013 123 19,375 2013-01-17 2014-01-29 26 377
90 158 9e7148b53d0554a5eaae07093e20b7c6 2,014 271 19,642 2013-10-11 2014-01-12 37 93
90 158 9e7148b53d0554a5eaae07093e20b7c6 2,013 434 19,645 2013-10-14 2013-10-14 37 0
90 160 a5d6a4fccd71f93f8c62d1311e8ca567 2,014 502 19,669 2013-11-07 2014-07-04 51 239
90 160 a5d6a4fccd71f93f8c62d1311e8ca567 2,013 123 19,669 2013-11-07 2014-01-29 51 83
90 169 bd8ad6e1a808c54bfba85f133c577f36 2,014 502 19,520 2013-06-11 2014-09-24 48 470
90 169 bd8ad6e1a808c54bfba85f133c577f36 2,013 328 19,520 2013-06-11 2014-01-29 48 232
90 170 bd8ad6e1a808c54bfba85f133c577f36 2,014 502 19,520 2013-06-11 2014-05-06 48 329
90 170 bd8ad6e1a808c54bfba85f133c577f36 2,013 328 19,520 2013-06-11 2014-01-29 48 232
90 185 e17252513730b87dce6933fde5525757 2,014 502 19,688 2013-11-26 2014-07-20 33 236
90 185 e17252513730b87dce6933fde5525757 2,013 328 19,688 2013-11-26 2014-01-29 33 64
90 187 f937737d537e92fe5ed9b8272493d621 2,014 502 19,540 2013-07-01 2014-10-23 28 479
90 187 f937737d537e92fe5ed9b8272493d621 2,013 328 19,540 2013-07-01 2014-01-29 28 212
90 194 0375c58adaaf17110c8191a671a2bfdc 2,013 488 19,340 2012-12-13 2013-11-04 37 326
90 194 0375c58adaaf17110c8191a671a2bfdc 2,013 234 19,340 2012-12-13 2013-01-05 37 23
90 199 0e187294e0b3fd3410cffc8cef96b468 2,013 358 19,043 2012-02-20 2013-06-06 31 472
90 199 0e187294e0b3fd3410cffc8cef96b468 2,012 147 19,043 2012-02-20 2013-02-04 31 350
90 203 12831c3b982de6dda6de919ff0f4140f 2,013 158 19,656 2013-10-25 2013-11-15 52 21
90 203 12831c3b982de6dda6de919ff0f4140f 2,013 306 19,652 2013-10-21 2013-10-23 52 2
90 205 1c4701938ec1595156bf56106b61cbbe 2,013 358 19,187 2012-07-13 2013-02-26 45 228
90 205 1c4701938ec1595156bf56106b61cbbe 2,012 147 19,187 2012-07-13 2013-02-04 45 206
90 223 5079477dc4765094c91f4da9d95c7001 2,013 443 19,284 2012-10-18 2013-02-28 31 133
90 223 5079477dc4765094c91f4da9d95c7001 2,012 286 19,284 2012-10-18 2012-12-31 31 74
90 228 598a4ed83d5b81ad2b7388883d1333b8 2,013 219 19,374 2013-01-16 2013-01-22 32 6
90 228 598a4ed83d5b81ad2b7388883d1333b8 2,013 211 19,372 2013-01-14 2013-01-15 32 1
90 229 5c9cac03b530dd82b7c5744f8f46b9ca 2,013 443 19,298 2012-11-01 2013-02-28 40 119
90 229 5c9cac03b530dd82b7c5744f8f46b9ca 2,012 286 19,298 2012-11-01 2012-12-31 40 60
90 231 61893e1a7b98b0fea3284894c81649af 2,013 154 19,362 2013-01-04 2013-05-28 34 144
90 231 61893e1a7b98b0fea3284894c81649af 2,013 330 19,359 2013-01-01 2013-08-27 34 238
90 242 7988aecbaca8d7178964d5401696ff8c 2,013 443 19,274 2012-10-08 2013-03-28 36 171
90 242 7988aecbaca8d7178964d5401696ff8c 2,012 286 19,274 2012-10-08 2012-12-31 36 84
90 246 8674147dacd409cadae927788a76ddb8 2,013 443 19,298 2012-11-01 2013-03-28 40 147
90 246 8674147dacd409cadae927788a76ddb8 2,012 286 19,298 2012-11-01 2012-12-31 40 60
90 249 8b71bfa71147e21c3dbfc8eb810204c2 2,013 358 19,310 2012-11-13 2013-06-06 52 205
90 249 8b71bfa71147e21c3dbfc8eb810204c2 2,012 147 19,310 2012-11-13 2013-02-04 52 83
90 250 8e8629b27f854aff4f7a02790775f558 2,013 358 19,045 2012-02-22 2013-07-02 50 496
90 250 8e8629b27f854aff4f7a02790775f558 2,012 147 19,045 2012-02-22 2013-02-04 50 348
90 253 962b9e1606362b7ad96cd294eb1c3bf0 2,013 358 19,248 2012-09-12 2013-06-06 34 267
90 253 962b9e1606362b7ad96cd294eb1c3bf0 2,012 147 19,248 2012-09-12 2013-02-04 34 145
90 273 cd0d5384bb8c550bceb16b54643dc0fc 2,013 358 19,163 2012-06-19 2013-02-07 56 233
90 273 cd0d5384bb8c550bceb16b54643dc0fc 2,012 147 19,163 2012-06-19 2013-02-04 56 230
90 286 f252744df5e1cf4435f4283d418078b8 2,013 358 19,233 2012-08-28 2013-04-16 73 231
90 286 f252744df5e1cf4435f4283d418078b8 2,012 147 19,233 2012-08-28 2013-02-04 73 160
90 295 175982073c5af9c93b399f9049a960b7 2,012 215 18,984 2011-12-23 2012-06-05 61 165
90 295 175982073c5af9c93b399f9049a960b7 2,011 213 18,980 2011-12-19 2011-12-19 61 0
90 300 231ef6596f0de189851bcc8a25c79c1d 2,012 164 18,959 2011-11-28 2012-12-10 35 378
90 300 231ef6596f0de189851bcc8a25c79c1d 2,012 325 18,959 2011-11-28 2012-01-01 35 34
90 312 323e7c5a2f35734bce3e554869469733 2,012 164 18,688 2011-03-02 2012-03-02 46 366
90 312 323e7c5a2f35734bce3e554869469733 2,012 325 18,688 2011-03-02 2012-02-07 46 342
90 316 3d722d03aaa88c6ad4c039c860c1b837 2,012 200 18,996 2012-01-04 2012-04-11 29 98
90 316 3d722d03aaa88c6ad4c039c860c1b837 2,012 203 18,996 2012-01-04 2012-02-06 29 33
90 321 4b9938bc1b3be41164e311f7753178b6 2,012 200 18,869 2011-08-30 2012-04-02 42 216
90 321 4b9938bc1b3be41164e311f7753178b6 2,012 203 18,869 2011-08-30 2012-02-06 42 160
90 323 4d09755fb9fabb916e79dd436cff0e9a 2,012 164 18,828 2011-07-20 2012-03-05 42 229
90 323 4d09755fb9fabb916e79dd436cff0e9a 2,012 325 18,828 2011-07-20 2012-02-07 42 202
90 328 569ca4a19e9a95858ff2675b7b35a770 2,012 164 18,956 2011-11-25 2012-06-05 35 193
90 328 569ca4a19e9a95858ff2675b7b35a770 2,012 325 18,956 2011-11-25 2012-01-01 35 37
90 329 58badbe9a65a84604452cbe092153c1d 2,012 200 19,001 2012-01-09 2012-05-01 34 113
90 329 58badbe9a65a84604452cbe092153c1d 2,012 203 19,001 2012-01-09 2012-02-06 34 28
90 331 596fd9d33bfcca1f75a54b10f6c6a80f 2,012 259 18,855 2011-08-16 2012-08-21 34 371
90 331 596fd9d33bfcca1f75a54b10f6c6a80f 2,011 282 18,858 2011-08-19 2011-09-05 34 17
90 339 75433506b3be3c93efb5ebcc729c5abe 2,012 104 18,865 2011-08-26 2012-01-30 34 157
90 339 75433506b3be3c93efb5ebcc729c5abe 2,011 320 18,861 2011-08-22 2011-08-26 34 4
90 351 913b556bc20b8d7aefdb99528f01e516 2,012 200 18,949 2011-11-18 2012-04-20 31 154
90 351 913b556bc20b8d7aefdb99528f01e516 2,012 203 18,949 2011-11-18 2012-02-06 31 80
90 354 987b155109b2d916e67b399bf8923a6c 2,012 164 18,786 2011-06-08 2012-05-02 36 329
90 354 987b155109b2d916e67b399bf8923a6c 2,012 325 18,786 2011-06-08 2012-02-07 36 244
90 355 9fa763107a1c2df2f906a68429e4ad42 2,012 164 18,857 2011-08-18 2012-03-02 39 197
90 355 9fa763107a1c2df2f906a68429e4ad42 2,012 325 18,857 2011-08-18 2012-02-07 39 173
90 362 bae26bc2c87f1ca969aaca4615441aec 2,012 164 18,780 2011-06-02 2012-03-05 38 277
90 362 bae26bc2c87f1ca969aaca4615441aec 2,012 325 18,780 2011-06-02 2012-01-01 38 213
90 383 db1429e05188ff74a61a73f82895e318 2,012 200 18,998 2012-01-06 2012-12-18 59 347
90 383 db1429e05188ff74a61a73f82895e318 2,012 203 18,998 2012-01-06 2012-02-06 59 31
90 389 e9a62df800416fdc8525e7f0bda77c44 2,012 200 19,019 2012-01-27 2012-10-10 37 257
90 389 e9a62df800416fdc8525e7f0bda77c44 2,012 203 19,019 2012-01-27 2012-02-06 37 10
90 397 f5bf3ad03561a0960643e1def69fab74 2,012 164 18,690 2011-03-04 2012-03-05 34 367
90 397 f5bf3ad03561a0960643e1def69fab74 2,012 325 18,690 2011-03-04 2012-01-01 34 303
100 1 185607baea32aa787cb6471d1dac4dd1 2,019 191 21,521 2018-12-03 NA 36 345
100 1 185607baea32aa787cb6471d1dac4dd1 2,018 191 21,521 2018-12-03 NA 36 337
100 2 4405fc724d70190f51534f36393bc3d8 2,019 191 21,476 2018-10-19 NA 24 390
100 2 4405fc724d70190f51534f36393bc3d8 2,018 191 21,476 2018-10-19 NA 24 382
100 3 525345d2cfa31bb08e146ec8ffeca9ec 2,019 201 21,759 2019-07-29 NA 38 107
100 3 525345d2cfa31bb08e146ec8ffeca9ec 2,019 201 21,757 2019-07-27 2019-07-28 38 1
100 4 585c2a263cd9acecade5b67be1ca246a 2,019 163 21,677 2019-05-08 2019-07-09 46 62
100 4 585c2a263cd9acecade5b67be1ca246a 2,019 163 21,675 2019-05-06 2019-05-07 46 1
100 5 976dc6ea364c0e2ba7decc74c634291d 2,019 259 21,460 2018-10-03 2019-01-08 38 97
100 5 976dc6ea364c0e2ba7decc74c634291d 2,018 259 21,460 2018-10-03 2018-11-30 38 58
100 6 ac2d21c7e74ee78d2d1d18274fe0b5ad 2,019 316 21,279 2018-04-05 2019-07-18 58 469
100 6 ac2d21c7e74ee78d2d1d18274fe0b5ad 2,018 316 21,279 2018-04-05 2018-09-01 58 149
100 7 ecde0c8a8477604ba6402ca715e42756 2,019 191 21,306 2018-05-02 2019-10-31 66 547
100 7 ecde0c8a8477604ba6402ca715e42756 2,018 191 21,306 2018-05-02 NA 66 552
100 8 2e9905a6b295e0be61bd01cb5f8c248e 2,018 502 21,001 2017-07-01 2018-01-18 30 201
100 8 2e9905a6b295e0be61bd01cb5f8c248e 2,017 502 20,999 2017-06-29 2017-06-30 30 1
100 9 4885088d021c5f30f64a9807a881499e 2,018 162 21,094 2017-10-02 2018-07-04 22 275
100 9 4885088d021c5f30f64a9807a881499e 2,017 162 21,090 2017-09-28 2017-09-29 22 1
100 10 5796b3d422cfbd477a43d690071dcb5b 2,018 234 21,032 2017-08-01 2018-03-02 38 213
100 10 5796b3d422cfbd477a43d690071dcb5b 2,017 234 21,027 2017-07-27 2017-07-31 38 4
100 11 8b68b3387595ee18d0057869f43a8efe 2,018 106 21,209 2018-01-25 2018-12-13 64 322
100 11 8b68b3387595ee18d0057869f43a8efe 2,018 106 21,207 2018-01-23 2018-01-24 64 1
100 12 9567cde63baa9520fb45b3407c2ef52a 2,018 290 21,084 2017-09-22 2018-05-01 56 221
100 12 9567cde63baa9520fb45b3407c2ef52a 2,017 290 21,084 2017-09-22 2017-10-02 56 10
100 13 9d205b7173f2a71b5928d005c69a040c 2,018 316 21,180 2017-12-27 2018-08-29 60 245
100 13 9d205b7173f2a71b5928d005c69a040c 2,018 316 21,180 2017-12-27 2018-01-02 60 6
100 14 9ef4ea921c72b7936420a5e26e76ba1f 2,018 142 20,958 2017-05-19 2018-05-11 44 357
100 14 9ef4ea921c72b7936420a5e26e76ba1f 2,017 142 20,956 2017-05-17 2017-05-18 44 1
100 15 e1ecd86d864c123cedfa29842ac9541c 2,018 502 21,264 2018-03-21 2018-08-20 23 152
100 15 e1ecd86d864c123cedfa29842ac9541c 2,018 502 21,264 2018-03-21 2018-03-26 23 5
100 16 02f7df4d04fbcc4f95ccc66df7b81b94 2,017 294 19,064 2012-03-12 2017-06-01 26 1907
100 16 02f7df4d04fbcc4f95ccc66df7b81b94 2,012 294 19,064 2012-03-12 2012-10-10 26 212
100 17 27194cced9e25a4edfe35c454a529219 2,017 600 20,265 2015-06-26 2017-04-01 50 645
100 17 27194cced9e25a4edfe35c454a529219 2,015 600 20,265 2015-06-26 2015-08-25 50 60
100 18 2dbbfcebaccc50d0892ec8734d8dd604 2,017 122 20,360 2015-09-29 2017-03-06 29 524
100 18 2dbbfcebaccc50d0892ec8734d8dd604 2,015 122 20,360 2015-09-29 2015-12-11 29 73
100 19 4d85c6bd3567bdf4fc24e386ee740ff7 2,017 261 20,402 2015-11-10 2017-08-01 54 630
100 19 4d85c6bd3567bdf4fc24e386ee740ff7 2,015 261 20,402 2015-11-10 2015-11-30 54 20
100 20 5ebd1bfc358df776e5ba4dab0d172bb1 2,017 146 20,342 2015-09-11 2017-01-25 58 502
100 20 5ebd1bfc358df776e5ba4dab0d172bb1 2,015 146 20,342 2015-09-11 2015-09-30 58 19
100 21 83e1f2097f359ed3ddb41e9ec41b2dbf 2,017 402 20,590 2016-05-16 2017-04-12 38 331
100 21 83e1f2097f359ed3ddb41e9ec41b2dbf 2,016 402 20,590 2016-05-16 2016-05-24 38 8
100 22 86c87947c57fe5bf419225d2534369a9 2,017 347 20,975 2017-06-05 2017-09-01 31 88
100 22 86c87947c57fe5bf419225d2534369a9 2,017 347 20,971 2017-06-01 2017-06-02 31 1
100 23 a5f3c1b66d5957edfd1364cdab54cbc2 2,017 259 20,806 2016-12-18 2017-11-30 62 347
100 23 a5f3c1b66d5957edfd1364cdab54cbc2 2,016 259 20,804 2016-12-16 2016-12-17 62 1
100 24 bf95b129fd3ab7693cc710bb45c1abab 2,017 109 19,954 2014-08-19 2017-05-30 43 1015
100 24 bf95b129fd3ab7693cc710bb45c1abab 2,015 109 19,954 2014-08-19 2015-06-01 43 286
100 27 e1cd21bb52065f68035d8d9f9443ae45 2,017 251 21,063 2017-09-01 2017-11-20 48 80
100 27 e1cd21bb52065f68035d8d9f9443ae45 2,017 251 21,059 2017-08-28 2017-08-30 48 2
100 28 f32ea28c827f4d8a73a3f99fa0fa4109 2,017 430 20,852 2017-02-02 2017-06-01 37 119
100 28 f32ea28c827f4d8a73a3f99fa0fa4109 2,017 430 20,847 2017-01-28 2017-07-01 37 154
100 30 180142fbce98ed9b3132e0c546b7992a 2,016 259 20,754 2016-10-27 2016-12-28 46 62
100 30 180142fbce98ed9b3132e0c546b7992a 2,016 259 20,752 2016-10-25 2016-10-26 46 1
100 31 1e59a2135274d745735dd08bfaaeeabb 2,016 292 20,552 2016-04-08 2016-05-31 53 53
100 31 1e59a2135274d745735dd08bfaaeeabb 2,016 292 20,552 2016-04-08 2016-05-31 53 53
100 32 25eec2c706514c65bd8dbc4a03b4dd7a 2,016 402 20,137 2015-02-18 2016-07-27 32 525
100 32 25eec2c706514c65bd8dbc4a03b4dd7a 2,015 402 20,137 2015-02-18 2015-09-08 32 202
100 33 3ec371bde328f876a0f41f4840940cc0 2,016 497 20,473 2016-01-20 2016-03-25 29 65
100 33 3ec371bde328f876a0f41f4840940cc0 2,016 497 20,471 2016-01-18 2016-01-19 29 1
100 35 5eee299e6c3f1403c669a2dd0353355f 2,016 430 19,856 2014-05-13 2016-03-01 47 658
100 35 5eee299e6c3f1403c669a2dd0353355f 2,014 430 19,856 2014-05-13 2014-05-31 47 18
100 37 69c210167a765451d12a77a44dab23d4 2,016 143 19,981 2014-09-15 2016-05-01 33 594
100 37 69c210167a765451d12a77a44dab23d4 2,015 143 19,981 2014-09-15 2015-02-02 33 140
100 38 6deb5efeb53d85bcdd9895a241e62915 2,016 153 20,249 2015-06-10 2016-02-15 38 250
100 38 6deb5efeb53d85bcdd9895a241e62915 2,015 153 20,249 2015-06-10 2015-08-21 38 72
100 39 6e196643c6ee804095ae5b43eb20e3e1 2,016 221 20,311 2015-08-11 2016-04-27 36 260
100 39 6e196643c6ee804095ae5b43eb20e3e1 2,015 221 20,311 2015-08-11 2015-11-30 36 111
100 40 7349c214788c896b1ed5d9a6114ab07a 2,016 106 19,346 2012-12-19 2016-05-30 62 1258
100 40 7349c214788c896b1ed5d9a6114ab07a 2,014 106 19,346 2012-12-19 2014-08-01 62 590
100 41 800772b07703ea14aa5630daff975465 2,016 294 20,072 2014-12-15 2016-04-01 43 473
100 41 800772b07703ea14aa5630daff975465 2,015 294 20,072 2014-12-15 2015-05-29 43 165
100 42 80f1c15b1a4e57af59a06c9124d1eb88 2,016 430 19,774 2014-02-20 2016-07-01 46 862
100 42 80f1c15b1a4e57af59a06c9124d1eb88 2,014 430 19,774 2014-02-20 2014-06-02 46 102
100 46 c4396b22647f28f777c3b8c731506767 2,016 165 20,496 2016-02-12 2016-03-14 39 31
100 46 c4396b22647f28f777c3b8c731506767 2,016 165 20,496 2016-02-12 2016-02-13 39 1
100 48 dc64642e719cf9134ad7850686fa8864 2,016 122 19,600 2013-08-30 2016-05-02 38 976
100 48 dc64642e719cf9134ad7850686fa8864 2,013 122 19,600 2013-08-30 2013-10-31 38 62
100 49 dc64642e719cf9134ad7850686fa8864 2,016 122 19,600 2013-08-30 2016-05-02 38 976
100 49 dc64642e719cf9134ad7850686fa8864 2,013 122 19,597 2013-08-27 2013-08-30 38 3
100 50 fa723d030eaf1f22b50490fb19a501dc 2,016 141 20,010 2014-10-14 2016-02-25 39 499
100 50 fa723d030eaf1f22b50490fb19a501dc 2,014 141 20,010 2014-10-14 2014-11-25 39 42
100 51 fdbed29a4249df1666481a3caad71107 2,016 206 20,319 2015-08-19 2016-09-01 35 379
100 51 fdbed29a4249df1666481a3caad71107 2,016 206 20,319 2015-08-19 2016-08-31 35 378
100 55 066373dc007c7b8f42b1e49775c5c108 2,015 251 20,321 2015-08-21 2015-11-20 34 91
100 55 066373dc007c7b8f42b1e49775c5c108 2,015 251 20,321 2015-08-21 2015-11-20 34 91
100 59 13c4c39ca8620d6e74d8a4c3689f3bf3 2,015 358 20,102 2015-01-14 2015-05-07 38 113
100 59 13c4c39ca8620d6e74d8a4c3689f3bf3 2,015 358 20,102 2015-01-14 2015-03-04 38 49
100 61 17d75588e57851ce55b16371d4708d56 2,015 261 19,996 2014-09-30 2015-05-27 44 239
100 61 17d75588e57851ce55b16371d4708d56 2,014 261 19,996 2014-09-30 2014-12-10 44 71
100 63 242179b7bb1367dc561505f2fcc976d5 2,015 604 20,177 2015-03-30 2015-10-01 46 185
100 63 242179b7bb1367dc561505f2fcc976d5 2,015 604 20,173 2015-03-26 2015-06-01 46 67
100 64 24e23951c537c78033a00e1b548eef6c 2,015 225 20,341 2015-09-10 2015-12-29 38 110
100 64 24e23951c537c78033a00e1b548eef6c 2,015 225 20,339 2015-09-08 2015-09-09 38 1
100 65 259e10a1e99a0ddac8d1b23914166f50 2,015 604 20,138 2015-02-19 2015-09-30 85 223
100 65 259e10a1e99a0ddac8d1b23914166f50 2,015 604 20,138 2015-02-19 2015-06-01 85 102
100 68 29fed9a5b4a36d23cda02d92c068ea8a 2,015 292 19,284 2012-10-18 2015-08-10 49 1026
100 68 29fed9a5b4a36d23cda02d92c068ea8a 2,013 292 19,284 2012-10-18 2013-01-31 49 105
100 70 31dcb30ebde5c1145e2adf2029dc4212 2,015 133 19,866 2014-05-23 2015-01-28 40 250
100 70 31dcb30ebde5c1145e2adf2029dc4212 2,014 133 19,866 2014-05-23 2014-06-30 40 38
100 72 35ed3c7c597433db6a10db390f3d9433 2,015 194 20,240 2015-06-01 2016-03-02 45 275
100 72 35ed3c7c597433db6a10db390f3d9433 2,015 194 20,240 2015-06-01 2015-07-01 45 30
100 74 36d14b21dcea0a7ee23af9abb38486dc 2,015 617 20,213 2015-05-05 2015-11-03 41 182
100 74 36d14b21dcea0a7ee23af9abb38486dc 2,015 617 20,213 2015-05-05 2015-06-15 41 41
100 76 3cccc7d50c913b528c26f8f20d8dea3e 2,015 261 19,955 2014-08-20 2015-05-27 32 280
100 76 3cccc7d50c913b528c26f8f20d8dea3e 2,014 261 19,955 2014-08-20 2014-12-10 32 112
100 77 3d3eb927ae1e0e062c72d8e933f26a87 2,015 131 19,743 2014-01-20 2015-05-01 56 466
100 77 3d3eb927ae1e0e062c72d8e933f26a87 2,014 131 19,743 2014-01-20 2014-09-30 56 253
100 78 3dd53b702bd93dcfbd9e2f28b52e12be 2,015 220 20,165 2015-03-18 2016-01-31 44 319
100 78 3dd53b702bd93dcfbd9e2f28b52e12be 2,015 220 20,165 2015-03-18 2015-05-01 44 44
100 79 3f571f98320d185956b0a1f070f502a1 2,015 291 20,179 2015-04-01 2015-08-11 28 132
100 79 3f571f98320d185956b0a1f070f502a1 2,015 291 20,179 2015-04-01 2015-04-21 28 20
100 80 40b35051d3bac303c1e84e109b8e1cc6 2,015 291 20,100 2015-01-12 2015-10-07 37 268
100 80 40b35051d3bac303c1e84e109b8e1cc6 2,015 291 20,100 2015-01-12 2015-01-13 37 1
100 81 4139824436b10bf77da50baf1c90df2a 2,015 433 19,659 2013-10-28 2015-02-02 40 462
100 81 4139824436b10bf77da50baf1c90df2a 2,014 433 19,659 2013-10-28 2014-02-27 40 122
100 82 423db64c8cb41fbbade84a63873a942f 2,015 255 19,206 2012-08-01 2015-10-30 43 1185
100 82 423db64c8cb41fbbade84a63873a942f 2,013 255 19,206 2012-08-01 2013-03-28 43 239
100 83 514640ee9e0eaef70d42367cdf38cf1a 2,015 156 19,848 2014-05-05 2015-02-26 33 297
100 83 514640ee9e0eaef70d42367cdf38cf1a 2,014 156 19,848 2014-05-05 2014-05-06 33 1
100 84 579b0893032197f4f6f8d264c3e7ec24 2,015 133 20,150 2015-03-03 2015-06-16 41 105
100 84 579b0893032197f4f6f8d264c3e7ec24 2,015 133 20,150 2015-03-03 2015-03-04 41 1
100 85 5ecc3680fd76bc8479a4eba3d7d4eff1 2,015 109 19,184 2012-07-10 2015-07-31 45 1116
100 85 5ecc3680fd76bc8479a4eba3d7d4eff1 2,013 109 19,184 2012-07-10 2013-01-01 45 175
100 86 5f14de4ebb0dc7aaff0f73ef833d93ab 2,015 161 20,256 2015-06-17 2015-10-29 38 134
100 86 5f14de4ebb0dc7aaff0f73ef833d93ab 2,015 161 20,256 2015-06-17 2015-06-30 38 13
100 87 6426656e5d336215b6572d8cf207b36f 2,015 505 20,178 2015-03-31 2015-08-10 49 132
100 87 6426656e5d336215b6572d8cf207b36f 2,015 505 20,174 2015-03-27 2015-03-28 49 1
100 88 6829842cdd07d2d1dcda8eb8eed0b601 2,015 205 19,948 2014-08-13 2015-08-28 31 380
100 88 6829842cdd07d2d1dcda8eb8eed0b601 2,014 205 19,948 2014-08-13 2014-12-01 31 110
100 89 686ff4b6cf5483c8bf4423159f98857d 2,015 106 19,970 2014-09-04 2015-08-17 50 347
100 89 686ff4b6cf5483c8bf4423159f98857d 2,015 106 19,970 2014-09-04 2015-05-01 50 239
100 90 6c28ec590480e1c5dc7d2313af10ca75 2,015 143 20,030 2014-11-03 2015-10-13 43 344
100 90 6c28ec590480e1c5dc7d2313af10ca75 2,014 143 20,033 2014-11-06 2015-02-04 43 90
100 91 6f596c496e8d5be11c0b79c17566d573 2,015 428 20,054 2014-11-27 2015-12-04 48 372
100 91 6f596c496e8d5be11c0b79c17566d573 2,015 428 20,054 2014-11-27 2015-05-28 48 182
100 93 71df184b74186cab450f3962f694ef16 2,015 297 20,038 2014-11-11 2015-07-02 40 233
100 93 71df184b74186cab450f3962f694ef16 2,015 297 20,038 2014-11-11 2015-03-14 40 123
100 95 761faab7fc70227180be6e64b167a957 2,015 291 20,318 2015-08-18 2015-11-30 21 104
100 95 761faab7fc70227180be6e64b167a957 2,015 291 20,313 2015-08-13 2015-12-17 21 126
100 96 7c7a382fbee4f066ddc8afb03be3c826 2,015 153 20,243 2015-06-04 2015-10-26 38 144
100 96 7c7a382fbee4f066ddc8afb03be3c826 2,015 153 20,243 2015-06-04 2015-07-21 38 47
100 97 7ec8d4125a6b9116bd8f331f345c014b 2,015 430 19,766 2014-02-12 2016-03-01 41 748
100 97 7ec8d4125a6b9116bd8f331f345c014b 2,014 430 19,766 2014-02-12 2014-02-28 41 16
100 98 7f0bb9655e6b9839537389c9ff1812ad 2,015 428 19,998 2014-10-02 2015-03-20 32 169
100 98 7f0bb9655e6b9839537389c9ff1812ad 2,014 428 19,998 2014-10-02 2015-03-20 32 169
100 99 82c71d3710722a5d0bba9499037145a0 2,015 290 20,094 2015-01-06 2015-02-04 34 29
100 99 82c71d3710722a5d0bba9499037145a0 2,015 290 20,089 2015-01-01 2015-01-02 34 1
100 101 8f670f61c02bc3fbdc01da78b68b578c 2,015 294 19,932 2014-07-28 2015-05-29 31 305
100 101 8f670f61c02bc3fbdc01da78b68b578c 2,014 294 19,932 2014-07-28 2014-09-23 31 57
100 103 951c8a6018f01d8365fcfec7c08a7035 2,015 234 20,159 2015-03-12 2015-10-16 52 218
100 103 951c8a6018f01d8365fcfec7c08a7035 2,015 234 20,159 2015-03-12 2015-03-16 52 4
100 104 9a2abc3e9bc522588f068fc7b7f5f426 2,015 430 19,738 2014-01-15 2016-04-01 41 807
100 104 9a2abc3e9bc522588f068fc7b7f5f426 2,014 430 19,738 2014-01-15 2014-05-31 41 136
100 105 9a3bb89139cf28cc5da949ed94f34aa0 2,015 133 20,217 2015-05-09 2015-09-13 29 127
100 105 9a3bb89139cf28cc5da949ed94f34aa0 2,015 133 20,217 2015-05-09 2015-05-10 29 1
100 106 9a5f660d5d5fa0c4e69dd54df6d328cb 2,015 176 19,971 2014-09-05 2015-08-27 42 356
100 106 9a5f660d5d5fa0c4e69dd54df6d328cb 2,014 176 19,971 2014-09-05 2014-10-01 42 26
100 107 9dc6365d3464f4e2d416dae4d6fa0418 2,015 133 19,836 2014-04-23 2015-07-29 38 462
100 107 9dc6365d3464f4e2d416dae4d6fa0418 2,015 133 19,836 2014-04-23 2015-01-31 38 283
100 109 a2b6427160333ace569b09be9c711635 2,015 185 20,212 2015-05-04 2015-10-30 36 179
100 109 a2b6427160333ace569b09be9c711635 2,015 185 20,212 2015-05-04 2015-06-30 36 57
100 110 a39db5c5bf7e5875b5fa7e5da40fad4e 2,015 619 20,275 2015-07-06 2016-01-28 28 206
100 110 a39db5c5bf7e5875b5fa7e5da40fad4e 2,015 619 20,275 2015-07-06 2015-10-23 28 109
100 111 ac21ec73be7f012908b290dc6a0c02fd 2,015 109 19,205 2012-07-31 2015-05-29 47 1032
100 111 ac21ec73be7f012908b290dc6a0c02fd 2,012 109 19,205 2012-07-31 2012-11-30 47 122
100 113 af0a1af032cb471e887d22c379818ca5 2,015 294 20,100 2015-01-12 2015-08-31 55 231
100 113 af0a1af032cb471e887d22c379818ca5 2,015 294 20,100 2015-01-12 2015-01-31 55 19
100 115 c00033634cb1d0bd2b76816ecee1ba5f 2,015 122 19,225 2012-08-20 2015-05-04 48 987
100 115 c00033634cb1d0bd2b76816ecee1ba5f 2,013 122 19,225 2012-08-20 2013-05-02 48 255
100 116 c71e887e7215f0dd9441ec77d838e2b4 2,015 430 19,836 2014-04-23 2015-06-01 40 404
100 116 c71e887e7215f0dd9441ec77d838e2b4 2,014 430 19,836 2014-04-23 2014-05-30 40 37
100 118 ca0321a3f39af9448f21dc819aac7b17 2,015 165 20,303 2015-08-03 2015-08-04 31 1
100 118 ca0321a3f39af9448f21dc819aac7b17 2,015 165 20,298 2015-07-29 2015-08-01 31 3
100 119 cb834c203108a1fe886e6d0da2ca947f 2,015 122 18,820 2011-07-12 2015-03-02 51 1329
100 119 cb834c203108a1fe886e6d0da2ca947f 2,013 122 18,820 2011-07-12 2013-05-02 51 660
100 120 d5daa36a99eff779ab8eb6231c5fc949 2,015 294 19,876 2014-06-02 2015-06-30 26 393
100 120 d5daa36a99eff779ab8eb6231c5fc949 2,014 294 19,877 2014-06-03 2014-09-30 26 119
100 121 d860e71fdbcad1aae2d26afa3216b32d 2,015 294 20,025 2014-10-29 2015-05-29 26 212
100 121 d860e71fdbcad1aae2d26afa3216b32d 2,014 294 20,025 2014-10-29 2015-01-30 26 93
100 122 df88afafd39dbbc3006af875accc234f 2,015 320 19,802 2014-03-20 2015-02-16 28 333
100 122 df88afafd39dbbc3006af875accc234f 2,014 320 19,802 2014-03-20 2014-05-30 28 71
100 123 e0e3c723c6e06c17cb714b1d3bdb3c51 2,015 259 20,073 2014-12-16 2015-08-03 36 230
100 123 e0e3c723c6e06c17cb714b1d3bdb3c51 2,015 259 20,073 2014-12-16 2015-02-25 36 71
100 124 e12f73d5fc6c7dfad888eb6272f09695 2,015 151 20,096 2015-01-08 2015-08-24 42 228
100 124 e12f73d5fc6c7dfad888eb6272f09695 2,015 151 20,095 2015-01-07 2015-01-08 42 1
100 125 e67ef8eda354253c9ec46c20d45f8554 2,015 143 19,982 2014-09-16 2015-10-23 52 402
100 125 e67ef8eda354253c9ec46c20d45f8554 2,014 143 19,982 2014-09-16 2015-02-04 52 141
100 126 e89fca3310a7d89866dee2b038ae176c 2,015 262 19,317 2012-11-20 2015-04-29 42 890
100 126 e89fca3310a7d89866dee2b038ae176c 2,012 262 19,317 2012-11-20 2013-01-25 42 66
100 127 ec75609daae461d1a210f28f707c77af 2,015 181 19,792 2014-03-10 2015-07-09 39 486
100 127 ec75609daae461d1a210f28f707c77af 2,014 181 19,792 2014-03-10 2014-04-28 39 49
100 129 00b538cb0ac7e490c99527bf6c60b55f 2,014 133 19,834 2014-04-21 2015-01-06 57 260
100 129 00b538cb0ac7e490c99527bf6c60b55f 2,014 133 19,834 2014-04-21 2014-04-30 57 9
100 131 0f78e5f11078596be1339ff225c0ba92 2,014 122 19,421 2013-03-04 2014-03-03 43 364
100 131 0f78e5f11078596be1339ff225c0ba92 2,013 122 19,421 2013-03-04 2013-06-03 43 91
100 132 1049ec04a9b957ab7a6e805d905c79a1 2,014 430 19,828 2014-04-15 2014-10-01 49 169
100 132 1049ec04a9b957ab7a6e805d905c79a1 2,014 430 19,828 2014-04-15 2014-05-31 49 46
100 133 1a87fff38e00f68f33deb06f0ba220d4 2,014 106 18,631 2011-01-04 2014-09-15 48 1350
100 133 1a87fff38e00f68f33deb06f0ba220d4 2,012 106 18,631 2011-01-04 2012-07-11 48 554
100 135 2a7ce53917ca1f56652d93bf9252c36c 2,014 294 19,687 2013-11-25 2014-08-04 48 252
100 135 2a7ce53917ca1f56652d93bf9252c36c 2,014 294 19,687 2013-11-25 2014-03-03 48 98
100 136 3ca3b680130f62d361dbb5826ae1dfda 2,014 488 19,645 2013-10-14 2014-05-16 35 214
100 136 3ca3b680130f62d361dbb5826ae1dfda 2,013 488 19,645 2013-10-14 2013-10-14 35 0
100 139 43e840307ebe6c6148615003b5db00ec 2,014 120 19,687 2013-11-25 2014-05-05 29 161
100 139 43e840307ebe6c6148615003b5db00ec 2,013 120 19,687 2013-11-25 2013-12-13 29 18
100 141 4c5bbc4b774ab316240a84c146dd8d75 2,014 117 19,565 2013-07-26 2014-03-31 55 248
100 141 4c5bbc4b774ab316240a84c146dd8d75 2,013 117 19,563 2013-07-24 2013-07-24 55 0
100 145 5d1af4d3bfac9e87a8408295ac9a4951 2,014 133 19,486 2013-05-08 2014-11-27 45 568
100 145 5d1af4d3bfac9e87a8408295ac9a4951 2,013 133 19,486 2013-05-08 2013-08-30 45 114
100 146 5da0ba20b4f7f1f35e15f8737e1d042c 2,014 181 19,886 2014-06-12 2015-01-29 38 231
100 146 5da0ba20b4f7f1f35e15f8737e1d042c 2,014 181 19,886 2014-06-12 2014-06-13 38 1
100 148 72b0c514b07d0756f7e8d728068f6146 2,014 133 19,863 2014-05-20 2014-11-19 52 183
100 148 72b0c514b07d0756f7e8d728068f6146 2,014 133 19,863 2014-05-20 2014-05-21 52 1
100 149 7c05538bbba92f4efa2febeec8b61407 2,014 320 19,785 2014-03-03 2014-04-16 52 44
100 149 7c05538bbba92f4efa2febeec8b61407 2,014 320 19,781 2014-02-27 2014-02-28 52 1
100 150 86abe004a5c39f635f562c49d2329f7d 2,014 219 19,730 2014-01-07 2014-04-16 26 99
100 150 86abe004a5c39f635f562c49d2329f7d 2,014 219 19,729 2014-01-06 2014-01-06 26 0
100 151 87e1062749afbc4e62d99d775aa84a76 2,014 122 19,115 2012-05-02 2014-06-30 64 789
100 151 87e1062749afbc4e62d99d775aa84a76 2,013 122 19,115 2012-05-02 2013-05-09 64 372
100 152 8b82507a9b702e219150e99d433fee8b 2,014 122 18,976 2011-12-15 2014-03-03 48 809
100 152 8b82507a9b702e219150e99d433fee8b 2,012 122 18,976 2011-12-15 2012-08-14 48 243
100 153 905948273e50de5fe1f7f607e4311991 2,014 220 19,991 2014-09-25 2015-03-02 45 158
100 153 905948273e50de5fe1f7f607e4311991 2,014 220 19,991 2014-09-25 2014-09-30 45 5
100 155 947cd1df1a388807f9c2f042e99c3b97 2,014 456 19,516 2013-06-07 2014-02-27 59 265
100 155 947cd1df1a388807f9c2f042e99c3b97 2,013 456 19,516 2013-06-07 2013-09-03 59 88
100 156 9aee07a134f8dee0402c963f1d493370 2,014 181 19,851 2014-05-08 2015-01-29 51 266
100 156 9aee07a134f8dee0402c963f1d493370 2,014 181 19,851 2014-05-08 2014-05-30 51 22
100 159 a55a2a1760dcd3677398a643e434a721 2,014 354 19,625 2013-09-24 2014-02-28 31 157
100 159 a55a2a1760dcd3677398a643e434a721 2,013 354 19,624 2013-09-23 2013-09-23 31 0
100 161 a81b5a68a64ec4989b15b06382a45f6c 2,014 438 19,974 2014-09-08 2015-01-02 45 116
100 161 a81b5a68a64ec4989b15b06382a45f6c 2,014 438 19,974 2014-09-08 2014-09-09 45 1
100 162 a93aa42029049376d9f77aab5ee8d245 2,014 199 19,939 2014-08-04 2014-12-18 42 136
100 162 a93aa42029049376d9f77aab5ee8d245 2,014 199 19,934 2014-07-30 2014-08-05 42 6
100 163 ac3c9557b7a403430b8058e3099fa221 2,014 303 19,750 2014-01-27 2014-05-31 43 124
100 163 ac3c9557b7a403430b8058e3099fa221 2,014 303 19,750 2014-01-27 2014-01-27 43 0
100 164 ae19d8ea6fd06f49cc0a0728fe68a496 2,014 163 19,919 2014-07-15 2014-09-11 58 58
100 164 ae19d8ea6fd06f49cc0a0728fe68a496 2,014 163 19,919 2014-07-15 2014-09-11 58 58
100 165 af08dc8c79af87309f1b4065cd9c04d4 2,014 161 18,911 2011-10-11 2014-07-11 35 1004
100 165 af08dc8c79af87309f1b4065cd9c04d4 2,012 161 18,910 2011-10-10 2012-09-01 35 327
100 166 b90ae1e4036079ecd0276fc13235ca71 2,014 430 19,894 2014-06-20 2014-11-01 53 134
100 166 b90ae1e4036079ecd0276fc13235ca71 2,014 430 19,894 2014-06-20 2014-08-01 53 42
100 167 bb7cf9691cc2bf0ba628271b138f7bd2 2,014 202 19,516 2013-06-07 2014-03-03 51 269
100 167 bb7cf9691cc2bf0ba628271b138f7bd2 2,013 202 19,514 2013-06-05 2013-09-02 51 89
100 168 bd8ad6e1a808c54bfba85f133c577f36 2,014 502 19,520 2013-06-11 2014-09-24 48 470
100 168 bd8ad6e1a808c54bfba85f133c577f36 2,014 502 19,520 2013-06-11 2014-05-06 48 329
100 171 c162a27dbcaf0557bc73ef1f08cefdc5 2,014 106 18,696 2011-03-10 2014-06-30 36 1208
100 171 c162a27dbcaf0557bc73ef1f08cefdc5 2,011 106 18,697 2011-03-11 2011-06-02 36 83
100 172 c2ec2d46f9cfbb7ce6e9a7682d1179b4 2,014 163 19,949 2014-08-14 2014-09-29 48 46
100 172 c2ec2d46f9cfbb7ce6e9a7682d1179b4 2,014 163 19,947 2014-08-12 2014-09-12 48 31
100 173 c6477a01fde05a988b9a7952a60269c7 2,014 430 19,597 2013-08-27 2015-02-03 33 525
100 173 c6477a01fde05a988b9a7952a60269c7 2,013 430 19,597 2013-08-27 2014-02-10 33 167
100 174 ca8f69a33538ee18bae5ed9a8ad74b85 2,014 238 19,696 2013-12-04 2014-05-26 45 173
100 174 ca8f69a33538ee18bae5ed9a8ad74b85 2,013 238 19,696 2013-12-04 2013-12-04 45 0
100 175 ccb6fd2f5ab97b93be47cac3eea31729 2,014 238 19,072 2012-03-20 2014-10-16 37 940
100 175 ccb6fd2f5ab97b93be47cac3eea31729 2,012 238 19,072 2012-03-20 2012-06-28 37 100
100 176 d1dfeb861686d39e9fbbffa46c649830 2,014 238 19,415 2013-02-26 2015-01-15 38 688
100 176 d1dfeb861686d39e9fbbffa46c649830 2,013 238 19,415 2013-02-26 2013-07-01 38 125
100 177 d3bde0ec29e871d6306181e1514c2c1f 2,014 109 18,470 2010-07-27 2014-05-29 49 1402
100 177 d3bde0ec29e871d6306181e1514c2c1f 2,012 109 18,470 2010-07-27 2012-11-30 49 857
100 178 d3bde0ec29e871d6306181e1514c2c1f 2,014 109 18,470 2010-07-27 2014-05-29 49 1402
100 178 d3bde0ec29e871d6306181e1514c2c1f 2,012 109 18,470 2010-07-27 2012-05-29 49 672
100 179 d3bde0ec29e871d6306181e1514c2c1f 2,014 109 18,470 2010-07-27 2014-05-29 49 1402
100 179 d3bde0ec29e871d6306181e1514c2c1f 2,012 109 18,470 2010-07-27 2012-01-31 49 553
100 180 de323716a2bfa3edd3a6f26348eeb78a 2,014 211 19,893 2014-06-19 2014-12-31 46 195
100 180 de323716a2bfa3edd3a6f26348eeb78a 2,014 211 19,893 2014-06-19 2014-12-31 46 195
100 181 de970d5730f19853f55b07c485e55ae8 2,014 122 19,162 2012-06-18 2014-09-02 30 806
100 181 de970d5730f19853f55b07c485e55ae8 2,012 122 19,162 2012-06-18 2012-07-02 30 14
100 182 dee56cbeec4de4eee351f4fa81682cb7 2,014 109 19,158 2012-06-14 2014-03-08 27 632
100 182 dee56cbeec4de4eee351f4fa81682cb7 2,013 109 19,158 2012-06-14 2013-02-28 27 259
100 183 dee56cbeec4de4eee351f4fa81682cb7 2,014 109 19,158 2012-06-14 2014-03-08 27 632
100 183 dee56cbeec4de4eee351f4fa81682cb7 2,012 109 19,158 2012-06-14 2013-01-31 27 231
100 184 dee56cbeec4de4eee351f4fa81682cb7 2,014 109 19,158 2012-06-14 2014-03-08 27 632
100 184 dee56cbeec4de4eee351f4fa81682cb7 2,012 109 19,158 2012-06-14 2012-08-31 27 78
100 186 f1a6ce7a7425fa62603a73a9a6a41ed4 2,014 133 19,683 2013-11-21 2014-11-27 40 371
100 186 f1a6ce7a7425fa62603a73a9a6a41ed4 2,013 133 19,683 2013-11-21 2013-12-31 40 40
100 188 fba24f5affb5795f58a61bed2019722a 2,014 133 19,820 2014-04-07 2014-07-11 29 95
100 188 fba24f5affb5795f58a61bed2019722a 2,014 133 19,820 2014-04-07 2014-04-30 29 23
100 189 fe069b2ed7f22c3314a9135e19a3193d 2,014 181 19,745 2014-01-22 2014-09-01 54 222
100 189 fe069b2ed7f22c3314a9135e19a3193d 2,014 181 19,745 2014-01-22 2014-05-19 54 117
100 190 fe28a13b2dd6bd8ad09c08e112e1d9a0 2,014 163 19,921 2014-07-17 2014-10-17 40 92
100 190 fe28a13b2dd6bd8ad09c08e112e1d9a0 2,014 163 19,921 2014-07-17 2014-09-17 40 62
100 191 ffd8afa60137cde2bdf00093f1cc809d 2,014 151 19,592 2013-08-22 2014-04-25 38 246
100 191 ffd8afa60137cde2bdf00093f1cc809d 2,013 151 19,592 2013-08-22 2013-12-18 38 118
100 192 007c4ed0bf8578f67cbce17b957d2667 2,013 273 19,325 2012-11-28 2013-04-01 32 124
100 192 007c4ed0bf8578f67cbce17b957d2667 2,012 273 19,325 2012-11-28 2012-12-01 32 3
100 193 02496782012c2782b03e8c1c63b64886 2,013 168 19,375 2013-01-17 2013-11-29 53 316
100 193 02496782012c2782b03e8c1c63b64886 2,013 168 19,375 2013-01-17 2013-03-29 53 71
100 195 046ecbe615fef4fe6629475c3bc5086d 2,013 130 19,208 2012-08-03 2014-01-31 39 546
100 195 046ecbe615fef4fe6629475c3bc5086d 2,012 130 19,204 2012-07-30 2012-08-30 39 31
100 196 0477f14f787f7d96c09e7e01c1a8bf84 2,013 109 19,347 2012-12-20 2013-04-01 48 102
100 196 0477f14f787f7d96c09e7e01c1a8bf84 2,013 109 19,347 2012-12-20 2013-03-29 48 99
100 197 0497e1af3e7bc7c646736de5078e4fb0 2,013 291 18,882 2011-09-12 2013-05-27 52 623
100 197 0497e1af3e7bc7c646736de5078e4fb0 2,011 291 18,882 2011-09-12 2012-01-09 52 119
100 198 0b1190568b1c5e01400718f2a07f9dc1 2,013 109 19,200 2012-07-26 2013-03-29 36 246
100 198 0b1190568b1c5e01400718f2a07f9dc1 2,012 109 19,200 2012-07-26 2013-02-28 36 217
100 200 1014098fdcbb4ec63da92680ae123785 2,013 141 19,523 2013-06-14 2013-08-30 46 77
100 200 1014098fdcbb4ec63da92680ae123785 2,013 141 19,523 2013-06-14 2013-07-19 46 35
100 201 1014468a28f02547917bf396a800c832 2,013 296 19,396 2013-02-07 2014-02-04 30 362
100 201 1014468a28f02547917bf396a800c832 2,013 296 19,396 2013-02-07 2013-06-20 30 133
100 202 12701a589f60e59d41bc68d17be2fa03 2,013 326 19,550 2013-07-11 2013-10-10 39 91
100 202 12701a589f60e59d41bc68d17be2fa03 2,013 326 19,548 2013-07-09 2013-07-09 39 0
100 204 1adef97bcc96c019a6dddb9b713a9dc7 2,013 258 19,631 2013-09-30 2013-12-17 28 78
100 204 1adef97bcc96c019a6dddb9b713a9dc7 2,013 258 19,631 2013-09-30 2013-09-30 28 0
100 206 1dcca374fa9188c336fa9943b243ca8a 2,013 234 19,354 2012-12-27 2013-03-13 37 76
100 206 1dcca374fa9188c336fa9943b243ca8a 2,013 234 19,354 2012-12-27 2013-01-01 37 5
100 207 22345fa5370ad699a4ecccde7aab4d0b 2,013 330 18,819 2011-07-11 2014-08-01 51 1117
100 207 22345fa5370ad699a4ecccde7aab4d0b 2,012 330 18,819 2011-07-11 2012-11-01 51 479
100 208 249acd10753617ed6aff4a7a14e68fe4 2,013 262 19,269 2012-10-03 2013-03-26 33 174
100 208 249acd10753617ed6aff4a7a14e68fe4 2,012 262 19,269 2012-10-03 2013-01-02 33 91
100 209 266ecd9e9213df517edb7557e5f6686e 2,013 109 19,429 2013-03-12 2013-10-31 49 233
100 209 266ecd9e9213df517edb7557e5f6686e 2,013 109 19,429 2013-03-12 2013-10-01 49 203
100 210 2733b1c47a86487100ab4bd80f8013ac 2,013 406 19,603 2013-09-02 2013-11-14 27 73
100 210 2733b1c47a86487100ab4bd80f8013ac 2,013 406 19,603 2013-09-02 2013-11-14 27 73
100 211 2947875087b8a6af159cb6bb3bc64cb0 2,013 150 18,477 2010-08-03 2014-03-26 50 1331
100 211 2947875087b8a6af159cb6bb3bc64cb0 2,010 150 18,477 2010-08-03 2011-05-26 50 296
100 212 2af56313e7aac2f5ee149c8c24096eb0 2,013 109 19,324 2012-11-27 2013-06-28 49 213
100 212 2af56313e7aac2f5ee149c8c24096eb0 2,012 109 19,324 2012-11-27 2012-12-31 49 34
100 213 3697c376d2e4e7fe240efe5dcf735444 2,013 294 19,486 2013-05-08 2014-01-20 48 257
100 213 3697c376d2e4e7fe240efe5dcf735444 2,013 294 19,486 2013-05-08 2013-07-22 48 75
100 214 37acd24b5ef6f1a37b064ec1720c615d 2,013 273 19,062 2012-03-10 2013-02-01 43 328
100 214 37acd24b5ef6f1a37b064ec1720c615d 2,012 273 19,062 2012-03-10 2012-03-27 43 17
100 215 37ee83b7040a6178204f1572d86e764e 2,013 168 18,661 2011-02-03 2013-06-03 50 851
100 215 37ee83b7040a6178204f1572d86e764e 2,012 168 18,661 2011-02-03 2012-08-01 50 545
100 216 38f1efda1b65e390076bbb8c042acfc3 2,013 161 18,714 2011-03-28 2013-05-09 43 773
100 216 38f1efda1b65e390076bbb8c042acfc3 2,012 161 18,714 2011-03-28 2012-09-01 43 523
100 217 3abe9a42141394f5d7dcd8cc6599dcb5 2,013 109 18,841 2011-08-02 2013-03-29 52 605
100 217 3abe9a42141394f5d7dcd8cc6599dcb5 2,012 109 18,841 2011-08-02 2012-07-31 52 364
100 218 44bdade25af78c0338435c228f9e434d 2,013 143 19,415 2013-02-26 2013-07-18 32 142
100 218 44bdade25af78c0338435c228f9e434d 2,013 143 19,415 2013-02-26 2013-06-03 32 97
100 219 46a1f9025fc66e73e287769bec6451c6 2,013 141 19,439 2013-03-22 2013-04-30 54 39
100 219 46a1f9025fc66e73e287769bec6451c6 2,013 141 19,439 2013-03-22 2013-04-30 54 39
100 220 4d047f9b6ea92435560f44c3e3aa163f 2,013 109 19,101 2012-04-18 2013-05-01 28 378
100 220 4d047f9b6ea92435560f44c3e3aa163f 2,012 109 19,101 2012-04-18 2012-12-11 28 237
100 221 4d047f9b6ea92435560f44c3e3aa163f 2,013 109 19,101 2012-04-18 2013-05-01 28 378
100 221 4d047f9b6ea92435560f44c3e3aa163f 2,012 109 19,101 2012-04-18 2012-07-24 28 97
100 222 4d9b5b6c8adda1c306ea4643b4dec171 2,013 291 19,333 2012-12-06 2013-05-31 47 176
100 222 4d9b5b6c8adda1c306ea4643b4dec171 2,012 291 19,333 2012-12-06 2012-12-20 47 14
100 224 50877c36a315796dee4392655d0eeac4 2,013 109 19,121 2012-05-08 2013-04-01 26 328
100 224 50877c36a315796dee4392655d0eeac4 2,012 109 19,121 2012-05-08 2012-11-30 26 206
100 225 50a8a93ab5900dde53c4895e4cf9030a 2,013 295 19,688 2013-11-26 2014-02-26 33 92
100 225 50a8a93ab5900dde53c4895e4cf9030a 2,013 295 19,688 2013-11-26 2013-11-30 33 4
100 226 54073e149cb997aba0b35a98a058a9d7 2,013 145 19,390 2013-02-01 2013-10-23 48 264
100 226 54073e149cb997aba0b35a98a058a9d7 2,013 145 19,390 2013-02-01 2013-06-28 48 147
100 227 57b568d22b8cb6316b98d62e515dc6a1 2,013 301 19,072 2012-03-20 2013-04-26 28 402
100 227 57b568d22b8cb6316b98d62e515dc6a1 2,012 301 19,072 2012-03-20 2012-06-04 28 76
100 230 5cf7e0058df0a8c347b8dc1358b0f1c6 2,013 273 19,366 2013-01-08 2013-10-01 37 266
100 230 5cf7e0058df0a8c347b8dc1358b0f1c6 2,013 273 19,366 2013-01-08 2013-02-02 37 25
100 232 62c6c516557dddab06f4f18e2909cb0b 2,013 123 18,189 2009-10-19 2014-01-29 69 1563
100 232 62c6c516557dddab06f4f18e2909cb0b 2,010 123 18,189 2009-10-19 2010-01-13 69 86
100 233 6338195bfe941793a799e5f85e5ca19e 2,013 430 19,424 2013-03-07 2014-02-10 36 340
100 233 6338195bfe941793a799e5f85e5ca19e 2,013 430 19,424 2013-03-07 2013-08-01 36 147
100 234 6a2463e430c8f8b52f15ceb82aec9cc7 2,013 178 19,242 2012-09-06 2013-01-31 37 147
100 234 6a2463e430c8f8b52f15ceb82aec9cc7 2,012 178 19,242 2012-09-06 2012-10-01 37 25
100 235 75cbb3c37fc076f6093330a3c814aacf 2,013 438 19,436 2013-03-19 2013-12-18 42 274
100 235 75cbb3c37fc076f6093330a3c814aacf 2,013 438 19,435 2013-03-18 2013-03-19 42 1
100 236 7639e332a9c2eb7e51cc8e2c6082b122 2,013 262 18,868 2011-08-29 2013-04-29 53 609
100 236 7639e332a9c2eb7e51cc8e2c6082b122 2,012 262 18,868 2011-08-29 2012-04-02 53 217
100 237 77f6e94708ebee1f04f96695ee03e9eb 2,013 106 18,725 2011-04-08 2013-04-24 35 747
100 237 77f6e94708ebee1f04f96695ee03e9eb 2,012 106 18,725 2011-04-08 2012-01-20 35 287
100 238 78b8c98a8628b3337ba1ae9d7d5eaa89 2,013 262 19,214 2012-08-09 2013-03-26 43 229
100 238 78b8c98a8628b3337ba1ae9d7d5eaa89 2,012 262 19,214 2012-08-09 2012-11-14 43 97
100 239 78f26c69ea97289453274f61a57bc1ee 2,013 109 18,480 2010-08-06 2014-02-03 38 1277
100 239 78f26c69ea97289453274f61a57bc1ee 2,012 109 18,480 2010-08-06 2012-07-31 38 725
100 240 78f26c69ea97289453274f61a57bc1ee 2,013 109 18,480 2010-08-06 2014-02-03 38 1277
100 240 78f26c69ea97289453274f61a57bc1ee 2,011 109 18,480 2010-08-06 2011-11-30 38 481
100 241 78f26c69ea97289453274f61a57bc1ee 2,013 109 18,480 2010-08-06 2014-02-03 38 1277
100 241 78f26c69ea97289453274f61a57bc1ee 2,011 109 18,480 2010-08-06 2011-05-30 38 297
100 243 80ff7ce3611b1244edde94498bef6f3f 2,013 109 18,960 2011-11-29 2013-05-29 48 547
100 243 80ff7ce3611b1244edde94498bef6f3f 2,012 109 18,960 2011-11-29 2012-10-31 48 337
100 244 811af501050930aad8607033d18f9a7e 2,013 330 19,359 2013-01-01 2014-01-02 48 366
100 244 811af501050930aad8607033d18f9a7e 2,013 330 19,359 2013-01-01 2013-04-01 48 90
100 245 85bbd702c2cf277e54c343f46b3899ea 2,013 106 18,345 2010-03-24 2013-05-27 32 1160
100 245 85bbd702c2cf277e54c343f46b3899ea 2,010 106 18,345 2010-03-24 2010-11-30 32 251
100 247 8ae0360f85aa050fd6a8481a7d4109d2 2,013 136 19,221 2012-08-16 2013-02-26 41 194
100 247 8ae0360f85aa050fd6a8481a7d4109d2 2,012 136 19,221 2012-08-16 2012-09-03 41 18
100 248 8b668043fa10adb096eccb437f81204f 2,013 262 19,227 2012-08-22 2013-02-26 43 188
100 248 8b668043fa10adb096eccb437f81204f 2,012 262 19,227 2012-08-22 2012-11-13 43 83
100 251 8fa752970cb75c40c449f044aff526be 2,013 148 19,491 2013-05-13 2013-12-26 34 227
100 251 8fa752970cb75c40c449f044aff526be 2,013 148 19,491 2013-05-13 2013-07-01 34 49
100 252 961e4288b387fee2b84c6a31caf89409 2,013 430 19,492 2013-05-14 2013-12-02 32 202
100 252 961e4288b387fee2b84c6a31caf89409 2,013 430 19,492 2013-05-14 2013-05-31 32 17
100 254 98f131d11f7a559fed3ff281a55995b5 2,013 109 19,366 2013-01-08 2013-08-01 59 205
100 254 98f131d11f7a559fed3ff281a55995b5 2,013 109 19,366 2013-01-08 2013-05-29 59 141
100 255 9a6aba8a3a3a9dfb9469f242c1c78ebe 2,013 145 19,205 2012-07-31 2013-06-28 37 332
100 255 9a6aba8a3a3a9dfb9469f242c1c78ebe 2,012 145 19,205 2012-07-31 2012-12-19 37 141
100 256 9ba137d88799c4dc61c8b9edd3927d57 2,013 248 19,269 2012-10-03 2013-10-01 58 363
100 256 9ba137d88799c4dc61c8b9edd3927d57 2,013 248 19,269 2012-10-03 2013-08-01 58 302
100 257 9cf8505a7c7abcdf06a4817295a0cfdb 2,013 426 19,534 2013-06-25 2013-11-14 61 142
100 257 9cf8505a7c7abcdf06a4817295a0cfdb 2,013 426 19,534 2013-06-25 2013-07-18 61 23
100 258 9fe3ae9287c6e45f7da4858f936a1abf 2,013 234 19,311 2012-11-14 2013-04-01 27 138
100 258 9fe3ae9287c6e45f7da4858f936a1abf 2,012 234 19,311 2012-11-14 2012-12-11 27 27
100 259 a1870ea77b591e1c4d1af585b9c712bb 2,013 295 18,707 2011-03-21 2013-03-28 53 738
100 259 a1870ea77b591e1c4d1af585b9c712bb 2,011 295 18,707 2011-03-21 2011-08-31 53 163
100 260 a3f933adfed44a7c012462a252534ca0 2,013 253 19,286 2012-10-20 2013-05-30 52 222
100 260 a3f933adfed44a7c012462a252534ca0 2,012 253 19,286 2012-10-20 2012-11-28 52 39
100 261 a6bfffbd6e404d505c7abe6ab1bae973 2,013 262 19,239 2012-09-03 2013-03-26 34 204
100 261 a6bfffbd6e404d505c7abe6ab1bae973 2,012 262 19,239 2012-09-03 2013-01-02 34 121
100 262 a9a2f7f65e7daa65da2edaca0fa427a5 2,013 262 19,326 2012-11-29 2013-01-31 31 63
100 262 a9a2f7f65e7daa65da2edaca0fa427a5 2,012 262 19,326 2012-11-29 2013-01-02 31 34
100 263 ace460ae4527071c9039dc91dfd58092 2,013 241 19,645 2013-10-14 2013-12-31 62 78
100 263 ace460ae4527071c9039dc91dfd58092 2,013 241 19,645 2013-10-14 2013-10-14 62 0
100 264 b277ab101130419fe70f0491b0d10b7b 2,013 225 19,558 2013-07-19 2014-01-17 46 182
100 264 b277ab101130419fe70f0491b0d10b7b 2,013 225 19,558 2013-07-19 2013-08-28 46 40
100 265 b2a01d19b9919a1946aeb2715b29d668 2,013 109 19,274 2012-10-08 2013-03-29 40 172
100 265 b2a01d19b9919a1946aeb2715b29d668 2,012 109 19,274 2012-10-08 2012-10-29 40 21
100 266 b2cc6fe845acc4abb91f53a9c087ca2d 2,013 238 19,429 2013-03-12 2013-10-07 64 209
100 266 b2cc6fe845acc4abb91f53a9c087ca2d 2,013 238 19,429 2013-03-12 2013-07-01 64 111
100 267 bd09f5139151685bdfa9b551b31c2039 2,013 122 19,159 2012-06-15 2014-01-02 35 566
100 267 bd09f5139151685bdfa9b551b31c2039 2,012 122 19,159 2012-06-15 2012-07-02 35 17
100 268 bd96a5545b73010d4f6853aebb9141e8 2,013 149 18,961 2011-11-30 2013-02-18 56 446
100 268 bd96a5545b73010d4f6853aebb9141e8 2,012 149 18,961 2011-11-30 2012-04-26 56 148
100 269 c286aa07f47ac63249ab173a2caf5b8b 2,013 109 18,919 2011-10-19 2013-05-29 30 588
100 269 c286aa07f47ac63249ab173a2caf5b8b 2,012 109 18,919 2011-10-19 2012-04-11 30 175
100 270 c286aa07f47ac63249ab173a2caf5b8b 2,013 109 18,919 2011-10-19 2013-05-29 30 588
100 270 c286aa07f47ac63249ab173a2caf5b8b 2,011 109 18,919 2011-10-19 2012-01-31 30 104
100 271 c3765ec41a137664da0578362e43e293 2,013 109 19,323 2012-11-26 2013-10-31 44 339
100 271 c3765ec41a137664da0578362e43e293 2,012 109 19,323 2012-11-26 2013-03-29 44 123
100 272 c9414d816e02187881b04d3d959ab908 2,013 366 19,198 2012-07-24 2013-08-30 48 402
100 272 c9414d816e02187881b04d3d959ab908 2,012 366 19,198 2012-07-24 2012-11-05 48 104
100 274 dc64642e719cf9134ad7850686fa8864 2,013 122 19,600 2013-08-30 2013-10-31 38 62
100 274 dc64642e719cf9134ad7850686fa8864 2,013 122 19,597 2013-08-27 2013-08-30 38 3
100 275 dee56cbeec4de4eee351f4fa81682cb7 2,013 109 19,158 2012-06-14 2013-02-28 27 259
100 275 dee56cbeec4de4eee351f4fa81682cb7 2,012 109 19,158 2012-06-14 2013-01-31 27 231
100 276 dee56cbeec4de4eee351f4fa81682cb7 2,013 109 19,158 2012-06-14 2013-02-28 27 259
100 276 dee56cbeec4de4eee351f4fa81682cb7 2,012 109 19,158 2012-06-14 2012-08-31 27 78
100 277 e2c5474cbacafd5f9bbd23a81ca3f41c 2,013 330 19,359 2013-01-01 2014-01-02 43 366
100 277 e2c5474cbacafd5f9bbd23a81ca3f41c 2,013 330 19,359 2013-01-01 2013-03-01 43 59
100 278 e4904926bfdcf3272132d3da302e5548 2,013 109 18,571 2010-11-05 2013-09-02 46 1032
100 278 e4904926bfdcf3272132d3da302e5548 2,011 109 18,567 2010-11-01 2011-08-31 46 303
100 279 e7ef6d9b5630369e03594371cb68b9dd 2,013 123 19,319 2012-11-22 2013-11-29 28 372
100 279 e7ef6d9b5630369e03594371cb68b9dd 2,012 123 19,319 2012-11-22 2012-12-13 28 21
100 280 e8c67f0c0003adce21c55005bdad715e 2,013 109 19,403 2013-02-14 2014-01-01 48 321
100 280 e8c67f0c0003adce21c55005bdad715e 2,013 109 19,403 2013-02-14 2013-02-28 48 14
100 281 ef0b5b424d9309e41493784cb95ff201 2,013 109 18,742 2011-04-25 2014-01-01 38 982
100 281 ef0b5b424d9309e41493784cb95ff201 2,013 109 18,742 2011-04-25 2013-04-01 38 707
100 282 ef0b5b424d9309e41493784cb95ff201 2,013 109 18,742 2011-04-25 2014-01-01 38 982
100 282 ef0b5b424d9309e41493784cb95ff201 2,011 109 18,742 2011-04-25 2011-07-27 38 93
100 283 ef0b5b424d9309e41493784cb95ff201 2,013 109 18,742 2011-04-25 2013-04-01 38 707
100 283 ef0b5b424d9309e41493784cb95ff201 2,011 109 18,742 2011-04-25 2011-07-27 38 93
100 284 efbf6292d65abbe137a58e13c1a2d967 2,013 294 19,172 2012-06-28 2013-05-03 50 309
100 284 efbf6292d65abbe137a58e13c1a2d967 2,012 294 19,177 2012-07-03 2012-11-26 50 146
100 285 f017bcf8d99892579b6d7458073a8fbd 2,013 261 18,402 2010-05-20 2013-01-29 29 985
100 285 f017bcf8d99892579b6d7458073a8fbd 2,011 261 18,402 2010-05-20 2011-05-02 29 347
100 287 f797c258abe92f1d06a3971caa8b9ba5 2,013 146 19,374 2013-01-16 2013-07-04 28 169
100 287 f797c258abe92f1d06a3971caa8b9ba5 2,013 146 19,374 2013-01-16 2013-04-11 28 85
100 288 00b7ca67ba6dc226f79d64a989631985 2,012 261 18,451 2010-07-08 2012-09-27 49 812
100 288 00b7ca67ba6dc226f79d64a989631985 2,010 261 18,451 2010-07-08 2010-11-02 49 117
100 289 0b2dfb7d0b068a214097c9f21dc572e6 2,012 141 18,773 2011-05-26 2012-05-25 33 365
100 289 0b2dfb7d0b068a214097c9f21dc572e6 2,011 141 18,773 2011-05-26 2011-09-30 33 127
100 290 0f36aaee6c124fb208bd4c6feed513ef 2,012 157 18,835 2011-07-27 2012-04-30 46 278
100 290 0f36aaee6c124fb208bd4c6feed513ef 2,011 157 18,835 2011-07-27 2011-08-17 46 21
100 291 0fc9384d878f73cbb49361f80815c52a 2,012 294 18,722 2011-04-05 2012-04-26 29 387
100 291 0fc9384d878f73cbb49361f80815c52a 2,012 294 18,722 2011-04-05 2012-02-29 29 330
100 292 0fc9384d878f73cbb49361f80815c52a 2,012 294 18,722 2011-04-05 2012-04-26 29 387
100 292 0fc9384d878f73cbb49361f80815c52a 2,011 294 18,722 2011-04-05 2011-06-28 29 84
100 293 0fc9384d878f73cbb49361f80815c52a 2,012 294 18,722 2011-04-05 2012-02-29 29 330
100 293 0fc9384d878f73cbb49361f80815c52a 2,011 294 18,722 2011-04-05 2011-06-28 29 84
100 294 150e1c0d93c09191831b2f1ccb38c6fb 2,012 348 19,142 2012-05-29 2012-11-17 34 172
100 294 150e1c0d93c09191831b2f1ccb38c6fb 2,012 348 19,142 2012-05-29 2012-08-29 34 92
100 296 17765d893468bf6c94b241476090fa74 2,012 261 18,464 2010-07-21 2012-07-27 51 737
100 296 17765d893468bf6c94b241476090fa74 2,011 261 18,464 2010-07-21 2011-09-30 51 436
100 297 187f129a95d524cd399ffdaacc0f671e 2,012 122 18,483 2010-08-09 2012-08-28 31 750
100 297 187f129a95d524cd399ffdaacc0f671e 2,011 122 18,483 2010-08-09 2011-08-31 31 387
100 298 187f129a95d524cd399ffdaacc0f671e 2,012 122 18,483 2010-08-09 2012-08-28 31 750
100 298 187f129a95d524cd399ffdaacc0f671e 2,010 122 18,483 2010-08-09 2010-12-31 31 144
100 299 206857a3bdcc1e5b6d18e0470c722768 2,012 109 18,450 2010-07-07 2012-10-31 29 847
100 299 206857a3bdcc1e5b6d18e0470c722768 2,010 109 18,450 2010-07-07 2011-05-31 29 328
100 301 232695732dfc90b5d83b46a08236f2d5 2,012 262 19,136 2012-05-23 2013-01-03 46 225
100 301 232695732dfc90b5d83b46a08236f2d5 2,012 262 19,136 2012-05-23 2012-05-23 46 0
100 302 24316a8aac65ae80ba4d0ec913325ce4 2,012 122 18,000 2009-04-13 2012-07-31 32 1205
100 302 24316a8aac65ae80ba4d0ec913325ce4 2,010 122 18,000 2009-04-13 2010-11-30 32 596
100 303 26d59b8103bbe6496468b919c194c89b 2,012 295 18,970 2011-12-09 2012-09-21 48 287
100 303 26d59b8103bbe6496468b919c194c89b 2,012 295 18,970 2011-12-09 2012-04-30 48 143
100 304 276bdb1844a62e362f14ebc860d10d46 2,012 140 18,989 2011-12-28 2013-01-04 44 373
100 304 276bdb1844a62e362f14ebc860d10d46 2,012 140 18,989 2011-12-28 2012-04-30 44 124
100 305 288459035ad00d5a0e27730adc2a4c84 2,012 150 18,683 2011-02-25 2012-11-21 35 635
100 305 288459035ad00d5a0e27730adc2a4c84 2,012 150 18,683 2011-02-25 2012-05-01 35 431
100 306 2916feee8d33b62e85f2eb148e66825e 2,012 109 18,830 2011-07-22 2012-08-01 49 376
100 306 2916feee8d33b62e85f2eb148e66825e 2,011 109 18,830 2011-07-22 2012-01-31 49 193
100 307 2ce99b1176ae93a615ee876e220f36b8 2,012 123 18,548 2010-10-13 2012-07-10 47 636
100 307 2ce99b1176ae93a615ee876e220f36b8 2,011 123 18,548 2010-10-13 2011-10-04 47 356
100 308 2d5fa0edc491c0326a18430fadf08556 2,012 151 18,463 2010-07-20 2012-07-31 39 742
100 308 2d5fa0edc491c0326a18430fadf08556 2,010 151 18,463 2010-07-20 2011-05-30 39 314
100 309 2fcefa9a6c645e18977010b9f6cde25b 2,012 109 19,086 2012-04-03 2013-03-29 44 360
100 309 2fcefa9a6c645e18977010b9f6cde25b 2,012 109 19,086 2012-04-03 2012-08-31 44 150
100 310 2fcefa9a6c645e18977010b9f6cde25b 2,012 109 19,086 2012-04-03 2013-03-29 44 360
100 310 2fcefa9a6c645e18977010b9f6cde25b 2,012 109 19,086 2012-04-03 2012-07-31 44 119
100 311 2fcefa9a6c645e18977010b9f6cde25b 2,012 109 19,086 2012-04-03 2012-08-31 44 150
100 311 2fcefa9a6c645e18977010b9f6cde25b 2,012 109 19,086 2012-04-03 2012-07-31 44 119
100 313 343c2ab1ecd15d4e3436e148c570324a 2,012 109 19,001 2012-01-09 2013-01-31 36 388
100 313 343c2ab1ecd15d4e3436e148c570324a 2,012 109 19,001 2012-01-09 2012-10-31 36 296
100 314 3469f15377fdfc99dbbc9eee7272a0b9 2,012 109 19,138 2012-05-25 2013-01-01 29 221
100 314 3469f15377fdfc99dbbc9eee7272a0b9 2,012 109 19,138 2012-05-25 2012-08-31 29 98
100 315 3a0d03592ce71ab3c2861f53d75ab648 2,012 294 18,878 2011-09-08 2012-11-30 39 449
100 315 3a0d03592ce71ab3c2861f53d75ab648 2,011 294 18,878 2011-09-08 2011-10-31 39 53
100 317 40067db8e6d621ee529412bab80bb254 2,012 109 18,694 2011-03-08 2012-03-30 32 388
100 317 40067db8e6d621ee529412bab80bb254 2,011 109 18,694 2011-03-08 2011-12-31 32 298
100 318 40067db8e6d621ee529412bab80bb254 2,012 109 18,694 2011-03-08 2012-03-30 32 388
100 318 40067db8e6d621ee529412bab80bb254 2,011 109 18,694 2011-03-08 2011-08-31 32 176
100 319 44d219838aeeba9c5642a9c33750e365 2,012 261 18,469 2010-07-26 2012-06-13 39 688
100 319 44d219838aeeba9c5642a9c33750e365 2,011 261 18,469 2010-07-26 2011-10-24 39 455
100 320 44d219838aeeba9c5642a9c33750e365 2,012 261 18,469 2010-07-26 2012-06-13 39 688
100 320 44d219838aeeba9c5642a9c33750e365 2,011 261 18,469 2010-07-26 2011-03-25 39 242
100 322 4d047f9b6ea92435560f44c3e3aa163f 2,012 109 19,101 2012-04-18 2012-12-11 28 237
100 322 4d047f9b6ea92435560f44c3e3aa163f 2,012 109 19,101 2012-04-18 2012-07-24 28 97
100 324 4d7961e0a72ee876c7fb8d7e858497f9 2,012 109 17,983 2009-03-27 2013-01-31 51 1406
100 324 4d7961e0a72ee876c7fb8d7e858497f9 2,010 109 17,983 2009-03-27 2011-06-29 51 824
100 325 4e160b03cdc8ba4ed6d7f4b1303c086e 2,012 157 18,758 2011-05-11 2012-05-01 30 356
100 325 4e160b03cdc8ba4ed6d7f4b1303c086e 2,011 157 18,758 2011-05-11 2011-06-01 30 21
100 326 52775d91cf99417bf465e62a6db2ad06 2,012 122 18,847 2011-08-08 2013-01-31 44 542
100 326 52775d91cf99417bf465e62a6db2ad06 2,012 122 18,847 2011-08-08 2012-04-27 44 263
100 327 543f4ae415aa67b021654caba88a5184 2,012 142 18,969 2011-12-08 2012-02-01 34 55
100 327 543f4ae415aa67b021654caba88a5184 2,011 142 18,968 2011-12-07 2011-12-09 34 2
100 330 58d8c303e1211c63d1ceb30c36902fd6 2,012 141 18,520 2010-09-15 2012-06-28 36 652
100 330 58d8c303e1211c63d1ceb30c36902fd6 2,011 141 18,520 2010-09-15 2011-05-31 36 258
100 332 5a435c3cc2fb1e57cbbfc19a7848d3ce 2,012 294 19,128 2012-05-15 2012-12-07 28 206
100 332 5a435c3cc2fb1e57cbbfc19a7848d3ce 2,012 294 19,128 2012-05-15 2012-05-31 28 16
100 333 5b122f7907eb0b4ddf1667ea28f24370 2,012 122 19,064 2012-03-12 2012-11-26 38 259
100 333 5b122f7907eb0b4ddf1667ea28f24370 2,012 122 19,064 2012-03-12 2012-06-29 38 109
100 334 673845fc49b7c4b82d5d1aa11ec2581c 2,012 279 18,318 2010-02-25 2012-07-31 74 887
100 334 673845fc49b7c4b82d5d1aa11ec2581c 2,010 279 18,318 2010-02-25 2010-12-02 74 280
100 335 674c68d8ee8be86362da775d3eb13d26 2,012 294 18,700 2011-03-14 2012-06-25 46 469
100 335 674c68d8ee8be86362da775d3eb13d26 2,011 294 18,700 2011-03-14 2011-12-01 46 262
100 336 682168b6517b83452a6f702567e50e72 2,012 109 18,763 2011-05-16 2012-07-31 44 442
100 336 682168b6517b83452a6f702567e50e72 2,011 109 18,763 2011-05-16 2011-09-30 44 137
100 337 6d96706a52fd4c2f57a99d3ffcc8ed44 2,012 294 18,953 2011-11-22 2012-07-31 48 252
100 337 6d96706a52fd4c2f57a99d3ffcc8ed44 2,012 294 18,953 2011-11-22 2012-02-29 48 99
100 338 6d9d83e18362244a9d0746b7bf2e1316 2,012 122 18,683 2011-02-25 2012-03-30 57 399
100 338 6d9d83e18362244a9d0746b7bf2e1316 2,011 122 18,683 2011-02-25 2011-05-03 57 67
100 340 78f26c69ea97289453274f61a57bc1ee 2,012 109 18,480 2010-08-06 2012-07-31 38 725
100 340 78f26c69ea97289453274f61a57bc1ee 2,011 109 18,480 2010-08-06 2011-11-30 38 481
100 341 78f26c69ea97289453274f61a57bc1ee 2,012 109 18,480 2010-08-06 2012-07-31 38 725
100 341 78f26c69ea97289453274f61a57bc1ee 2,011 109 18,480 2010-08-06 2011-05-30 38 297
100 342 7931bc3d89f1b6c4b7b02bf50efab272 2,012 190 19,186 2012-07-12 2012-10-15 29 95
100 342 7931bc3d89f1b6c4b7b02bf50efab272 2,012 190 19,186 2012-07-12 2012-08-15 29 34
100 343 7bd47f01bb34508c7bbae7aa73237ee9 2,012 142 19,271 2012-10-05 2012-12-07 32 63
100 343 7bd47f01bb34508c7bbae7aa73237ee9 2,012 142 19,271 2012-10-05 2012-11-05 32 31
100 344 803200a08fc1158fd99409af906a11a3 2,012 109 19,229 2012-08-24 2013-03-29 35 217
100 344 803200a08fc1158fd99409af906a11a3 2,012 109 19,229 2012-08-24 2012-11-30 35 98
100 345 82cc308fc3fdff6cf1ffcef682ff86c6 2,012 106 18,611 2010-12-15 2012-01-19 33 400
100 345 82cc308fc3fdff6cf1ffcef682ff86c6 2,011 106 18,611 2010-12-15 2011-04-01 33 107
100 346 86c24fbd25b6fe4a3886f3bf65af8c9d 2,012 122 19,067 2012-03-15 2013-01-31 49 322
100 346 86c24fbd25b6fe4a3886f3bf65af8c9d 2,012 122 19,067 2012-03-15 2012-05-01 49 47
100 347 897a8536cedf9e062871f061db708e08 2,012 175 19,120 2012-05-07 2012-07-27 27 81
100 347 897a8536cedf9e062871f061db708e08 2,012 175 19,120 2012-05-07 2012-05-16 27 9
100 348 8a22e27f0505be4a50c28cb00693ee16 2,012 194 18,911 2011-10-11 2012-06-04 63 237
100 348 8a22e27f0505be4a50c28cb00693ee16 2,011 194 18,911 2011-10-11 2011-11-29 63 49
100 349 8b368e99d611a973ff49d8e1e7846d75 2,012 141 19,155 2012-06-11 2012-09-28 42 109
100 349 8b368e99d611a973ff49d8e1e7846d75 2,012 141 19,151 2012-06-07 2012-06-29 42 22
100 350 8d3868f12695dccd5822f6be067e9304 2,012 109 18,753 2011-05-06 2012-10-31 51 544
100 350 8d3868f12695dccd5822f6be067e9304 2,011 109 18,752 2011-05-05 2011-08-31 51 118
100 352 94169f853aaeb754b0b67f48966d018f 2,012 294 18,938 2011-11-07 2012-05-01 52 176
100 352 94169f853aaeb754b0b67f48966d018f 2,011 294 18,938 2011-11-07 2012-01-02 52 56
100 353 960aaaec235d222f6dd20559e568c308 2,012 243 19,106 2012-04-23 2012-10-02 40 162
100 353 960aaaec235d222f6dd20559e568c308 2,012 243 19,106 2012-04-23 2012-04-23 40 0
100 356 a0778a19b5a442833495675e79bda1a2 2,012 106 18,946 2011-11-15 2012-09-28 57 318
100 356 a0778a19b5a442833495675e79bda1a2 2,012 106 18,946 2011-11-15 2012-01-03 57 49
100 357 a0ab2a18c362bf4954becf21cee6250d 2,012 147 19,065 2012-03-13 2012-04-25 34 43
100 357 a0ab2a18c362bf4954becf21cee6250d 2,012 147 19,065 2012-03-13 2012-03-13 34 0
100 358 af7dc7c98dde9a17f51379c41cc12585 2,012 294 18,970 2011-12-09 2012-02-01 28 54
100 358 af7dc7c98dde9a17f51379c41cc12585 2,011 294 18,970 2011-12-09 2012-01-02 28 24
100 359 b71b69c9e559dd602046ab42a28d48fd 2,012 106 18,204 2009-11-03 2012-01-27 32 815
100 359 b71b69c9e559dd602046ab42a28d48fd 2,011 106 18,204 2009-11-03 2011-06-16 32 590
100 360 b71b69c9e559dd602046ab42a28d48fd 2,012 106 18,204 2009-11-03 2012-01-27 32 815
100 360 b71b69c9e559dd602046ab42a28d48fd 2,010 106 18,204 2009-11-03 2010-11-24 32 386
100 361 b8625adc23f83f9774372e8e6c4fd780 2,012 109 18,582 2010-11-16 2012-03-30 47 500
100 361 b8625adc23f83f9774372e8e6c4fd780 2,011 109 18,582 2010-11-16 2011-12-01 47 380
100 363 c10561f14f13a6fe4dfc3b8e0d5a43b6 2,012 138 18,688 2011-03-02 2012-09-03 47 551
100 363 c10561f14f13a6fe4dfc3b8e0d5a43b6 2,011 138 18,688 2011-03-02 2011-06-01 47 91
100 364 c286aa07f47ac63249ab173a2caf5b8b 2,012 109 18,919 2011-10-19 2012-04-11 30 175
100 364 c286aa07f47ac63249ab173a2caf5b8b 2,011 109 18,919 2011-10-19 2012-01-31 30 104
100 365 c344bb5af16bf94de8f450986058b03d 2,012 109 18,107 2009-07-29 2012-03-30 50 975
100 365 c344bb5af16bf94de8f450986058b03d 2,012 109 18,107 2009-07-29 2012-02-29 50 945
100 366 c3d2d951cde34c4e0e8ace4510e2b8bb 2,012 109 18,820 2011-07-12 2013-01-31 37 569
100 366 c3d2d951cde34c4e0e8ace4510e2b8bb 2,011 109 18,820 2011-07-12 2012-01-31 37 203
100 367 c6f92de7d0138a635dc64749f38eab0c 2,012 109 19,073 2012-03-21 2012-10-31 33 224
100 367 c6f92de7d0138a635dc64749f38eab0c 2,012 109 19,073 2012-03-21 2012-05-31 33 71
100 368 c9a5d381412bc13154a121fea7394dff 2,012 261 19,036 2012-02-13 2012-06-28 32 136
100 368 c9a5d381412bc13154a121fea7394dff 2,012 261 19,036 2012-02-13 2012-03-27 32 43
100 369 cbf647c3c0b686f30f535ac5d33eb0d1 2,012 259 18,371 2010-04-19 2012-10-31 33 926
100 369 cbf647c3c0b686f30f535ac5d33eb0d1 2,010 259 18,371 2010-04-19 2010-05-13 33 24
100 370 cc28c38baf36a2e813889463e1ffbd15 2,012 295 19,054 2012-03-02 2012-03-30 44 28
100 370 cc28c38baf36a2e813889463e1ffbd15 2,012 295 19,053 2012-03-01 2012-03-01 44 0
100 371 d3b992e2df71ef5a66b2c5ffc011019a 2,012 123 18,345 2010-03-24 2012-11-21 38 973
100 371 d3b992e2df71ef5a66b2c5ffc011019a 2,010 123 18,345 2010-03-24 2010-10-07 38 197
100 372 d3bde0ec29e871d6306181e1514c2c1f 2,012 109 18,470 2010-07-27 2012-11-30 49 857
100 372 d3bde0ec29e871d6306181e1514c2c1f 2,012 109 18,470 2010-07-27 2012-05-29 49 672
100 373 d3bde0ec29e871d6306181e1514c2c1f 2,012 109 18,470 2010-07-27 2012-11-30 49 857
100 373 d3bde0ec29e871d6306181e1514c2c1f 2,012 109 18,470 2010-07-27 2012-01-31 49 553
100 374 d3bde0ec29e871d6306181e1514c2c1f 2,012 109 18,470 2010-07-27 2012-05-29 49 672
100 374 d3bde0ec29e871d6306181e1514c2c1f 2,012 109 18,470 2010-07-27 2012-01-31 49 553
100 375 d496a8ffab0bde341838a4cec790d0d6 2,012 182 19,057 2012-03-05 2012-04-20 34 46
100 375 d496a8ffab0bde341838a4cec790d0d6 2,012 182 19,052 2012-02-29 2012-03-02 34 2
100 376 d4bbe6468ffaa45448fe3454424c2feb 2,012 122 17,993 2009-04-06 2013-01-16 68 1381
100 376 d4bbe6468ffaa45448fe3454424c2feb 2,011 122 17,993 2009-04-06 2011-05-03 68 757
100 377 d4bbe6468ffaa45448fe3454424c2feb 2,012 122 17,993 2009-04-06 2013-01-16 68 1381
100 377 d4bbe6468ffaa45448fe3454424c2feb 2,010 122 17,993 2009-04-06 2010-12-31 68 634
100 378 d5a0136b2bf3131078cefb9e124e283e 2,012 109 18,751 2011-05-04 2013-01-31 33 638
100 378 d5a0136b2bf3131078cefb9e124e283e 2,012 109 18,751 2011-05-04 2012-08-31 33 485
100 379 d6d9f12a59aef87242e315fca3357941 2,012 109 18,899 2011-09-29 2012-07-24 34 299
100 379 d6d9f12a59aef87242e315fca3357941 2,012 109 18,898 2011-09-28 2012-04-30 34 215
100 380 d84aa4e55b585c50a6d5f5bb47b8fe5e 2,012 123 18,724 2011-04-07 2012-11-28 43 601
100 380 d84aa4e55b585c50a6d5f5bb47b8fe5e 2,011 123 18,724 2011-04-07 2012-01-27 43 295
100 381 d97ea4cf313bee5e752667a520059a00 2,012 109 18,847 2011-08-08 2012-10-31 38 450
100 381 d97ea4cf313bee5e752667a520059a00 2,011 109 18,847 2011-08-08 2011-11-21 38 105
100 382 da5276df55f116602c82d0bbe15311eb 2,012 294 18,947 2011-11-16 2012-07-27 34 254
100 382 da5276df55f116602c82d0bbe15311eb 2,012 294 18,947 2011-11-16 2012-05-31 34 197
100 384 dbae85ce66f38abba296dda936737984 2,012 294 18,858 2011-08-19 2012-07-23 34 339
100 384 dbae85ce66f38abba296dda936737984 2,011 294 18,858 2011-08-19 2012-01-02 34 136
100 385 dbae85ce66f38abba296dda936737984 2,012 294 18,858 2011-08-19 2012-07-23 34 339
100 385 dbae85ce66f38abba296dda936737984 2,011 294 18,858 2011-08-19 2011-09-26 34 38
100 386 de16417ca505e79d6d5035a403d0afa4 2,012 109 18,164 2009-09-24 2013-01-31 33 1225
100 386 de16417ca505e79d6d5035a403d0afa4 2,011 109 18,164 2009-09-24 2011-12-01 33 798
100 387 dee56cbeec4de4eee351f4fa81682cb7 2,012 109 19,158 2012-06-14 2013-01-31 27 231
100 387 dee56cbeec4de4eee351f4fa81682cb7 2,012 109 19,158 2012-06-14 2012-08-31 27 78
100 388 e5b159eb47c8a4ac91e45722113d45b0 2,012 109 18,752 2011-05-05 2012-10-31 31 545
100 388 e5b159eb47c8a4ac91e45722113d45b0 2,011 109 18,756 2011-05-09 2011-10-31 31 175
100 390 eb1400630ecd016919be6c4a1d2ccae3 2,012 294 18,966 2011-12-05 2012-11-30 40 361
100 390 eb1400630ecd016919be6c4a1d2ccae3 2,012 294 18,966 2011-12-05 2012-02-29 40 86
100 391 eb75f1fa2f650a712f3078cdc31d18e1 2,012 109 18,715 2011-03-29 2013-01-31 27 674
100 391 eb75f1fa2f650a712f3078cdc31d18e1 2,011 109 18,715 2011-03-29 2011-06-30 27 93
100 392 f278cbef747d76860f2bf8e4f410b9d6 2,012 294 18,851 2011-08-12 2012-10-09 39 424
100 392 f278cbef747d76860f2bf8e4f410b9d6 2,012 294 18,851 2011-08-12 2012-02-29 39 201
100 393 f278cbef747d76860f2bf8e4f410b9d6 2,012 294 18,851 2011-08-12 2012-10-09 39 424
100 393 f278cbef747d76860f2bf8e4f410b9d6 2,011 294 18,851 2011-08-12 2011-12-01 39 111
100 394 f278cbef747d76860f2bf8e4f410b9d6 2,012 294 18,851 2011-08-12 2012-10-09 39 424
100 394 f278cbef747d76860f2bf8e4f410b9d6 2,011 294 18,851 2011-08-12 2011-10-31 39 80
100 395 f278cbef747d76860f2bf8e4f410b9d6 2,012 294 18,851 2011-08-12 2012-02-29 39 201
100 395 f278cbef747d76860f2bf8e4f410b9d6 2,011 294 18,851 2011-08-12 2011-12-01 39 111
100 396 f278cbef747d76860f2bf8e4f410b9d6 2,012 294 18,851 2011-08-12 2012-02-29 39 201
100 396 f278cbef747d76860f2bf8e4f410b9d6 2,011 294 18,851 2011-08-12 2011-10-31 39 80
100 398 f726f678d59b317d4c6a7ee6cfa63b03 2,012 109 19,121 2012-05-08 2013-01-31 56 268
100 398 f726f678d59b317d4c6a7ee6cfa63b03 2,012 109 19,121 2012-05-08 2012-09-28 56 143
100 399 0016bbee99f53c237ed04eb373211817 2,011 269 18,526 2010-09-21 2011-11-20 35 425
100 399 0016bbee99f53c237ed04eb373211817 2,011 269 18,526 2010-09-21 2011-05-31 35 252
100 400 0372499208d56dac5ebeca76329d5661 2,011 123 18,361 2010-04-09 2011-07-28 34 475
100 400 0372499208d56dac5ebeca76329d5661 2,010 123 18,361 2010-04-09 2010-05-17 34 38
100 401 075fe595d9415cb5f3f1ecf63f406d98 2,011 122 18,651 2011-01-24 2011-04-15 44 81
100 401 075fe595d9415cb5f3f1ecf63f406d98 2,011 122 18,651 2011-01-24 2011-02-28 44 35
100 402 08dd4a357399c138a5819b2ffd0e999a 2,011 332 18,689 2011-03-03 2011-09-29 37 210
100 402 08dd4a357399c138a5819b2ffd0e999a 2,011 332 18,689 2011-03-03 2011-05-31 37 89
100 403 0dd5b07ee1a0f0064cf000aa2747bb23 2,011 116 18,780 2011-06-02 2011-12-31 48 212
100 403 0dd5b07ee1a0f0064cf000aa2747bb23 2,011 116 18,780 2011-06-02 2011-08-07 48 66
100 404 0edfdeaf9369ab95c6992609962f108d 2,011 294 18,878 2011-09-08 2012-04-05 39 210
100 404 0edfdeaf9369ab95c6992609962f108d 2,011 294 18,878 2011-09-08 2011-10-31 39 53
100 405 0edfdeaf9369ab95c6992609962f108d 2,011 294 18,878 2011-09-08 2012-04-05 39 210
100 405 0edfdeaf9369ab95c6992609962f108d 2,011 294 18,878 2011-09-08 2011-10-03 39 25
100 406 0edfdeaf9369ab95c6992609962f108d 2,011 294 18,878 2011-09-08 2011-10-31 39 53
100 406 0edfdeaf9369ab95c6992609962f108d 2,011 294 18,878 2011-09-08 2011-10-03 39 25
100 407 0f6032fdfe355af354dac1ef88a1a043 2,011 301 18,654 2011-01-27 2011-11-11 38 288
100 407 0f6032fdfe355af354dac1ef88a1a043 2,011 301 18,654 2011-01-27 2011-07-12 38 166
100 408 10bc9f139fcfd0f012b5dcf59bcbf417 2,011 109 18,240 2009-12-09 2011-06-02 42 540
100 408 10bc9f139fcfd0f012b5dcf59bcbf417 2,011 109 18,240 2009-12-09 2011-01-31 42 418
100 409 187f129a95d524cd399ffdaacc0f671e 2,011 122 18,483 2010-08-09 2011-08-31 31 387
100 409 187f129a95d524cd399ffdaacc0f671e 2,010 122 18,483 2010-08-09 2010-12-31 31 144
100 410 1892dab247fd46439de490b350394c36 2,011 108 18,562 2010-10-27 2011-05-11 34 196
100 410 1892dab247fd46439de490b350394c36 2,010 108 18,562 2010-10-27 2011-02-01 34 97
100 411 18c5bef4dc0510a1d5e456934408c9db 2,011 123 18,702 2011-03-16 2011-08-29 41 166
100 411 18c5bef4dc0510a1d5e456934408c9db 2,011 123 18,702 2011-03-16 2011-04-14 41 29
100 412 1a522e72424746ec8fdd2ab78d1f5fc1 2,011 109 18,830 2011-07-22 2011-12-01 28 132
100 412 1a522e72424746ec8fdd2ab78d1f5fc1 2,011 109 18,830 2011-07-22 2011-08-31 28 40
100 413 1c172dc9d5a625291f9367142bee157e 2,011 109 18,515 2010-09-10 2011-07-01 38 294
100 413 1c172dc9d5a625291f9367142bee157e 2,010 109 18,515 2010-09-10 2010-12-31 38 112
100 414 1e30ddcc36208fe4e251b92d7d3b3a5a 2,011 142 18,899 2011-09-29 2011-12-02 44 64
100 414 1e30ddcc36208fe4e251b92d7d3b3a5a 2,011 142 18,899 2011-09-29 NA 44 NA
100 415 2172033ab8c0b1e54245c25852918d66 2,011 109 18,480 2010-08-06 2011-08-01 41 360
100 415 2172033ab8c0b1e54245c25852918d66 2,011 109 18,480 2010-08-06 2011-04-30 41 267
100 416 22022d87f3ca16e379dc26d2d4745321 2,011 238 18,367 2010-04-15 2011-03-21 45 340
100 416 22022d87f3ca16e379dc26d2d4745321 2,010 238 18,367 2010-04-15 2010-07-01 45 77
100 417 26ebae5888430e7cbb106e484faf76a0 2,011 148 18,772 2011-05-25 2012-03-19 30 299
100 417 26ebae5888430e7cbb106e484faf76a0 2,011 148 18,772 2011-05-25 2011-08-15 30 82
100 418 2bb47464e66f8432219a1b629dc0759e 2,011 147 18,673 2011-02-15 2011-06-20 48 125
100 418 2bb47464e66f8432219a1b629dc0759e 2,011 147 18,673 2011-02-15 2011-03-09 48 22
100 419 2fb4729683525ae88137d81ec16725a7 2,011 123 18,562 2010-10-27 2011-07-28 34 274
100 419 2fb4729683525ae88137d81ec16725a7 2,010 123 18,562 2010-10-27 2011-01-14 34 79
100 420 33ced5503c1eb1a63dd65edcd682fc41 2,011 218 18,809 2011-07-01 2012-01-02 35 185
100 420 33ced5503c1eb1a63dd65edcd682fc41 2,011 218 18,806 2011-06-28 2011-06-30 35 2
100 421 3cd03d4cd8ae6ec1f6eb1fb82a0e330d 2,011 109 18,473 2010-07-30 2011-12-01 38 489
100 421 3cd03d4cd8ae6ec1f6eb1fb82a0e330d 2,011 109 18,473 2010-07-30 2011-03-31 38 244
100 422 3cd03d4cd8ae6ec1f6eb1fb82a0e330d 2,011 109 18,473 2010-07-30 2011-12-01 38 489
100 422 3cd03d4cd8ae6ec1f6eb1fb82a0e330d 2,010 109 18,473 2010-07-30 2010-08-31 38 32
100 423 3cd03d4cd8ae6ec1f6eb1fb82a0e330d 2,011 109 18,473 2010-07-30 2011-03-31 38 244
100 423 3cd03d4cd8ae6ec1f6eb1fb82a0e330d 2,010 109 18,473 2010-07-30 2010-08-31 38 32
100 424 3ed9dbd5239bbc5eb73d437d58678db8 2,011 109 17,926 2009-01-29 2011-10-31 55 1005
100 424 3ed9dbd5239bbc5eb73d437d58678db8 2,010 109 17,926 2009-01-29 2010-01-04 55 340
100 425 40067db8e6d621ee529412bab80bb254 2,011 109 18,694 2011-03-08 2011-12-31 32 298
100 425 40067db8e6d621ee529412bab80bb254 2,011 109 18,694 2011-03-08 2011-08-31 32 176
100 426 420b584eb7c75d0b8645c640a094af8d 2,011 161 18,340 2010-03-19 2011-10-17 49 577
100 426 420b584eb7c75d0b8645c640a094af8d 2,010 161 18,340 2010-03-19 2010-06-09 49 82
100 427 445c17103b071f7f9476fa10cf02bea1 2,011 109 18,487 2010-08-13 2011-04-29 35 259
100 427 445c17103b071f7f9476fa10cf02bea1 2,010 109 18,487 2010-08-13 2010-09-30 35 48
100 428 44d219838aeeba9c5642a9c33750e365 2,011 261 18,469 2010-07-26 2011-10-24 39 455
100 428 44d219838aeeba9c5642a9c33750e365 2,011 261 18,469 2010-07-26 2011-03-25 39 242
100 429 457a5a5865f3e5eb74a0d6e3a3e5c267 2,011 108 18,556 2010-10-21 2011-02-28 33 130
100 429 457a5a5865f3e5eb74a0d6e3a3e5c267 2,010 108 18,556 2010-10-21 2011-02-01 33 103
100 430 49fdac1f7a3eb744f72301d9d956774b 2,011 122 18,338 2010-03-17 2012-02-27 64 712
100 430 49fdac1f7a3eb744f72301d9d956774b 2,010 122 18,338 2010-03-17 2010-12-31 64 289
100 431 4bf3c6a5bb3c004c5badb56225c378f5 2,011 236 18,753 2011-05-06 NA 65 3105
100 431 4bf3c6a5bb3c004c5badb56225c378f5 2,011 236 18,752 2011-05-05 2011-08-31 65 118
100 432 4ee661d16e6fd355c3a44c9c9e0e5457 2,011 109 17,971 2009-03-15 2011-03-31 42 746
100 432 4ee661d16e6fd355c3a44c9c9e0e5457 2,010 109 17,968 2009-03-12 2010-12-31 42 659
100 433 4ee661d16e6fd355c3a44c9c9e0e5457 2,011 109 17,959 2009-03-03 2011-12-01 42 1003
100 433 4ee661d16e6fd355c3a44c9c9e0e5457 2,010 109 17,960 2009-03-04 2010-05-31 42 453
100 434 4f81dd80d2e7e7e0b46b7d4f3765e9a4 2,011 122 17,665 2008-05-13 2011-02-23 73 1016
100 434 4f81dd80d2e7e7e0b46b7d4f3765e9a4 2,010 122 17,665 2008-05-13 2011-01-26 73 988
100 435 5816d947eac509176dcb242ae8be8c8b 2,011 109 18,238 2009-12-07 2011-08-01 49 602
100 435 5816d947eac509176dcb242ae8be8c8b 2,011 109 18,238 2009-12-07 2011-04-29 49 508
100 436 5816d947eac509176dcb242ae8be8c8b 2,011 109 18,238 2009-12-07 2011-08-01 49 602
100 436 5816d947eac509176dcb242ae8be8c8b 2,010 109 18,238 2009-12-07 2011-03-31 49 479
100 437 5816d947eac509176dcb242ae8be8c8b 2,011 109 18,238 2009-12-07 2011-04-29 49 508
100 437 5816d947eac509176dcb242ae8be8c8b 2,010 109 18,238 2009-12-07 2011-03-31 49 479
100 438 5bf2fa39816f7eb3735ba7b4ca68efe8 2,011 122 18,270 2010-01-08 2011-05-31 62 508
100 438 5bf2fa39816f7eb3735ba7b4ca68efe8 2,010 122 18,270 2010-01-08 2010-08-09 62 213
100 439 5c24a3b2c2085118083a67af5f7467fe 2,011 238 18,224 2009-11-23 2011-01-28 36 431
100 439 5c24a3b2c2085118083a67af5f7467fe 2,010 238 18,224 2009-11-23 2010-07-01 36 220
100 440 5cb17c4c4fff9e6d9f7eab47c049cbd4 2,011 141 18,487 2010-08-13 2011-03-31 46 230
100 440 5cb17c4c4fff9e6d9f7eab47c049cbd4 2,010 141 18,487 2010-08-13 2010-12-02 46 111
100 441 5dd0c003819e67b75c0ee5ffc980623b 2,011 109 18,728 2011-04-11 2011-09-30 36 172
100 441 5dd0c003819e67b75c0ee5ffc980623b 2,011 109 18,728 2011-04-11 2011-08-31 36 142
100 442 5dda046920f44c681845287d201c6187 2,011 109 17,855 2008-11-19 2011-09-30 33 1045
100 442 5dda046920f44c681845287d201c6187 2,011 109 17,855 2008-11-19 2011-08-31 33 1015
100 443 5dda046920f44c681845287d201c6187 2,011 109 17,855 2008-11-19 2011-09-30 33 1045
100 443 5dda046920f44c681845287d201c6187 2,011 109 17,855 2008-11-19 2011-04-27 33 889
100 444 5dda046920f44c681845287d201c6187 2,011 109 17,855 2008-11-19 2011-09-30 33 1045
100 444 5dda046920f44c681845287d201c6187 2,010 109 17,855 2008-11-19 2010-09-30 33 680
100 445 5dda046920f44c681845287d201c6187 2,011 109 17,855 2008-11-19 2011-08-31 33 1015
100 445 5dda046920f44c681845287d201c6187 2,011 109 17,855 2008-11-19 2011-04-27 33 889
100 446 5dda046920f44c681845287d201c6187 2,011 109 17,855 2008-11-19 2011-08-31 33 1015
100 446 5dda046920f44c681845287d201c6187 2,010 109 17,855 2008-11-19 2010-09-30 33 680
100 447 5dda046920f44c681845287d201c6187 2,011 109 17,855 2008-11-19 2011-04-27 33 889
100 447 5dda046920f44c681845287d201c6187 2,010 109 17,855 2008-11-19 2010-09-30 33 680
100 448 63421aecd06c9240416af330bb238a5f 2,011 148 18,723 2011-04-06 2012-03-14 38 343
100 448 63421aecd06c9240416af330bb238a5f 2,011 148 18,723 2011-04-06 2011-11-23 38 231
100 449 6680457b0ac2175ef06c3d56c4e7ec1b 2,011 122 17,933 2009-02-05 2011-02-23 37 748
100 449 6680457b0ac2175ef06c3d56c4e7ec1b 2,010 122 17,933 2009-02-05 2010-03-08 37 396
100 450 6933fe919569725de8d10211fee3e0f1 2,011 148 18,744 2011-04-27 2011-11-23 36 210
100 450 6933fe919569725de8d10211fee3e0f1 2,011 148 18,744 2011-04-27 2011-04-28 36 1
100 451 722646fca1b34862e4a3c275d12cf0e8 2,011 290 18,710 2011-03-24 2011-11-01 36 222
100 451 722646fca1b34862e4a3c275d12cf0e8 2,011 290 18,710 2011-03-24 2011-03-31 36 7
100 452 7380c3b54771f3eaed695f5436eb0c56 2,011 294 18,599 2010-12-03 2011-04-25 31 143
100 452 7380c3b54771f3eaed695f5436eb0c56 2,011 294 18,599 2010-12-03 2011-02-25 31 84
100 453 75de922c70d2384a330ad1092244ff62 2,011 320 18,658 2011-01-31 2011-03-02 33 30
100 453 75de922c70d2384a330ad1092244ff62 2,011 320 18,658 2011-01-31 2011-03-02 33 30
100 454 78194555bf801e7efa5490ee3734559c 2,011 122 18,715 2011-03-29 2012-04-09 62 377
100 454 78194555bf801e7efa5490ee3734559c 2,011 122 18,715 2011-03-29 2011-05-02 62 34
100 455 78f26c69ea97289453274f61a57bc1ee 2,011 109 18,480 2010-08-06 2011-11-30 38 481
100 455 78f26c69ea97289453274f61a57bc1ee 2,011 109 18,480 2010-08-06 2011-05-30 38 297
100 456 797bbe5c644ae0f83f616c83ceb57499 2,011 294 18,665 2011-02-07 2012-05-01 35 449
100 456 797bbe5c644ae0f83f616c83ceb57499 2,011 294 18,665 2011-02-07 2011-04-27 35 79
100 457 7b33aae7999def4110e4c85533b4ab07 2,011 181 18,557 2010-10-22 2011-08-29 43 311
100 457 7b33aae7999def4110e4c85533b4ab07 2,010 181 18,557 2010-10-22 2011-01-28 43 98
100 458 7c3b33f7131449bab6d82f93f4a0a727 2,011 109 18,514 2010-09-09 2011-09-30 39 386
100 458 7c3b33f7131449bab6d82f93f4a0a727 2,011 109 18,514 2010-09-09 2011-04-15 39 218
100 459 7cef51ced602328c4b8c88f4389657bf 2,011 122 18,645 2011-01-18 2012-03-30 46 437
100 459 7cef51ced602328c4b8c88f4389657bf 2,011 122 18,645 2011-01-18 2011-05-31 46 133
100 460 7cf6cf9a80a0a0ef4180953c06779894 2,011 109 18,588 2010-11-22 2012-01-31 53 435
100 460 7cf6cf9a80a0a0ef4180953c06779894 2,011 109 18,588 2010-11-22 2011-08-31 53 282
100 461 7d2c487efcd3c85802b81000cfd9e4b3 2,011 122 18,718 2011-04-01 2012-03-30 55 364
100 461 7d2c487efcd3c85802b81000cfd9e4b3 2,011 122 18,718 2011-04-01 2011-05-02 55 31
100 462 813a63201654b6bf14fe6b60ca337422 2,011 136 18,749 2011-05-02 2011-09-30 38 151
100 462 813a63201654b6bf14fe6b60ca337422 2,011 136 18,749 2011-05-02 2011-06-06 38 35
100 463 8559a8aec31e7e03c53679c3b80fbdfb 2,011 141 18,718 2011-04-01 2011-08-31 30 152
100 463 8559a8aec31e7e03c53679c3b80fbdfb 2,011 141 18,718 2011-04-01 2011-07-29 30 119
100 464 884b163649a981ca6a6bcd2d126eca57 2,011 260 18,640 2011-01-13 2011-05-19 31 126
100 464 884b163649a981ca6a6bcd2d126eca57 2,011 260 18,640 2011-01-13 2011-02-28 31 46
100 465 8bec919f56fab2888e59de8463c8430d 2,011 151 18,120 2009-08-11 2011-05-30 57 657
100 465 8bec919f56fab2888e59de8463c8430d 2,010 151 18,120 2009-08-11 2010-02-26 57 199
100 466 8fa752970cb75c40c449f044aff526be 2,011 302 18,603 2010-12-07 2011-01-17 34 41
100 466 8fa752970cb75c40c449f044aff526be 2,010 302 18,603 2010-12-07 2011-01-17 34 41
100 467 919580f6465c4302f5baa7881437327f 2,011 148 18,758 2011-05-11 2012-02-21 49 286
100 467 919580f6465c4302f5baa7881437327f 2,011 148 18,758 2011-05-11 2011-05-30 49 19
100 468 959fa309f34341c78fc3fbd09ead2a9f 2,011 295 18,547 2010-10-12 2011-08-01 50 293
100 468 959fa309f34341c78fc3fbd09ead2a9f 2,011 295 18,543 2010-10-08 2011-02-07 50 122
100 469 95af45e7ff163e4fb692c53d977aa6c4 2,011 157 18,616 2010-12-20 2011-09-29 52 283
100 469 95af45e7ff163e4fb692c53d977aa6c4 2,011 157 18,616 2010-12-20 2011-06-29 52 191
100 470 9602b1ca49dcc4162dd8e0f248726c62 2,011 234 18,568 2010-11-02 2011-05-27 36 206
100 470 9602b1ca49dcc4162dd8e0f248726c62 2,010 234 18,568 2010-11-02 2011-05-27 36 206
100 471 a28380271daee4b853f01d371a3e1e3a 2,011 218 18,707 2011-03-21 2011-06-07 54 78
100 471 a28380271daee4b853f01d371a3e1e3a 2,011 218 18,707 2011-03-21 2011-03-31 54 10
100 472 a8b6f24ee02c5e91d5fccbaa98d81233 2,011 118 18,119 2009-08-10 2012-01-02 41 875
100 472 a8b6f24ee02c5e91d5fccbaa98d81233 2,010 118 18,119 2009-08-10 2010-03-31 41 233
100 473 aa182e72694793c5fa5f240874fdb365 2,011 109 18,816 2011-07-08 2012-02-29 43 236
100 473 aa182e72694793c5fa5f240874fdb365 2,011 109 18,816 2011-07-08 2011-11-30 43 145
100 474 aa182e72694793c5fa5f240874fdb365 2,011 109 18,816 2011-07-08 2012-02-29 43 236
100 474 aa182e72694793c5fa5f240874fdb365 2,011 109 18,816 2011-07-08 2011-10-31 43 115
100 475 aa182e72694793c5fa5f240874fdb365 2,011 109 18,816 2011-07-08 2011-11-30 43 145
100 475 aa182e72694793c5fa5f240874fdb365 2,011 109 18,816 2011-07-08 2011-10-31 43 115
100 476 ab34d75a8c736ce82eaf6f9e70d37f7e 2,011 109 17,861 2008-11-25 2011-02-28 34 825
100 476 ab34d75a8c736ce82eaf6f9e70d37f7e 2,010 109 17,861 2008-11-25 2011-01-31 34 797
100 477 af62a87edc22a00d1fd79b52f3280c1c 2,011 157 18,674 2011-02-16 2012-01-31 43 349
100 477 af62a87edc22a00d1fd79b52f3280c1c 2,011 157 18,674 2011-02-16 2011-06-01 43 105
100 478 b55708195e3aec10337e12dbe80eebbc 2,011 179 18,353 2010-04-01 2011-09-20 28 537
100 478 b55708195e3aec10337e12dbe80eebbc 2,010 179 18,350 2010-03-29 2010-06-20 28 83
100 479 b594249ce21bff76a84a18524480341d 2,011 122 18,729 2011-04-12 2011-07-01 53 80
100 479 b594249ce21bff76a84a18524480341d 2,011 122 18,729 2011-04-12 2011-05-02 53 20
100 480 b71b69c9e559dd602046ab42a28d48fd 2,011 106 18,204 2009-11-03 2011-06-16 32 590
100 480 b71b69c9e559dd602046ab42a28d48fd 2,010 106 18,204 2009-11-03 2010-11-24 32 386
100 481 b85d1d417293db471d30e540716dfd2e 2,011 109 17,924 2009-01-27 2011-01-31 45 734
100 481 b85d1d417293db471d30e540716dfd2e 2,010 109 17,924 2009-01-27 2010-12-31 45 703
100 482 b85d1d417293db471d30e540716dfd2e 2,011 109 17,924 2009-01-27 2011-01-31 45 734
100 482 b85d1d417293db471d30e540716dfd2e 2,010 109 17,924 2009-01-27 2010-08-31 45 581
100 483 b85d1d417293db471d30e540716dfd2e 2,011 109 17,924 2009-01-27 2011-01-31 45 734
100 483 b85d1d417293db471d30e540716dfd2e 2,010 109 17,924 2009-01-27 2010-04-01 45 429
100 484 b98ea8f9b871252d368a968252ad6c11 2,011 157 18,667 2011-02-09 2011-09-01 53 204
100 484 b98ea8f9b871252d368a968252ad6c11 2,011 157 18,667 2011-02-09 2011-05-31 53 111
100 485 bdf003e416509a0ab01e43d312dbf87e 2,011 109 17,581 2008-02-19 2011-04-29 52 1165
100 485 bdf003e416509a0ab01e43d312dbf87e 2,010 109 17,581 2008-02-19 2010-12-31 52 1046
100 486 cf247a5c1807703db66d37ed274a8f83 2,011 123 18,142 2009-09-02 2011-03-16 36 560
100 486 cf247a5c1807703db66d37ed274a8f83 2,010 123 18,142 2009-09-02 2010-03-29 36 208
100 487 cf88aa6ddd36d11cdc884e949144908a 2,011 109 18,571 2010-11-05 2011-11-30 36 390
100 487 cf88aa6ddd36d11cdc884e949144908a 2,011 109 18,571 2010-11-05 2011-07-29 36 266
100 488 d46082a9bbcca5e05e9f44ccb7aa4e08 2,011 109 18,583 2010-11-17 2011-04-29 38 163
100 488 d46082a9bbcca5e05e9f44ccb7aa4e08 2,011 109 18,583 2010-11-17 2011-02-28 38 103
100 489 d46aba6eec7818d543668cebaa8019c8 2,011 216 18,647 2011-01-20 2011-05-01 39 101
100 489 d46aba6eec7818d543668cebaa8019c8 2,011 216 18,647 2011-01-20 2011-01-20 39 0
100 490 d4847c912b015dc285fe276e80c666bf 2,011 238 18,427 2010-06-14 2011-02-25 44 256
100 490 d4847c912b015dc285fe276e80c666bf 2,010 238 18,427 2010-06-14 2010-07-29 44 45
100 491 d4bbe6468ffaa45448fe3454424c2feb 2,011 122 17,993 2009-04-06 2011-05-03 68 757
100 491 d4bbe6468ffaa45448fe3454424c2feb 2,010 122 17,993 2009-04-06 2010-12-31 68 634
100 492 d82b5c21ac8cc920f0bcabcfcebfd411 2,011 106 18,352 2010-03-31 2011-03-01 29 335
100 492 d82b5c21ac8cc920f0bcabcfcebfd411 2,010 106 18,352 2010-03-31 2010-08-19 29 141
100 493 d86a046fce98a3451a075ef77b0207d9 2,011 108 18,578 2010-11-12 2011-01-31 33 80
100 493 d86a046fce98a3451a075ef77b0207d9 2,010 108 18,578 2010-11-12 2011-01-26 33 75
100 494 dafa4838a20d5380b2294fe27e911625 2,011 109 17,876 2008-12-10 2012-01-31 63 1147
100 494 dafa4838a20d5380b2294fe27e911625 2,010 109 17,878 2008-12-12 2010-10-31 63 688
100 495 dafa4838a20d5380b2294fe27e911625 2,011 109 17,876 2008-12-10 2012-01-31 63 1147
100 495 dafa4838a20d5380b2294fe27e911625 2,010 109 17,876 2008-12-10 2010-09-30 63 659
100 496 dafa4838a20d5380b2294fe27e911625 2,011 109 17,876 2008-12-10 2012-01-31 63 1147
100 496 dafa4838a20d5380b2294fe27e911625 2,010 109 17,876 2008-12-10 2010-07-31 63 598
100 497 dbae85ce66f38abba296dda936737984 2,011 294 18,858 2011-08-19 2012-01-02 34 136
100 497 dbae85ce66f38abba296dda936737984 2,011 294 18,858 2011-08-19 2011-09-26 34 38
100 498 dbecebd95c5c26564b3c9b8d69ba4f9b 2,011 109 18,578 2010-11-12 2011-02-28 47 108
100 498 dbecebd95c5c26564b3c9b8d69ba4f9b 2,010 109 18,578 2010-11-12 2010-11-30 47 18
100 499 dc3b6d8e46b8f266f94f1932d7a2b1a8 2,011 122 17,996 2009-04-09 2012-02-29 49 1056
100 499 dc3b6d8e46b8f266f94f1932d7a2b1a8 2,011 122 17,996 2009-04-09 2011-02-23 49 685
100 500 dc3b6d8e46b8f266f94f1932d7a2b1a8 2,011 122 17,996 2009-04-09 2012-02-29 49 1056
100 500 dc3b6d8e46b8f266f94f1932d7a2b1a8 2,010 122 17,996 2009-04-09 2010-12-31 49 631
100 501 dc3b6d8e46b8f266f94f1932d7a2b1a8 2,011 122 17,996 2009-04-09 2011-02-23 49 685
100 501 dc3b6d8e46b8f266f94f1932d7a2b1a8 2,010 122 17,996 2009-04-09 2010-12-31 49 631
100 502 dec4d97a067b319eb63db812ecd81e1e 2,011 120 18,407 2010-05-25 2011-06-30 41 401
100 502 dec4d97a067b319eb63db812ecd81e1e 2,010 120 18,407 2010-05-25 2010-07-02 41 38
100 503 e1423bb1350fed5c7d6966cb494b8907 2,011 109 18,442 2010-06-29 2011-06-29 54 365
100 503 e1423bb1350fed5c7d6966cb494b8907 2,011 109 18,442 2010-06-29 2011-01-31 54 216
100 504 e1423bb1350fed5c7d6966cb494b8907 2,011 109 18,442 2010-06-29 2011-06-29 54 365
100 504 e1423bb1350fed5c7d6966cb494b8907 2,010 109 18,442 2010-06-29 2010-11-30 54 154
100 505 e1423bb1350fed5c7d6966cb494b8907 2,011 109 18,442 2010-06-29 2011-06-29 54 365
100 505 e1423bb1350fed5c7d6966cb494b8907 2,010 109 18,442 2010-06-29 2010-09-30 54 93
100 506 e1423bb1350fed5c7d6966cb494b8907 2,011 109 18,442 2010-06-29 2011-01-31 54 216
100 506 e1423bb1350fed5c7d6966cb494b8907 2,010 109 18,442 2010-06-29 2010-11-30 54 154
100 507 e1423bb1350fed5c7d6966cb494b8907 2,011 109 18,442 2010-06-29 2011-01-31 54 216
100 507 e1423bb1350fed5c7d6966cb494b8907 2,010 109 18,442 2010-06-29 2010-09-30 54 93
100 508 e9bcf54d302f285b15fd25ca0e07505d 2,011 138 18,395 2010-05-13 2011-04-01 42 323
100 508 e9bcf54d302f285b15fd25ca0e07505d 2,010 138 18,395 2010-05-13 2010-11-02 42 173
100 509 eadd43df532b027c186d94b9891e7ee2 2,011 108 18,496 2010-08-22 2011-01-31 32 162
100 509 eadd43df532b027c186d94b9891e7ee2 2,010 108 18,492 2010-08-18 2011-01-26 32 161
100 510 f278cbef747d76860f2bf8e4f410b9d6 2,011 294 18,851 2011-08-12 2011-12-01 39 111
100 510 f278cbef747d76860f2bf8e4f410b9d6 2,011 294 18,851 2011-08-12 2011-10-31 39 80
100 511 f2ce3898de3228aa1ca915fd7acf3fe1 2,011 108 18,592 2010-11-26 2011-04-29 36 154
100 511 f2ce3898de3228aa1ca915fd7acf3fe1 2,010 108 18,597 2010-12-01 2011-02-01 36 62
100 512 f5a3766ccfbaa396dc2f683d231af716 2,011 294 18,793 2011-06-15 2011-09-30 37 107
100 512 f5a3766ccfbaa396dc2f683d231af716 2,011 294 18,793 2011-06-15 2011-06-30 37 15
100 513 f6baafce0aa37508e745262484011f2e 2,011 294 18,564 2010-10-29 2012-04-09 47 528
100 513 f6baafce0aa37508e745262484011f2e 2,011 294 18,564 2010-10-29 2011-11-29 47 396
100 514 f6baafce0aa37508e745262484011f2e 2,011 294 18,564 2010-10-29 2012-04-09 47 528
100 514 f6baafce0aa37508e745262484011f2e 2,011 294 18,564 2010-10-29 2011-08-29 47 304
100 515 f6baafce0aa37508e745262484011f2e 2,011 294 18,564 2010-10-29 2011-11-29 47 396
100 515 f6baafce0aa37508e745262484011f2e 2,011 294 18,564 2010-10-29 2011-08-29 47 304
100 516 f7f7df7fd16a172d9d6f5a44b4c44599 2,011 123 18,471 2010-07-28 2012-01-27 41 548
100 516 f7f7df7fd16a172d9d6f5a44b4c44599 2,010 123 18,471 2010-07-28 2010-10-04 41 68
100 517 fa7757049cf45d9e0225243cfb92671b 2,011 294 18,736 2011-04-19 2011-11-01 44 196
100 517 fa7757049cf45d9e0225243cfb92671b 2,011 294 18,736 2011-04-19 2011-08-29 44 132
100 518 004d1991cbc06fe1959d0d3a23fba572 2,010 123 17,870 2008-12-04 2010-11-18 44 714
100 518 004d1991cbc06fe1959d0d3a23fba572 2,010 123 17,870 2008-12-04 2010-11-18 44 714
100 519 09ed86ea373e87a5271ca94b1a380340 2,010 187 18,469 2010-07-26 2010-09-27 45 63
100 519 09ed86ea373e87a5271ca94b1a380340 2,010 187 18,469 2010-07-26 2010-08-26 45 31
100 520 1bfb0057be973e8f13c5e678761b69da 2,010 109 18,316 2010-02-23 2011-06-09 54 471
100 520 1bfb0057be973e8f13c5e678761b69da 2,010 109 18,316 2010-02-23 2010-11-30 54 280
100 521 20da5159a9482b4f2b91fdc7c486c6e7 2,010 182 18,233 2009-12-02 2010-04-09 58 128
100 521 20da5159a9482b4f2b91fdc7c486c6e7 2,010 182 18,232 2009-12-01 2010-04-09 58 129
100 522 22ad1c09805a1de614fe7be8b1d064b9 2,010 109 17,668 2008-05-16 2011-08-01 36 1172
100 522 22ad1c09805a1de614fe7be8b1d064b9 2,010 109 17,668 2008-05-16 2010-06-30 36 775
100 523 25c36b6820ac514094c458ba22918452 2,010 122 18,494 2010-08-20 2010-12-22 56 124
100 523 25c36b6820ac514094c458ba22918452 2,010 122 18,494 2010-08-20 2010-09-30 56 41
100 524 31f2e8fc18ed0247d63840c2247243d3 2,010 138 18,338 2010-03-17 2011-01-03 38 292
100 524 31f2e8fc18ed0247d63840c2247243d3 2,010 138 18,338 2010-03-17 2010-04-30 38 44
100 525 337e5a3f4c5c674aa3a608911284faa6 2,010 230 18,385 2010-05-03 2011-03-01 45 302
100 525 337e5a3f4c5c674aa3a608911284faa6 2,010 230 18,385 2010-05-03 2010-08-02 45 91
100 526 35e82c173a19a5112f974a19cc655e69 2,010 139 18,378 2010-04-26 2010-08-02 32 98
100 526 35e82c173a19a5112f974a19cc655e69 2,010 139 18,378 2010-04-26 2010-04-30 32 4
100 527 38dc632be1186c27bddc680dd0a3e092 2,010 182 18,275 2010-01-13 2010-03-24 37 70
100 527 38dc632be1186c27bddc680dd0a3e092 2,010 182 18,275 2010-01-13 2010-01-29 37 16
100 528 3a4fb7d97b5b42e7879a6091f2619fcc 2,010 161 18,382 2010-04-30 2010-10-18 37 171
100 528 3a4fb7d97b5b42e7879a6091f2619fcc 2,010 161 18,379 2010-04-27 2010-06-17 37 51
100 529 3bbea54bc0d42b2b68a9e092e8547fc1 2,010 122 18,193 2009-10-23 2010-12-31 38 434
100 529 3bbea54bc0d42b2b68a9e092e8547fc1 2,010 122 18,193 2009-10-23 2010-04-30 38 189
100 530 4234b7df0378b7ad1b21fe8b1c4d40b5 2,010 109 18,372 2010-04-20 2011-08-01 45 468
100 530 4234b7df0378b7ad1b21fe8b1c4d40b5 2,010 109 18,372 2010-04-20 2010-09-30 45 163
100 531 4234b7df0378b7ad1b21fe8b1c4d40b5 2,010 109 18,372 2010-04-20 2011-08-01 45 468
100 531 4234b7df0378b7ad1b21fe8b1c4d40b5 2,010 109 18,372 2010-04-20 2010-05-31 45 41
100 532 4234b7df0378b7ad1b21fe8b1c4d40b5 2,010 109 18,372 2010-04-20 2010-09-30 45 163
100 532 4234b7df0378b7ad1b21fe8b1c4d40b5 2,010 109 18,372 2010-04-20 2010-05-31 45 41
100 533 45b7e1a39c3c328865affa1a97c21c01 2,010 295 18,497 2010-08-23 2010-11-24 36 93
100 533 45b7e1a39c3c328865affa1a97c21c01 2,010 295 18,497 2010-08-23 2010-09-01 36 9
100 534 4e0a7df87138f9e25715e4d0a264a3d3 2,010 109 18,252 2009-12-21 2011-06-06 57 532
100 534 4e0a7df87138f9e25715e4d0a264a3d3 2,010 109 18,252 2009-12-21 2010-08-31 57 253
100 535 4e0a7df87138f9e25715e4d0a264a3d3 2,010 109 18,252 2009-12-21 2011-06-06 57 532
100 535 4e0a7df87138f9e25715e4d0a264a3d3 2,010 109 18,252 2009-12-21 2010-01-29 57 39
100 536 4e0a7df87138f9e25715e4d0a264a3d3 2,010 109 18,252 2009-12-21 2010-08-31 57 253
100 536 4e0a7df87138f9e25715e4d0a264a3d3 2,010 109 18,252 2009-12-21 2010-01-29 57 39
100 537 5c67d04035132ac25e2b3448db2bd9fc 2,010 109 17,479 2007-11-09 2011-07-28 52 1357
100 537 5c67d04035132ac25e2b3448db2bd9fc 2,010 109 17,479 2007-11-09 2010-04-30 52 903
100 538 5d7da7eeb36045dc809c3fe3d6aea007 2,010 123 18,329 2010-03-08 2010-12-30 51 297
100 538 5d7da7eeb36045dc809c3fe3d6aea007 2,010 123 18,329 2010-03-08 2010-03-17 51 9
100 539 71b7c29d53f541b0639e042ec9a8f0b2 2,010 109 18,339 2010-03-18 2010-10-31 44 227
100 539 71b7c29d53f541b0639e042ec9a8f0b2 2,010 109 18,338 2010-03-17 2011-06-02 44 442
100 540 77b95857e1a0b6149eeb4f0f6cb26808 2,010 118 18,050 2009-06-02 2010-09-21 33 476
100 540 77b95857e1a0b6149eeb4f0f6cb26808 2,010 118 18,050 2009-06-02 2010-06-02 33 365
100 541 7b7c7a8a877c369884fa9745e40b6f3b 2,010 187 18,562 2010-10-27 2010-11-10 41 14
100 541 7b7c7a8a877c369884fa9745e40b6f3b 2,010 187 18,562 2010-10-27 NA 41 NA
100 542 9002c49f066947e090aac0c9fcb8d855 2,010 260 18,317 2010-02-24 2010-10-22 37 240
100 542 9002c49f066947e090aac0c9fcb8d855 2,010 260 18,317 2010-02-24 2010-03-01 37 5
100 543 91d2b53989232617a76554f9df52348c 2,010 109 18,449 2010-07-06 2011-07-16 37 375
100 543 91d2b53989232617a76554f9df52348c 2,010 109 18,444 2010-07-01 NA 37 NA
100 544 9c87de5821d412940eba6da6b9b25165 2,010 109 18,287 2010-01-25 2011-06-02 31 493
100 544 9c87de5821d412940eba6da6b9b25165 2,010 109 18,287 2010-01-25 2010-04-30 31 95
100 545 9e85181d37efbdb04556dce6eafabd7b 2,010 275 18,217 2009-11-16 2010-06-01 46 197
100 545 9e85181d37efbdb04556dce6eafabd7b 2,010 275 18,217 2009-11-16 2010-01-28 46 73
100 546 b06b2da9431df684caf25dd55df4754a 2,010 161 18,359 2010-04-07 2010-08-31 32 146
100 546 b06b2da9431df684caf25dd55df4754a 2,010 161 18,359 2010-04-07 2010-06-09 32 63
100 547 b11e688af6a5048d956f1e8eb7e4802a 2,010 122 17,804 2008-09-29 2010-12-15 43 807
100 547 b11e688af6a5048d956f1e8eb7e4802a 2,010 122 17,804 2008-09-29 2010-06-07 43 616
100 548 b85d1d417293db471d30e540716dfd2e 2,010 109 17,924 2009-01-27 2010-12-31 45 703
100 548 b85d1d417293db471d30e540716dfd2e 2,010 109 17,924 2009-01-27 2010-08-31 45 581
100 549 b85d1d417293db471d30e540716dfd2e 2,010 109 17,924 2009-01-27 2010-12-31 45 703
100 549 b85d1d417293db471d30e540716dfd2e 2,010 109 17,924 2009-01-27 2010-04-01 45 429
100 550 b85d1d417293db471d30e540716dfd2e 2,010 109 17,924 2009-01-27 2010-08-31 45 581
100 550 b85d1d417293db471d30e540716dfd2e 2,010 109 17,924 2009-01-27 2010-04-01 45 429
100 551 c3cc781bf819af08da33d68761601486 2,010 109 18,470 2010-07-27 2011-06-09 50 317
100 551 c3cc781bf819af08da33d68761601486 2,010 109 18,470 2010-07-27 2010-09-30 50 65
100 552 ca5116b5e1232901c73ef8940409d335 2,010 295 18,266 2010-01-04 2011-02-07 33 399
100 552 ca5116b5e1232901c73ef8940409d335 2,010 295 18,266 2010-01-04 2010-02-26 33 53
100 553 d37251326bd3fe5c50b9877770ef38e3 2,010 123 18,168 2009-09-28 2010-09-06 44 343
100 553 d37251326bd3fe5c50b9877770ef38e3 2,010 123 18,168 2009-09-28 2010-02-22 44 147
100 554 d813d090a660d02768437e4542b8a36a 2,010 270 18,206 2009-11-05 2010-11-25 39 385
100 554 d813d090a660d02768437e4542b8a36a 2,010 270 18,206 2009-11-05 2010-05-22 39 198
100 555 dafa4838a20d5380b2294fe27e911625 2,010 109 17,878 2008-12-12 2010-10-31 63 688
100 555 dafa4838a20d5380b2294fe27e911625 2,010 109 17,876 2008-12-10 2010-09-30 63 659
100 556 dafa4838a20d5380b2294fe27e911625 2,010 109 17,878 2008-12-12 2010-10-31 63 688
100 556 dafa4838a20d5380b2294fe27e911625 2,010 109 17,876 2008-12-10 2010-07-31 63 598
100 557 dafa4838a20d5380b2294fe27e911625 2,010 109 17,876 2008-12-10 2010-09-30 63 659
100 557 dafa4838a20d5380b2294fe27e911625 2,010 109 17,876 2008-12-10 2010-07-31 63 598
100 558 e0a3c199af480f26cbc0a3667826d474 2,010 182 18,330 2010-03-09 2010-04-16 40 38
100 558 e0a3c199af480f26cbc0a3667826d474 2,010 182 18,330 2010-03-09 2010-04-16 40 38
100 559 e1423bb1350fed5c7d6966cb494b8907 2,010 109 18,442 2010-06-29 2010-11-30 54 154
100 559 e1423bb1350fed5c7d6966cb494b8907 2,010 109 18,442 2010-06-29 2010-09-30 54 93
100 560 ef0b5b424d9309e41493784cb95ff201 2,010 109 18,252 2009-12-21 2011-04-29 38 494
100 560 ef0b5b424d9309e41493784cb95ff201 2,010 109 18,252 2009-12-21 2010-04-01 38 101
100 561 ef3401c0d483214e2541d39f84e0aaca 2,010 109 18,150 2009-09-10 2011-07-07 35 665
100 561 ef3401c0d483214e2541d39f84e0aaca 2,010 109 18,150 2009-09-10 2010-06-30 35 293
100 562 f4cc9727a1a4e36f56672d9a4663b424 2,010 262 18,385 2010-05-03 2010-11-30 55 211
100 562 f4cc9727a1a4e36f56672d9a4663b424 2,010 262 18,381 2010-04-29 2010-04-30 55 1
100 563 fe6d5cf1a3bfb5ece8d52cd1b6b9c0a1 2,010 109 18,064 2009-06-16 2011-06-29 46 743
100 563 fe6d5cf1a3bfb5ece8d52cd1b6b9c0a1 2,010 109 18,064 2009-06-16 2010-04-30 46 318
100 564 fe6d5cf1a3bfb5ece8d52cd1b6b9c0a1 2,010 109 18,064 2009-06-16 2011-06-29 46 743
100 564 fe6d5cf1a3bfb5ece8d52cd1b6b9c0a1 2,010 109 18,064 2009-06-16 2010-02-01 46 230
100 565 fe6d5cf1a3bfb5ece8d52cd1b6b9c0a1 2,010 109 18,064 2009-06-16 2010-04-30 46 318
100 565 fe6d5cf1a3bfb5ece8d52cd1b6b9c0a1 2,010 109 18,064 2009-06-16 2010-02-01 46 230


An analysis of probabilistic matches between events by the requirements listed above showed us 1 case with a missing value in the date of admission, (correspondent to the HASH KEY “6c409c18bf7cc518819dc63c4e8e98ef”), 81 matches with a value of 90 points, and 484 matches with 100 points (86%).


#quantile(matches_hash_freq$n, .80)
#summary(matches_hash_freq)
#
#quantile(Duplicates_Matching_ene_2020$n, prob)
matches_from_stata_c1 %>% group_by(hash_key) %>% summarise(n=n()) %>% as.data.frame() %>%dplyr::select(n) %>% 
ggplot(aes(n)) +
  geom_histogram(alpha=.5)+
  labs(y = "Freq.")+
  scale_x_continuous(name="Repetitions", breaks=seq(2,12,1)) +
  theme_classic()
Figure 5. Histogram of HASH Keys in matches (n=478)

Figure 5. Histogram of HASH Keys in matches (n=478)


As seen in Figure 5, around 93% of HASHs involved in matching appeared around 2 times (mainly due to the coincidence of HASH Keys). The remaining 7% repeated 4 times or more.


6.2 Examples of Matches and Main Causes that Produce Them

CONS_C1_df_dup_ENE_2020 %>%
dplyr::filter(row %in% c(149670,142875,8809,6864,151245,145140,160070,160066,135212,135017,85501,44753,41263,32299,12180,8809,14057,12517,14057
,8752, 8013, 13040,6202,8799,6334,5571,2319,5530,3865,71542,54760,66467,46349,66785,54953,90796,83766,67549,58436,54973,47284,73114,72579,51619,45002,61572,61353,52659,54383)) %>% 
  dplyr::arrange(factor(row, levels = c(149670,142875,8809,6864,12180,151245,145140,160070,160066,135212,135017,85501,44753,41263,32299,14057,12517,8752,8013,13040,6202,8799,6334,5571,2319,5530,3865,71542,54760,66467,46349,66785,54953,90796,83766,67549,58436,54973,47284,73114,72579,51619,45002,61572,61353,52659,54383))) %>%
  dplyr::select(row,HASH_KEY, ano_bd, id_mod,Edad,Sexo,Nombre.Centro,ID.centro,fech_ing,fech_egres,dias_trat,motivodeegreso,tipo_de_programa,tipo_de_plan,SENDA) %>%
  knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
               col.names= c("Row", "HASH_KEY", "Year of\nDataset", "ID","Year", "Sex", "Name of\nthe Center", "Center ID", "Date of\nAdmission", "Date of\n Discharge", "Treatment Days", "Cause of\nDischarge", "Type of\nProgram", "Type of\nplan", "SENDA\nProgram"),
                   caption="Table 15. Example of probabilistic matches", align =rep('c', 101)) %>%
    kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 8)  %>%
  kableExtra::scroll_box(width = "100%", height = "350px")
Table 15. Example of probabilistic matches
Row HASH_KEY Year of Dataset ID Year Sex Name of the Center Center ID Date of Admission Date of Discharge Treatment Days Cause of Discharge Type of Program Type of plan SENDA Program
149,670 976dc6ea364c0e2ba7decc74c634291d 2,019 JOCA1**071981 38 Hombre COSAM San Bernardo 259 2018-10-03 2019-01-08 97 Derivación Programa Población General PG-PAI No
142,875 976dc6ea364c0e2ba7decc74c634291d 2,018 JOCA1**071981 38 Hombre COSAM San Bernardo 259 2018-10-03 2018-11-30 58 Derivación Programa Población General PG-PAI Si
8,809 dafa4838a20d5380b2294fe27e911625 2,010 JOMA1**031956 63 Hombre COSAM Concepcion 109 2008-12-12 2010-10-31 688 Derivación Programa Población General PG-PAB Si
6,864 dafa4838a20d5380b2294fe27e911625 2,010 JOMA1**031956 63 Hombre COSAM Concepcion 109 2008-12-10 2010-09-30 659 Alta Admnistrativa Programa Población General PG-PAI Si
12,180 dafa4838a20d5380b2294fe27e911625 2,011 JOMA1**031956 63 Hombre COSAM Concepcion 109 2008-12-10 2012-01-31 1,147 Derivación Programa Población General PG-PAI Si
151,245 185607baea32aa787cb6471d1dac4dd1 2,019 LEMO2**101983 36 Mujer Comunidad Terapeutica Ambulatoria Joven Atrevete 191 2018-12-03 NA 345 NA Programa Población General PG-PAI Si
145,140 185607baea32aa787cb6471d1dac4dd1 2,018 LEMO2**101983 36 Mujer Comunidad Terapeutica Ambulatoria Joven Atrevete 191 2018-12-03 NA 337 NA Programa Población General PG-PAI Si
160,070 525345d2cfa31bb08e146ec8ffeca9ec 2,019 ALOL1**101981 38 Hombre Comunidad Terapeutica Renacer (Residencial) 201 2019-07-29 NA 107 NA Programa Población General PG-PR Si
160,066 525345d2cfa31bb08e146ec8ffeca9ec 2,019 ALOL1**101981 38 Hombre Comunidad Terapeutica Renacer (Residencial) 201 2019-07-27 2019-07-28 1 Abandono Programa Población General PG-PR No
135,212 e1ecd86d864c123cedfa29842ac9541c 2,018 DAAS2**091996 23 Mujer Centro de Responsabilidad de Salud Mental del Complejo Asistencial Dr.Victor Rios Ruiz 502 2018-03-21 2018-08-20 152 Derivación Programa Específico Mujeres M-PAI Si
135,017 e1ecd86d864c123cedfa29842ac9541c 2,018 DAAS2**091996 23 Mujer Centro de Responsabilidad de Salud Mental del Complejo Asistencial Dr.Victor Rios Ruiz 502 2018-03-21 2018-03-26 5 Derivación Programa Específico Mujeres M-PAI No
85,501 dc64642e719cf9134ad7850686fa8864 2,016 VAPR2**041981 38 Mujer Hospital de Tome, Centro Superarte 122 2013-08-30 2016-05-02 976 Derivación Programa Específico Mujeres M-PAI Si
44,753 dc64642e719cf9134ad7850686fa8864 2,013 VAPR2**041981 38 Mujer Hospital de Tome, Centro Superarte 122 2013-08-30 2013-10-31 62 Derivación Programa Población General PG-PAB Si
41,263 ef0b5b424d9309e41493784cb95ff201 2,013 GAPE1**121980 38 Hombre COSAM Concepcion 109 2011-04-25 2014-01-01 982 Derivación Programa Población General PG-PAI Si
32,299 ef0b5b424d9309e41493784cb95ff201 2,013 GAPE1**121980 38 Hombre COSAM Concepcion 109 2011-04-25 2013-04-01 707 Alta Admnistrativa Programa Población General PG-PAI Si
14,057 e1423bb1350fed5c7d6966cb494b8907 2,011 JOSE1**121964 54 Hombre COSAM Concepcion 109 2010-06-29 2011-06-29 365 Alta Admnistrativa Programa Población General PG-PAI Si
12,517 e1423bb1350fed5c7d6966cb494b8907 2,011 JOSE1**121964 54 Hombre COSAM Concepcion 109 2010-06-29 2011-01-31 216 Derivación Programa Población General PG-PAB Si
8,752 e1423bb1350fed5c7d6966cb494b8907 2,010 JOSE1**121964 54 Hombre COSAM Concepcion 109 2010-06-29 2010-11-30 154 Derivación Programa Población General PG-PAI Si
8,013 e1423bb1350fed5c7d6966cb494b8907 2,010 JOSE1**121964 54 Hombre COSAM Concepcion 109 2010-06-29 2010-09-30 93 Alta Admnistrativa Programa Población General PG-PAB Si
13,040 e9bcf54d302f285b15fd25ca0e07505d 2,011 ALNU1**051977 42 Hombre COSAM Schneider (CSMC Schneider-CESAMCO) 138 2010-05-13 2011-04-01 323 Alta Terapéutica Programa Población General PG-PR No
6,202 e9bcf54d302f285b15fd25ca0e07505d 2,010 ALNU1**051977 42 Hombre COSAM Schneider (CSMC Schneider-CESAMCO) 138 2010-05-13 2010-11-02 173 Abandono Programa Población General PG-PAI Si
8,799 4234b7df0378b7ad1b21fe8b1c4d40b5 2,010 ALNE1**101974 45 Hombre COSAM Concepcion 109 2010-04-20 2011-08-01 468 Derivación Programa Población General PG-PAB Si
6,334 4234b7df0378b7ad1b21fe8b1c4d40b5 2,010 ALNE1**101974 45 Hombre COSAM Concepcion 109 2010-04-20 2010-09-30 163 Alta Admnistrativa Programa Población General PG-PAI Si
5,571 4234b7df0378b7ad1b21fe8b1c4d40b5 2,010 ALNE1**101974 45 Hombre COSAM Concepcion 109 2010-04-20 2010-05-31 41 Derivación Programa Población General PG-PAB Si
2,319 fe6d5cf1a3bfb5ece8d52cd1b6b9c0a1 2,010 PAGA2**121972 46 Mujer COSAM Concepcion 109 2009-06-16 2010-02-01 230 Derivación Programa Población General PG-PAI Si
5,530 fe6d5cf1a3bfb5ece8d52cd1b6b9c0a1 2,010 PAGA2**121972 46 Mujer COSAM Concepcion 109 2009-06-16 2011-06-29 743 Alta Admnistrativa Programa Población General PG-PAI Si
3,865 fe6d5cf1a3bfb5ece8d52cd1b6b9c0a1 2,010 PAGA2**121972 46 Mujer COSAM Concepcion 109 2009-06-16 2010-04-30 318 Derivación Programa Población General PG-PAB Si
71,542 6f7b6e9d16e34de12f8653909c0a0a03 2,015 BACA1**011979 40 Hombre Centro Tratamiento Adicciones Unidos, Hospital Santa Cruz 591 2014-02-05 2015-04-28 447 Alta Terapéutica Programa Población General PG-PAI Si
54,760 6f7b6e9d16e34de12f8653909c0a0a03 2,014 BACA1**011979 40 Hombre Centro de Tratamiento adicciones Esperanza, Hospital Santa Cruz 221 2014-02-05 2015-01-28 357 Alta Terapéutica Programa Población General PG-PAI Si
66,467 721bc3745874465f0999251d780a23ff 2,015 CLCA2**051976 43 Mujer Centro de Responsabilidad de Salud Mental del Complejo Asistencial Dr.Victor Rios Ruiz 502 2013-10-21 2015-01-30 466 Derivación Programa Población General PG-PAI Si
46,349 721bc3745874465f0999251d780a23ff 2,013 CLCA2**051976 43 Mujer COSAM Newen 123 2013-10-24 2014-01-29 97 Derivación Programa Población General PG-PAI Si
66,785 3128223a53c6fd5073cc754afacf3082 2,015 CLTO2**101979 40 Mujer Comunidad Terapeutica Puerta Abierta (Mujeres) 234 2014-02-22 2015-03-06 377 Alta Terapéutica Programa Específico Mujeres M-PR Si
54,953 3128223a53c6fd5073cc754afacf3082 2,014 CLTO2**101979 40 Mujer CT Puerta Abierta (Estacion Central) 488 2014-02-22 2014-02-28 6 Derivación Programa Específico Mujeres M-PR Si
90,796 0420d8b5c6e37ec61fac25b8e7420098 2,016 LUCA1**051994 25 Hombre Comunidad Terapeutica Hogar Crea, Talca 215 2015-11-19 2016-03-02 104 Derivación Programa Población General PG-PR Si
83,766 0420d8b5c6e37ec61fac25b8e7420098 2,015 LUCA1**051994 25 Hombre Hospital Regional de Talca 205 2015-11-17 2015-11-19 2 Derivación Programa Población General PG-PAI Si
67,549 b2c468656911cf9b07bf48e53b7b7d98 2,015 MEGU2**121979 39 Mujer COSAM Melipilla 291 2014-06-02 2015-02-11 254 Alta Terapéutica Programa Población General PG-PAI Si
58,436 b2c468656911cf9b07bf48e53b7b7d98 2,014 MEGU2**121979 39 Mujer Comunidad de Mujeres Antumalen (ex- Aukan) 432 2014-06-04 2014-06-23 19 Abandono Programa Específico Mujeres M-PR Si
54,973 1f1695fa0918bcb6635f1d179bb9baee 2,014 MIOY1**031990 29 Hombre Centro de Responsabilidad de Salud Mental del Complejo Asistencial Dr.Victor Rios Ruiz 502 2013-12-12 2015-01-29 413 Abandono Programa Población General PG-PAB Si
47,284 1f1695fa0918bcb6635f1d179bb9baee 2,013 MIOY1**031990 29 Hombre COSAM Alenmoguen 328 2013-12-10 2014-01-29 50 Derivación Programa Población General PG-PAB Si
73,114 27fc4f766852f125b1206a32768ec0c9 2,015 MOVA1**041983 36 Hombre Comunidad Terapeutica Renacer (Residencial) 201 2015-02-16 2015-03-25 37 Derivación Programa Población General PG-PR Si
72,579 27fc4f766852f125b1206a32768ec0c9 2,015 MOVA1**041983 36 Hombre COSAM Colina 141 2015-02-11 2015-02-19 8 Derivación Programa Población General PG-PAI Si
51,619 9e7148b53d0554a5eaae07093e20b7c6 2,014 PAHE1**111981 37 Hombre Comunidad Terapeutica Residencial para Hombres O.N.G. Plenitud (C.T. Plenitud) 271 2013-10-11 2014-01-12 93 Abandono Programa Población General PG-PR Si
45,002 9e7148b53d0554a5eaae07093e20b7c6 2,013 PAHE1**111981 37 Hombre CESFAM Paine 434 2013-10-14 2013-10-14 0 Alta Admnistrativa Programa Población General PG-PAB Si
61,572 0d8e8fbed25c1091a9774a541928df4f 2,014 ROMA1**011979 40 Hombre CESFAM Esmeralda 474 2014-08-07 2014-11-05 90 Derivación Otro PG-PR No
61,353 0d8e8fbed25c1091a9774a541928df4f 2,014 ROMA1**011979 40 Hombre COSAM Colina 141 2014-08-08 2014-09-30 53 Abandono Programa Población General PG-PAI Si
52,659 4869357c9d0a2fc7eb4ace9bdcd7a0b9 2,014 YAPO2**121989 29 Mujer Comunidad Terapeutica Puerta Abierta (Mujeres) 234 2013-12-13 2014-01-31 49 Derivación Programa Específico Mujeres M-PR Si
54,383 4869357c9d0a2fc7eb4ace9bdcd7a0b9 2,014 YAPO2**121989 29 Mujer CT Puerta Abierta (Estacion Central) 488 2013-12-13 2014-01-31 49 Derivación Programa Específico Mujeres M-PR No


In Table 15, there is a selection of probabilistic matches that have elements that are worthy of discussion. Most of them have much information in common, describing referrals to another center or parallel treatments, and others do not overlap but were matched due to the span of +/-5 days as caliper in the date of admission. However, some characteristics change and are different between them. This process requires caution to prevent automatically deleting one row and removing information that might be useful.


  • The SENDA ID JOCA1**071981 shares the same date of admission and center ID. One of the cases is not part of the SENDA Program. The type of plan differs between them.
  • JOMA1**031956 has three entries with dates of admission and in the same center on approximately the same dates (one of the registries have a difference of two days of 2 days in the admission). First, this user had an administrative discharge, and then a referral. Finally, the last entry came from the 2011 dataset and indicated a referral to another center in 2012. The type of plan differs between them.
  • LEMO2**101983 shares the same dates of admission and center, but different types of plan. One comes from the 2018 dataset, while the other comes from the 2019 dataset. Both do not have a date of discharge nor a cause of discharge. Possibly, these treatments are the same, and still in progression.
  • ALOL1**101981 was one day in a treatment on 2019-07-27 (Hereafter, in “Year month and day” format) that ended because of a drop-out one day later and was not a program of SENDA. Then he registered another treatment in the same center and possibly did not leave it until the day the dataset was retrieved .
  • The case of DAAS2**091996 is different: both treatments share the same date of admission and center, but first was admitted in treatment for 5 days in the same center, and then ended due to a referral, leading to the next treatment. However the first treatment did not constitute a SENDA program.
  • VAPR2**041981 has two programs with the same date of admission in the same center: one comes from the 2016 dataset, the other from the 2013 dataset. Both programs figure as SENDA programs, but the first was a general-population plan, and the second was a women-specific program.
  • GAPE1**121980 registries were obtained from the same yearly dataset and share the same date of admission and center, but not the date of discharge. One ended in April 2013 due to an administrative discharge, while the second ended in 2014 due to a referral. SENDA finances both.
  • JOSE1**121964 has 2 registries from the 2011 dataset that share the same date of admission and center. However, one ended in January due to a referral, while the other ended in June due to an administrative discharge. Both had different plans, and SENDA financed both.
  • ALNU1**051977 has two registries that share the same date of admission but not the same date of discharge. The first came from the 2010 dataset, ended in November 2011 due to a drop-out, and SENDA financed it. The second came from the 2011 dataset and ended due to an administrative discharge in April 2011, but SENDA did not finance it. Also, they do not share the same treatment plan.
  • ALNE1**101974 registries were obtained from the same yearly dataset and share the date of admission and center but not the plan and the date of discharge. The first was a basic plan that ended in May 2010 due to a referral. The second was an intensive-treatment plan that ended in September 2010 due to an administrative discharge. The third was a basic plan that ended in August 2011 due to a drop-out. SENDA financed all three.
  • PAGA2**121972 registries were obtained from the 2010 dataset, sharing the same date of admission but not the same date of discharge or type of plan. The first was a basic plan that ended in February 2010 due to a referral. The second was an intensive-treatment plan that ended in April 2010 due to a referral. Finally, the third was an intensive-treatment plan that ended in 2011 due to an administrative discharge. SENDA financed them all.
  • BACA1**011979 share the same date of admission, but have different centers and dates of discharge. The first treatment came from the 2014 dataset and ended in January 2015 due to an administrative discharge. The second came from the 2015 dataset and ended in April 2015 due to an administrative discharge. SENDA financed them all.
  • CLCA2**051976 has a difference of three days in the date of admission of two treatments in different centers. The first came from the 2013 dataset and ended in January 2014 due to a referral. The second came from the 2015 dataset and ended in January 2015 due to a referral. SENDA financed both treatments.
  • The SENDA ID CLTO2**101979 shares the same date of admission. The first came from the 2014 dataset and ended in February of 2014 due to a referral to another center. The second came from the 2015 dataset and ended due to a therapeutic discharge in March 2015. SENDA financed both treatments.
  • LUCA1**051994 has two days of difference in the date of admission and followed a clear transition between treatments. Also, they have different plans, center, yearly dataset, and date of discharge. The first treatment appeared in the 2015 dataset, followed by an intensive-treatment plan, started on 2015-11-17, and ended two days later due to a referral. The second treatment was a residential plan, coming from the 2015 dataset, started from 2015-11-19, and ended in March 2016 due to a referral. SENDA financed both treatments.
  • MEGU2**121979 shows a difference of two days in the date of admission of their treatments, but different dates of discharge and treatment plans. The first treatment was a women-specific residential plan that came from 2014 and ended in June 2014 due to a drop-out. The second was a general population program with intensive-treatment came from the 2015 dataset and ended in February 2015 due to a therapeutic discharge. SENDA financed both treatments.
  • MIOY1**031990 has a difference of only two days in the date of admission in their treatments, but the centers are different, as well as the date of discharge. The first came from the 2013 dataset and ended in January 2014 due to a referral. The second treatment came from the 2014 dataset and ended in January 2015 due to a drop-out. SENDA financed both treatments.
  • MOVA1**041983 registries were obtained from the same yearly dataset, but there is a difference of five days between the different dates of admission, resulting in an overlapping of three days. Also, they have different treatment plans and center. The first treatment was an intensive-treatment plan and ended on 2014-02-19 due to a referral, while the second was a residential plan treatment that started in 2015-02-16 and ended in March 2015 due to a referral. SENDA financed both treatments.
  • PAHE1**111981 has three days of difference in the date of admission. Also, they have different plans and center. The first treatment appeared in the 2013 dataset, starting in 2013-10-14, and ending on the same date due to an administrative discharge. The second treatment came from the 2014 dataset, started from 2013-10-11, and ending in January 2014 due to a drop-out. SENDA financed both treatments.
  • ROMA1**011979 registries came from the same yearly dataset, but their dates of admission differ by one day, and the centers and dates of discharge are different. The first treatment came from a general population program with an intensive-treatment plan and ended in September 2014 due to a drop-out. The second treatment corresponded to another program, a residential plan, and ended in November 2014 due to a referral. SENDA did not finance this treatment.
  • YAPO2**121989 registries were obtained from the same yearly dataset and share the same date of admission and date of discharge, but not the same center. Additionally, the center “CT Puerta Abierta (Estacion Central)” is not financed by SENDA.

6.3 Overlappings

An analysis of duplicated events showed that many ranges between the dates of admission and discharge were overlapping due to referrals to other centers, principally by changes in the treatment center. The following are the most repeated among cases: Centro Tratamiento Adicciones Unidos, Hospital Santa Cruz; and Centro de Tratamiento Adicciones Esperanza, Hospital Santa Cruz. In other words, many users may move from centers 221 to 591, 147 to 358, 164 to 325, or 200 to 203. However, to identify overlappings in treatments, it is necessary to obtain the missing dates and clean the dates that may be incorrectly noted.


CONS_C1_df_dup_intervals<- CONS_C1_df_dup_ENE_2020 %>%
  dplyr::mutate(fech_ing_num2=as.numeric(as.Date(fech_ing))) %>%
  dplyr::mutate(fech_egres_num2=as.numeric(as.Date(fech_egres))) %>%
  dplyr::rename("HASH_KEY_2"="HASH_KEY", "row2"="row") %>%
  dplyr::select(row2,HASH_KEY_2, id_mod, ano_bd,fech_ing, fech_ing_num2,fech_egres,fech_egres_num2,Edad, Nombre.Centro, motivodeegreso, SENDA) %>% 
  dplyr::filter(motivodeegreso!="Derivación") %>%
  data.table::as.data.table()
require(sqldf)
require(gridExtra)
  overlap_dates_C1 <- janitor::clean_names(sqldf("SELECT *
                 FROM CONS_C1_df_dup_intervals AS x  
                 INNER JOIN CONS_C1_df_dup_intervals AS y 
                 ON x.HASH_KEY_2 == y.HASH_KEY_2 AND 
                 x.fech_ing_num2 < y.fech_egres_num2 AND x.fech_egres_num2 > y.fech_ing_num2 AND x.row2 != y.row2"))  
  #busca mismo hash, distinto row,pero fecha de ingreso menor o igual a la fecha de egreso del otro, y fecha de egreso mayor o igual a la fecha de ingreso del otro. ESTO ES PARA VER SI SE SUPERPONEN.
as.data.table(overlap_dates_C1) %>%
    dplyr::arrange(hash_key_2, fech_ing_num2, row2) %>% ggplot(.) + 
  geom_segment(aes(x = fech_ing, xend = fech_egres,
                   y = hash_key_2, yend = hash_key_2)) + 
      scale_x_datetime(breaks=scales::date_breaks("1 year"), 
                  limits = as.POSIXct(c('2000-01-01 09:00:00','2020-01-01 09:00:00')),
                  labels = scales::date_format("%m/%y")) +
  theme(axis.line=element_blank(),
          axis.text.y=element_blank(),axis.ticks=element_blank(),
          axis.title.x=element_text(""),legend.position="none",
          panel.background=element_blank(),panel.border=element_blank(),panel.grid.major=element_blank(),
          panel.grid.minor=element_blank(),plot.background=element_blank()) +
  theme(plot.caption = element_text(hjust = 0, face= "italic")) +
    labs(x = "Dates of admission and discharge", y = "", caption="Note. Only users that share characteristics and overlap between them")
Figure 6.1 Trajectories of HASHs from dates of admission to discharge

Figure 6.1 Trajectories of HASHs from dates of admission to discharge


Figure 6.1 shows 1062 record pairs that share the same HASH Key, but the date of admission is less than the date of discharge of another entry in the dataset, and the date of discharge is greater than the date of admission of that other case. It does not include derivation as a cause of the discharge. These conditions let us see how many cases overlap with another entry in the dataset. This graphic may seem a bit noisy because it covers all the overlapped cases, but we should look less at the black colored regions and more at the white areas between the lines to get an idea of the years that accumulate more overlappings.


c26 <- c(
  "dodgerblue2", "#E31A1C", # red
  "green4",
  "#6A3D9A", # purple
  "#FF7F00", # orange
  "gray16", "gold1",
  "skyblue2", "#FB9A99", # lt pink
  "palegreen2",
  "#CAB2D6", # lt purple
  "#FDBF6F", # lt orange
  "gray70", "khaki2",
  "maroon", "orchid1", "deeppink1", "blue1", "steelblue4",
  "darkturquoise", "green1", "yellow4", "yellow3",
  "darkorange4", "brown", "gray40")

  set.seed(667)
  random<-round(runif(1, 1, 26),0)
sample_plot <- overlap_dates_C1 %>% 
    dplyr::arrange(hash_key_2, fech_ing_num2, row2) %>% 
  dplyr::slice(random:(random+26)) %>%
  mutate(Date = format(as.Date(fech_ing, format = "%Y-%m-%d"))) %>% 
  ggplot(aes()) + 
  geom_segment(aes(x = fech_ing, xend = fech_egres,
                   y = hash_key_2, yend = hash_key_2,colour=as.factor(row2),size=1/100)) + 
    scale_x_datetime(breaks=scales::date_breaks("1 year"), 
                  limits = as.POSIXct(c('2014-01-01 09:00:00','2020-01-01 09:00:00')),
                  labels = scales::date_format("%m/%y")) +
  theme(axis.line=element_blank(),axis.text.y=element_blank(),
          axis.ticks=element_blank(),
          axis.title.x=element_text(""),legend.position="none",axis.title.y=element_text("HASHs"),
          panel.background=element_blank(),panel.border=element_blank(),panel.grid.major=element_blank(),
          panel.grid.minor=element_blank(),plot.background=element_blank()) +
  #scale_x_date(breaks = scales::date_breaks("1 year"), date_labels = "%b %d") +
    theme(plot.caption = element_text(hjust = 0, face= "italic")) +
  scale_color_manual(values=c26) +
    labs(x = "Dates of admission and discharge", y = "", caption="Note. Only users that share characteristics overlap between them",
         subtitle="Random sample of 25 cases. Colored lines represent different rows in the dataset, but same HASH")+
    ggtitle("Figure 6.2 Trajectories of every HASH from dates of admission to discharge")
    #+
  #geom_text(vjust = -0.5, hjust=0, size = 1,
  #          aes(x = start_date, y = membershipID, 
  #              label = paste(round(mo_dur, 2), "months")))

clean_plot <- CONS_C1_df_dup_ENE_2020 %>%
  dplyr::mutate(fech_ing_num2=as.numeric(as.Date(fech_ing))) %>%
  dplyr::mutate(fech_egres_num2=as.numeric(as.Date(fech_egres))) %>%
  dplyr::mutate(HASH_KEY_2=HASH_KEY) %>%
  dplyr::select(row,HASH_KEY_2, id_mod, ano_bd,fech_ing, fech_ing_num2,fech_egres,fech_egres_num2,Edad, Nombre.Centro, motivodeegreso, SENDA)%>%     as.data.table() %>%
  dplyr::filter(HASH_KEY_2 %in% c("07b0d5b1e32b62374685e48039ae6a67",   "0b810dfb7988e5e795b03a9cadc771fe", "0c3aa4566acbeb996e4bf645c7210f83", "01a95b45fa9acf445fe1a7106f2f6664")) %>%
  dplyr::arrange(HASH_KEY_2, fech_ing_num2, row) %>% 
  #mutate(Date = format(as.Date(fech_ing, format = "%Y-%m-%d"))) %>% 
  ggplot(aes()) + 
  geom_segment(aes(x = as.POSIXct(as.Date(fech_ing_num2)), xend = as.POSIXct(as.Date(fech_egres_num2)),
                   y = HASH_KEY_2, yend = HASH_KEY_2,colour=as.factor(row),size=1/100)) + 
    scale_x_datetime(breaks=scales::date_breaks("1 year"), 
                  limits = as.POSIXct(c('2014-01-01 09:00:00','2020-01-01 09:00:00')),
                  labels = scales::date_format("%m/%y")) +
  theme(axis.line=element_blank(),
          axis.ticks=element_blank(),axis.title.y=element_text("HASHs"),axis.text.y=element_blank(),
          axis.title.x=element_text(""),legend.position="none",
          panel.background=element_blank(),panel.border=element_blank(),panel.grid.major=element_blank(),
          panel.grid.minor=element_blank(),plot.background=element_blank(), plot.title = element_text(hjust = 0))+
  #scale_x_date(breaks = scales::date_breaks("1 year"), date_labels = "%b %d") +
    theme(plot.caption = element_text(face= "italic",hjust = 0)) +
    labs(x = "Dates of admission and discharge", y="HASHs", 
         subtitle="Example of 4 clean trajectories. Colored lines represent different rows in the dataset, but same HASH")+
      ggtitle("Figure 6.3 Trajectories of every HASH from dates of admission to discharge")

grid.arrange(sample_plot, clean_plot)


In Figure 6.2, we selected 25 randomly assigned cases with overlapped treatments. We may appreciate that horizontal lines (users) had overlapped colors (treatments) over time. In contrast, Figure 6.3 shows four examples of clear trajectories that do not have overlaps over time and are separated by a white gap.


6.4 Missing Dates of Discharge


As can be seen in the examples of matches (Table 15), some discharge dates were NULL values, misleading the count of treatment days. Treatment days seem to be calculated as the difference between the date of retrieval of datasets and the date of admission to treatment. This is one of the reasons why this variable may confound the analysis of duplicated data. However, we needed to identify the intervals in which cases were overlapping by getting the days of treatment and determining whether a specific HASH may already have finished a treatment or not.


CONS_C1_df_dup_ENE_2020 %>%
  dplyr::filter(is.na(fech_egres)) %>%
  dplyr::mutate(fech_ing_num=as.numeric(as.Date(fech_ing)), dias_trat_trans= as.numeric(as.Date("2019-11-13"))-fech_ing_num, 
                diff_treat_days=dias_trat-dias_trat_trans) %>% #fecha del día de hoy 
  dplyr::select(HASH_KEY, id_mod, ano_bd, sexo, fech_ing, fech_ing_num, dias_trat_trans,dias_trat,diff_treat_days) %>%
  dplyr::group_by(diff_treat_days, ano_bd) %>%
  dplyr::summarize(n=n()) %>%
  knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
                   caption="Table 16. Missing Date of Discharge, Difference between Treatment Dates", col.names= c("Treat Days", "Year of Dataset", "N"),  align =rep('c', 3))  %>%
     kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 8) %>%
  kableExtra::add_footnote(c("Note= Treat Days= Difference between the treatment days reported by SENDA, and a calculated one, product of the difference between the date of retrieval, 2019-11-13, and the date of admission to treatment"), notation = "none")
`summarise()` regrouping output by 'diff_treat_days' (override with `.groups`
argument)
Table 16. Missing Date of Discharge, Difference between Treatment Dates
Treat Days Year of Dataset N
-8 2,010 9
-8 2,011 66
-8 2,012 11
-8 2,013 23
-8 2,014 16
-8 2,015 25
-8 2,016 56
-8 2,017 61
-8 2,018 125
0 2,019 7,746
NA 2,010 10
NA 2,011 7
Note= Treat Days= Difference between the treatment days reported by SENDA, and a calculated one, product of the difference between the date of retrieval, 2019-11-13, and the date of admission to treatment
#ABRIL 2020, subió un poco, de 272 a 324-
n_casos<-CONS_C1_df_dup_ENE_2020 %>%
  dplyr::filter(is.na(fech_egres)) %>%
  dplyr::mutate(fech_ing_num=as.numeric(as.Date(fech_ing)), dias_trat_trans= as.numeric(as.Date("2019-11-13"))-fech_ing_num, 
                diff_treat_days=dias_trat-dias_trat_trans) %>% #fecha del día de hoy 
  dplyr::select(HASH_KEY, id_mod, ano_bd, sexo, fech_ing, fech_ing_num, dias_trat_trans,dias_trat,diff_treat_days) %>%
  dplyr::group_by(diff_treat_days, ano_bd) %>%
  dplyr::summarize(n=n()) %>% dplyr::filter(!ano_bd %in% c(2018,2019)) %>% ungroup()%>% summarise(sum=sum(n))
`summarise()` regrouping output by 'diff_treat_days' (override with `.groups`
argument)
#number of hash and date of admission.
#   HASHs_w_o_date_discharge %>%
#            dplyr::mutate(HASH_fecha_ingreso=paste0(HASH_KEY,"_",fech_ing_num)) %>% 
#            dplyr::left_join(combinacion_reemplazada,by="HASH_fecha_ingreso") %>%
#            dplyr::mutate(ano_bd.x=as.numeric(ano_bd.x)) %>%
#            dplyr::filter(is.na(HASH_KEY.y),ano_bd.x<=2017) %>%
#            dplyr::mutate(fech_ingres=as.Date(fech_ing_num)) %>% 
#            dplyr::select(c(1,2,14)) %>%
#            dplyr::rename("HASH"=HASH_KEY.x,"Ano_Base_Datos" =ano_bd.x, "Fecha_Ingreso"=fech_ingres) #%>% nrow()


Table 16 shows the entries with missing dates of discharge, the difference between the date of retrieval (second week of November of 2019) and the days of treatment, by each yearly dataset obtained. NULL values represent cases in which the number of treatment days was not available. These were produced by negative treatment days. Datasets from 2010 to 2018 would have been retrieved 8 days earlier than the dataset of 2019 (n= 17). SENDAs professionals believed that treatments should not last more than 1095 days. That is why we think that cases in 2018 and 2019 datasets may still be in treatment until the date of retrieval (leaving an approximate of HASHs and date of admissions left to analyze). We asked SENDA professionals about the cases that are still being treated and came from older datasets. Meanwhile, we looked over those cases with the same dates of admission and HASH that had a recent date of discharge that could replace the missing value.


HASHs_w_o_date_discharge<- CONS_C1_df_dup_ENE_2020 %>%
          dplyr::filter(is.na(fech_egres)) %>%
          dplyr::mutate(fech_ing_num=as.numeric(as.Date(fech_ing)), dias_trat_trans= as.numeric(as.Date("2019-11-13"))-fech_ing_num, 
                        diff_treat_days=dias_trat-dias_trat_trans,fech_egres_num=as.numeric(as.Date(fech_egres))) %>% #fecha del día de hoy 
          dplyr::select(row, HASH_KEY, id_mod, ano_bd, sexo, fech_ing, fech_ing_num, fech_egres_num, dias_trat_trans,dias_trat,diff_treat_days) %>%
          dplyr::select(HASH_KEY, ano_bd, fech_ing_num) %>%        
          dplyr::distinct(HASH_KEY,fech_ing_num)# %>% dim() 8142

CONS_C1_df_egres2<- CONS_C1_df_dup_ENE_2020 %>%
  dplyr::mutate(fech_ing_num2=as.numeric(as.Date(fech_ing))) %>%
  dplyr::mutate(fech_egres_num2=as.numeric(as.Date(fech_egres))) %>%
  dplyr::mutate(HASH_KEY_2=HASH_KEY) %>%
  dplyr::filter(!is.na(fech_egres)) %>%
  dplyr::select(row,HASH_KEY_2, id_mod, ano_bd,fech_ing, fech_ing_num2,fech_egres,fech_egres_num2,Edad, Nombre.Centro, motivodeegreso) %>% 
  data.table::as.data.table()

require(data.table) #v>=1.9.8
 
#54 cases of C1 that do not have dates of discharge,  that can be replaced with cases in C1 that have available dates of discharge but with a date of admission equal  or greater than  the not   available.
CONS_C1_df_egres2[HASHs_w_o_date_discharge, on = .(HASH_KEY_2=HASH_KEY,fech_ing_num2 >= fech_ing_num), nomatch = 0,
      .(row,HASH_KEY,id_mod, ano_bd,fech_ing, fech_egres,Edad,Nombre.Centro,motivodeegreso)] %>%
  knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
              caption="Table 17. Cases with the same HASH and date of admission, that had a more recent date of discharge", align =rep('c', 101),
               col.names= c("Row No.","Hash Key", "SENDAs ID (Mod)", "Year of\n Dataset", "Date of\nAdmission","Date of\nDischarge","Age","Center Name", "Cause of Discharge")) %>% 
   kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 9) %>%
  kableExtra::scroll_box(width = "100%", height = "350px")
Table 17. Cases with the same HASH and date of admission, that had a more recent date of discharge
Row No.  Hash Key SENDAs ID (Mod) Year of Dataset Date of Admission Date of Discharge Age Center Name Cause of Discharge
156,785 a92ab8f10fa05d0d9dcb5855c0ec0092 RITR1**111984 2,019 2019-05-13 2019-05-22 35 COSAM Melipilla Abandono
147,356 ecde0c8a8477604ba6402ca715e42756 JULO1**061953 2,019 2018-05-02 2019-10-31 66 Comunidad Terapeutica Ambulatoria Joven Atrevete Derivación
112,951 144b8d70d7ea1b9ea70d2ef7543520b2 OSBE1**061978 2,017 2017-01-31 2017-10-30 41 CEADT Alta Terapéutica
112,950 1baff032eb17af74d98d63542c87423a CEME1**081985 2,017 2017-01-27 2017-02-09 34 CEADT Alta Admnistrativa
94,274 a91ebc49e725f0638be44c6e17445adb BACA1**071992 2,016 2015-10-01 2016-04-15 27 Comunidad Terapeutica Hogar Crea, Antofagasta Abandono
49,659 137e8525aa3f79235fa8ad90913fdcbe FAMU2**071985 2,014 2013-07-03 2014-06-01 34 COSAM Las Animas (CSMC Las Animas-cesamco) Alta Admnistrativa
29,037 1d53b9a82ab4fbc0e6cfa109d664eb51 12G10**03194 2,012 2012-08-20 2013-01-15 78 NA Derivación
29,383 001022ffb28057b24dd76900bbf1e3de YOAC2**041982 2,012 2012-07-23 2012-11-02 37 Comunidad Terapeutica La Ruka Abandono
64,545 0ad9090b99f6add47d0ed80878410d7b NIFE1**121992 2,014 2014-11-26 2014-11-27 26 NA Alta Admnistrativa
62,328 0ad9090b99f6add47d0ed80878410d7b NIFE1**121992 2,014 2014-09-02 2014-09-06 26 Comunidad Terapeutica Padre Alberto Hurtado Abandono
24,395 0d7fe0ff18f5b16868a68ca5ee5d4b87 CEOR1**051979 2,012 2012-01-10 2012-04-02 40 COSAM San Joaquin Abandono
12,268 12073f9a529001d831c957f18d1d9045 ROZE1**021981 2,011 2010-07-12 2011-05-31 38 CT CITA Alta Terapéutica
137,996 1e30ddcc36208fe4e251b92d7d3b3a5a PALA2**041975 2,018 2018-05-02 2018-06-30 44 COSAM Quinta Normal Abandono
25,129 1e30ddcc36208fe4e251b92d7d3b3a5a PALA2**041975 2,012 2012-02-07 2012-04-10 44 COSAM Quinta Normal Abandono
19,397 1e30ddcc36208fe4e251b92d7d3b3a5a PALA2**041975 2,011 2011-09-29 2011-12-02 44 Centro de Trat. y Rehab. para Personas con Consumo Perjudicial o Dependencia a Alcohol y/o Drogas Colina (CT. Colina PR) Abandono
31,643 bb142143c9ba9eef996e02404b5f3898 VLRO1**061971 2,012 2012-10-22 2013-01-01 48 CT Carpe Diem, El Bosque Abandono
129,856 f580b664d04575ecea2dd4ba9e6f0de5 MAGO1**041982 2,018 2017-09-04 2018-05-31 37 PAI Los Vilos Alta Terapéutica
152,754 16745e2658996a68e5c2f2e0153f92b8 YABA1**071981 2,019 2018-12-22 2019-06-14 38 Comunidad Terapeutica Padre Alberto Hurtado Alta Terapéutica
22,130 16745e2658996a68e5c2f2e0153f92b8 YABA1**071981 2,012 2011-09-12 2012-03-30 38 Centro de Rehabilitacion Sede San Jose de Arica (Casa Acogida La Esperanza Arica) Derivación
24,666 2a9e74353a3177ed278508f91265e4b4 MALO2**021986 2,012 2012-02-10 2012-06-01 33 Centro Comunitario de Salud Mental Familiar (COSAM Pudahuel) Derivación
4,670 2a9e74353a3177ed278508f91265e4b4 MALO2**021986 2,010 2010-04-29 2010-05-03 33 Comunidad Terapeutica Crem (Hogares Crem) Abandono
97,354 3e23f3c3cbedb2aa1003e6a9d03eb070 ERSA2**121982 2,016 2016-05-23 2016-11-01 36 Comunidad Terapeutica Orion (M-PR) Derivación
32,167 3e23f3c3cbedb2aa1003e6a9d03eb070 ERSA2**121982 2,013 2011-04-12 2013-12-18 36 COSAM El Bosque Alta Admnistrativa
134,162 57b4de7542dfab3c29b6705cb392ff8a SEGU1**081969 2,018 2018-02-01 2018-12-27 50 Hospital de Frutillar Derivación
67,665 57b4de7542dfab3c29b6705cb392ff8a SEGU1**081969 2,015 2014-07-01 2015-07-14 50 COSAM Puerto Montt Alta Admnistrativa
48,343 57b4de7542dfab3c29b6705cb392ff8a SEGU1**081969 2,014 2013-01-11 2014-05-29 50 COSAM Puerto Montt Abandono
8,440 7b7c7a8a877c369884fa9745e40b6f3b JEPO2**021978 2,010 2010-10-27 2010-11-10 41 CT Tiempo de Esperanza (PROSEC) Abandono
7,566 91d2b53989232617a76554f9df52348c JUTI1**011982 2,010 2010-07-06 2011-07-16 37 COSAM Concepcion Alta Admnistrativa
25,221 9803638c4b8ca2a0920ea15bcc024da5 JESA2**041986 2,012 2012-03-08 2012-05-08 33 Comunidad Terapeutica Carpe Diem, Hualpen Abandono
24,854 9803638c4b8ca2a0920ea15bcc024da5 JESA2**041986 2,012 2012-02-16 2012-03-07 33 CESFAM Los Cerros Derivación
74,778 e7fba974dc5e247f53d87f558a6fc420 ALCA1**041980 2,015 2015-04-01 2015-08-31 39 CESFAM Santa Cecilia Abandono
#Update of 31-12-2019, nomatch= 0 may be wrong. Finally, it was right for this analysis. Similar to left join:
#CONS_C1_df_egres[HASHs_w_o_date_discharge, on = .(HASH_KEY_2=HASH_KEY,fech_ing_num >= fech_ing_num), #nomatch = 0, its an inner join
#      .(row,HASH_KEY,id_mod, ano_bd,fech_ing, fech_egres,Edad,Nombre.Centro,motivodeegreso)]  %>%      dplyr::filter(!is.na(HASH_KEY))
#fuzzyjoin::fuzzy_left_join(as_tibble(HASHs_w_o_date_discharge),as_tibble(CONS_C1_df_egres2),
#                           by = c("HASH_KEY" = "HASH_KEY", "fech_ing_num" <= "fech_ing_num2"), 
#                           match_fun = list(`==`, `>`))
# OR
#sqldf("
#SELECT *
#FROM HASHs_w_o_date_discharge  
#INNER JOIN CONS_C1_df_egres2 
#ON HASHs_w_o_date_discharge.HASH_KEY == CONS_C1_df_egres2.HASH_KEY AND 
#  HASHs_w_o_date_discharge.fech_ing_num <= CONS_C1_df_egres2.fech_ing_num2") 


As seen in Table 17, we found 31 cases that should not be included in Table 16, because they can be replaced with a proper date of discharge or inferred by more recent records, according to the information available. But what happens with those cases that had a recent case, despite having the same dates of admission? These are the cases that would end overlapping with the treatments that follow them.


HASHs_w_o_date_discharge<- CONS_C1_df_dup_ENE_2020 %>%
          dplyr::filter(is.na(fech_egres)) %>%
          dplyr::mutate(fech_ing_num=as.numeric(as.Date(fech_ing)), dias_trat_trans= as.numeric(as.Date("2019-11-13"))-fech_ing_num, 
                        diff_treat_days=dias_trat-dias_trat_trans,fech_egres_num=as.numeric(as.Date(fech_egres))) %>% #fecha del día de hoy 
          dplyr::select(row, HASH_KEY, id_mod, ano_bd, sexo, fech_ing, fech_ing_num, fech_egres_num, dias_trat_trans,dias_trat,diff_treat_days) %>%
          dplyr::select(HASH_KEY, ano_bd, fech_ing_num) %>%        
          dplyr::distinct(HASH_KEY,fech_ing_num)# %>% dim() 8142

CONS_C1_df_egres2<- CONS_C1_df_dup_ENE_2020 %>%
  dplyr::mutate(fech_ing_num2=as.numeric(as.Date(fech_ing))) %>%
  dplyr::mutate(fech_egres_num2=as.numeric(as.Date(fech_egres))) %>%
  dplyr::mutate(HASH_KEY_2=HASH_KEY) %>%
  dplyr::filter(!is.na(fech_egres)) %>%
  dplyr::select(row,HASH_KEY_2, id_mod, ano_bd,fech_ing, fech_ing_num2,fech_egres,fech_egres_num2,Edad, Nombre.Centro, motivodeegreso) %>% 
  as.data.table()
#153394 rows

require(data.table) #v>=1.9.8
#54 cases of C1 that do not have dates of discharge,  that can be replaced with cases in C1 that have available dates of discharge but with a date of admission equal  or greater than  the not   available.
CONS_C1_df_dup_w_date_discharge <- CONS_C1_df_egres2[HASHs_w_o_date_discharge, on = .(HASH_KEY_2=HASH_KEY,fech_ing_num2 >= fech_ing_num), nomatch = 0,
                  .(row,HASH_KEY,id_mod, ano_bd,fech_ing, fech_egres, fech_egres_num2, Edad,Nombre.Centro,motivodeegreso)]
#select hashs for analysis
CONS_C1_df_dup_w_date_discharge_HKEY <-CONS_C1_df_dup_w_date_discharge %>% distinct(HASH_KEY)

dplyr::left_join(CONS_C1_df_dup_ENE_2020,CONS_C1_df_dup_w_date_discharge, by = "HASH_KEY", suffix = c("", ".disch")) %>% # dim()
dplyr::mutate(fech_egres_corr=ifelse(is.na(fech_egres),as.character(fech_ing.disch),as.character(fech_egres))) %>% 
  dplyr::filter(HASH_KEY %in% as.character(as.vector(unlist(as.data.table(unlist(CONS_C1_df_dup_w_date_discharge_HKEY)))))) %>%
  dplyr::select(row,ano_bd, HASH_KEY, fech_ing, fech_egres, motivodeegreso,fech_egres_corr) %>%
  #dplyr::filter(HASH_KEY=="0b9e123cca2191c6a2b4a0fcfcca2d46")
  dplyr::distinct(row,.keep_all=T)%>%
  dplyr::arrange(HASH_KEY, fech_ing) %>%
  knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
              caption="Table 18. HASHs with a more recent treatment, for analysis", align =rep('c', 101),
              col.names = c("Row Number", "Year of\nDataset","Hash Key", "Date of\nAdmission", "Date of\nDischarge", "Cause of\nDischarge", "Date of\nDischarge (Corrected)")) %>% 
   kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 9) %>%
  kableExtra::scroll_box(width = "100%", height = "350px")
Table 18. HASHs with a more recent treatment, for analysis
Row Number Year of Dataset Hash Key Date of Admission Date of Discharge Cause of Discharge Date of Discharge (Corrected)
16,163 2,011 001022ffb28057b24dd76900bbf1e3de 2011-05-27 NA NA 2012-07-23
29,383 2,012 001022ffb28057b24dd76900bbf1e3de 2012-07-23 2012-11-02 Abandono 2012-11-02
15,986 2,011 0ad9090b99f6add47d0ed80878410d7b 2011-05-10 NA Abandono 2014-11-26
62,328 2,014 0ad9090b99f6add47d0ed80878410d7b 2014-09-02 2014-09-06 Abandono 2014-09-06
64,545 2,014 0ad9090b99f6add47d0ed80878410d7b 2014-11-26 2014-11-27 Alta Admnistrativa 2014-11-27
18,784 2,011 0d7fe0ff18f5b16868a68ca5ee5d4b87 2011-09-06 NA NA 2012-01-10
24,395 2,012 0d7fe0ff18f5b16868a68ca5ee5d4b87 2012-01-10 2012-04-02 Abandono 2012-04-02
15,768 2,011 12073f9a529001d831c957f18d1d9045 2010-07-12 NA NA 2010-07-12
12,268 2,011 12073f9a529001d831c957f18d1d9045 2010-07-12 2011-05-31 Alta Terapéutica 2011-05-31
21,464 2,012 137e8525aa3f79235fa8ad90913fdcbe 2010-10-26 2012-04-02 Abandono 2012-04-02
65,674 2,015 137e8525aa3f79235fa8ad90913fdcbe 2013-06-24 NA NA 2013-07-03
49,659 2,014 137e8525aa3f79235fa8ad90913fdcbe 2013-07-03 2014-06-01 Alta Admnistrativa 2014-06-01
22,481 2,012 144b8d70d7ea1b9ea70d2ef7543520b2 2011-09-26 2012-06-11 Abandono 2012-06-11
28,113 2,012 144b8d70d7ea1b9ea70d2ef7543520b2 2012-06-22 2012-09-03 Abandono 2012-09-03
73,250 2,015 144b8d70d7ea1b9ea70d2ef7543520b2 2015-01-15 2015-03-03 Abandono 2015-03-03
111,197 2,017 144b8d70d7ea1b9ea70d2ef7543520b2 2016-12-16 NA NA 2017-01-31
112,951 2,017 144b8d70d7ea1b9ea70d2ef7543520b2 2017-01-31 2017-10-30 Alta Terapéutica 2017-10-30
1,550 2,010 16745e2658996a68e5c2f2e0153f92b8 2009-11-19 2010-02-23 Abandono 2010-02-23
6,039 2,010 16745e2658996a68e5c2f2e0153f92b8 2010-06-09 NA Abandono 2018-12-22
22,130 2,012 16745e2658996a68e5c2f2e0153f92b8 2011-09-12 2012-03-30 Derivación 2012-03-30
152,754 2,019 16745e2658996a68e5c2f2e0153f92b8 2018-12-22 2019-06-14 Alta Terapéutica 2019-06-14
12,175 2,011 1baff032eb17af74d98d63542c87423a 2010-11-01 2011-08-17 Alta Terapéutica 2011-08-17
109,317 2,017 1baff032eb17af74d98d63542c87423a 2016-09-13 NA NA 2017-01-27
112,950 2,017 1baff032eb17af74d98d63542c87423a 2017-01-27 2017-02-09 Alta Admnistrativa 2017-02-09
25,303 2,012 1d53b9a82ab4fbc0e6cfa109d664eb51 2012-03-19 NA NA 2012-08-20
29,037 2,012 1d53b9a82ab4fbc0e6cfa109d664eb51 2012-08-20 2013-01-15 Derivación 2013-01-15
19,397 2,011 1e30ddcc36208fe4e251b92d7d3b3a5a 2011-09-29 2011-12-02 Abandono 2011-12-02
18,774 2,011 1e30ddcc36208fe4e251b92d7d3b3a5a 2011-09-29 NA Abandono 2018-05-02
25,129 2,012 1e30ddcc36208fe4e251b92d7d3b3a5a 2012-02-07 2012-04-10 Abandono 2012-04-10
137,996 2,018 1e30ddcc36208fe4e251b92d7d3b3a5a 2018-05-02 2018-06-30 Abandono 2018-06-30
194 2,010 2a9e74353a3177ed278508f91265e4b4 2009-10-08 NA Abandono 2012-02-10
4,670 2,010 2a9e74353a3177ed278508f91265e4b4 2010-04-29 2010-05-03 Abandono 2010-05-03
24,666 2,012 2a9e74353a3177ed278508f91265e4b4 2012-02-10 2012-06-01 Derivación 2012-06-01
8,239 2,010 3e23f3c3cbedb2aa1003e6a9d03eb070 2010-10-07 NA Abandono 2016-05-23
32,167 2,013 3e23f3c3cbedb2aa1003e6a9d03eb070 2011-04-12 2013-12-18 Alta Admnistrativa 2013-12-18
97,354 2,016 3e23f3c3cbedb2aa1003e6a9d03eb070 2016-05-23 2016-11-01 Derivación 2016-11-01
6,593 2,010 57b4de7542dfab3c29b6705cb392ff8a 2010-07-09 NA NA 2018-02-01
48,343 2,014 57b4de7542dfab3c29b6705cb392ff8a 2013-01-11 2014-05-29 Abandono 2014-05-29
67,665 2,015 57b4de7542dfab3c29b6705cb392ff8a 2014-07-01 2015-07-14 Alta Admnistrativa 2015-07-14
134,162 2,018 57b4de7542dfab3c29b6705cb392ff8a 2018-02-01 2018-12-27 Derivación 2018-12-27
8,440 2,010 7b7c7a8a877c369884fa9745e40b6f3b 2010-10-27 2010-11-10 Abandono 2010-11-10
8,320 2,010 7b7c7a8a877c369884fa9745e40b6f3b 2010-10-27 NA Abandono 2010-10-27
6,868 2,010 91d2b53989232617a76554f9df52348c 2010-07-01 NA Derivación 2010-07-06
7,566 2,010 91d2b53989232617a76554f9df52348c 2010-07-06 2011-07-16 Alta Admnistrativa 2011-07-16
2,603 2,010 9803638c4b8ca2a0920ea15bcc024da5 2010-01-20 NA Abandono 2012-03-08
24,854 2,012 9803638c4b8ca2a0920ea15bcc024da5 2012-02-16 2012-03-07 Derivación 2012-03-07
25,221 2,012 9803638c4b8ca2a0920ea15bcc024da5 2012-03-08 2012-05-08 Abandono 2012-05-08
54,834 2,014 a91ebc49e725f0638be44c6e17445adb 2014-01-30 2014-02-07 Abandono 2014-02-07
89,750 2,016 a91ebc49e725f0638be44c6e17445adb 2015-09-23 NA NA 2015-10-01
94,274 2,016 a91ebc49e725f0638be44c6e17445adb 2015-10-01 2016-04-15 Abandono 2016-04-15
157,931 2,019 a92ab8f10fa05d0d9dcb5855c0ec0092 2019-04-24 NA NA 2019-05-13
156,785 2,019 a92ab8f10fa05d0d9dcb5855c0ec0092 2019-05-13 2019-05-22 Abandono 2019-05-22
15,769 2,011 bb142143c9ba9eef996e02404b5f3898 2010-12-03 NA NA 2012-10-22
31,643 2,012 bb142143c9ba9eef996e02404b5f3898 2012-10-22 2013-01-01 Abandono 2013-01-01
5,581 2,010 e7fba974dc5e247f53d87f558a6fc420 2010-05-25 NA Abandono 2015-04-01
74,778 2,015 e7fba974dc5e247f53d87f558a6fc420 2015-04-01 2015-08-31 Abandono 2015-08-31
147,356 2,019 ecde0c8a8477604ba6402ca715e42756 2018-05-02 2019-10-31 Derivación 2019-10-31
137,228 2,018 ecde0c8a8477604ba6402ca715e42756 2018-05-02 NA NA 2018-05-02
11,357 2,011 f580b664d04575ecea2dd4ba9e6f0de5 2010-10-02 NA Abandono 2017-09-04
129,856 2,018 f580b664d04575ecea2dd4ba9e6f0de5 2017-09-04 2018-05-31 Alta Terapéutica 2018-05-31
#NO SE PUEDEN RESCATAR DE TOPs
#CONS_C1_df_dup_ENE_2020_w_date_disch <- CONS_C1_df_dup_ENE_2020 %>% dplyr::filter(is.na(fech_egres)) #no puedo rescatar de TOP
#CONS_TOP %>%
#  dplyr::mutate(fech_ing= lubridate::parse_date_time(Fecha.de.Ingreso.a.Tratamiento, c("%d/%m/%Y"),exact=T)) %>% #no fallan casos en ser transformados
#  dplyr::filter(TOP=="Egreso", Etapa.del.Tratamiento=="Egreso") %>%
#  dplyr::mutate(fech_ap_top= lubridate::parse_date_time(Fecha.Aplicación.TOP, c("%Y-%m-%d"),exact=T)) %>% #ni un caso falla en ser transformado
#  dplyr::mutate(concat=paste0(HASH_KEY,"_",fech_ing)) %>%
#  dplyr::right_join(CONS_C1_df_dup_ENE_2020_w_date_disch,by="concat") %>% 
#  dplyr::filter(!is.na(fech_ap_top)) %>%
#  dplyr::select(HASH_KEY.x, fech_ing.x,concat,fech_egres,fech_ap_top) %>%View()


In Table 18, we offered a table of each HASH and dates of discharge. This Table may let us decide whether to replace the dates of discharge by the following date of admission (leading to a time-to-readmission of 0) or to erase the complete case. As stated in the meeting of Jan. 13, 2020, an alternative would be to impute days of treatment and generate a new date of discharge by adding the days of treatment to the date of admission.


#TODAVÍA NO ES POSIBLE HACER EL TRASPASO DE ESAS FECHAS TAN IMPORTANTES AL HASH.
#NO SE PUEDEN RESCATAR DE TOPs
#CONS_C1_df_dup_ENE_2020_w_date_disch <- CONS_C1_df_dup_ENE_2020 %>% dplyr::filter(is.na(fech_egres)) #no puedo rescatar de TOP
#CONS_TOP %>%
#  dplyr::mutate(fech_ing= lubridate::parse_date_time(Fecha.de.Ingreso.a.Tratamiento, c("%d/%m/%Y"),exact=T)) %>% #no fallan casos en ser transformados
#  dplyr::filter(TOP=="Egreso", Etapa.del.Tratamiento=="Egreso") %>%
#  dplyr::mutate(fech_ap_top= lubridate::parse_date_time(Fecha.Aplicación.TOP, c("%Y-%m-%d"),exact=T)) %>% #ni un caso falla en ser transformado
#  dplyr::mutate(concat=paste0(HASH_KEY,"_",fech_ing)) %>%
#  dplyr::right_join(CONS_C1_df_dup_ENE_2020_w_date_disch,by="concat") %>% 
#  dplyr::filter(!is.na(fech_ap_top)) %>%
#  dplyr::select(HASH_KEY.x, fech_ing.x,concat,fech_egres,fech_ap_top) %>%View()

  metadata(CONS_C1_df_dup_ENE_2020)$name <- "Agreement 1 SENDA"
  metadata(CONS_C1_df_dup_ENE_2020)$description <- "Information About Agreement 1 of SENDA and MINSAL"
  
codebook::var_label(CONS_C1_df_dup_ENE_2020) <- list(row = 'Numerador de los eventos presentes en la Base de Datos/Events in the Dataset',
TABLE = 'Origen de los Datos (de los archivos por año)/Source of Data (of files per year)',
HASH_KEY = 'Codificación del RUN/Masked Identifier (RUN)',
ano_bd = 'Año de la Base de Datos/Year of the Dataset (Source)',
id = 'Codigo Identificación de SENDA/SENDAs ID',
Nombre.Centro = 'Nombre del Centro de Tratamiento/Treatment Center',
tipo_centro = 'Tipo de Centro/Type of Center',
Región.del.Centro = 'Región del Centro/Chilean Region of the Center',
Servicio.de.Salud = 'Servicio de Salud/Health Service',
Tipo.de.Programa = '(original, Recodificado en tipo_de_programa)/',
Tipo.de.Plan = '(original, Recodificado en tipo_de_plan)/',
SENDA = 'SENDA/SENDA',
dias_trat = 'Días de Tratamiento/Days of Treatment',
nmesesentratamiento = 'Número de Meses en Tratamiento/Number of Months in Treatment',
Dias.en.SENDA = 'Días en SENDA/Days in SENDA',
N.Meses.en.SENDA = 'Número de Meses en SENDA/Number of Months in SENDA',
Sexo = '(original, Recodificado en sexo)/',
Edad = 'Edad (número entero)/Year (Discrete Number)',
Nombre.Usuario = 'Nombre del Usuario (OCULTO y no accesible)/Name of the User (Not Accessible)',
Comuna.Residencia = 'Comuna de Residencia/Municipality of Residence',
Origen.de.Ingreso = '(original, Recodificado en origen_ingreso)/',
País.Nacimiento = 'País de Nacimiento/Country of Birth',
Nacionalidad = 'Nacionalidad/Nationallity',
Etnia = 'Etnia/Ethnicity',
Estado.Conyugal = '(original, Recodificado en estado_conyugal)/',
Número.de.Hijos = 'Número de Hijos/Number of Children',
Número.de.Hijos.Ingreso.Tratamiento.Residencial = 'Número de Hijos para Ingreso a Tratamiento Residencial/Number of Children to Residential Treatment',
Parentesco.con.el.Jefe.de.Hogar = '(Sólo presenta valores perdidos)/',
Numero.de.Tratamientos.Anteriores = 'Número de Tratamientos Anteriores/Number of Previous Treatments',
Fecha.Ultimo.Tratamiento = 'Fecha del Último Tratamiento (aún no formateada como fecha)/Date of the Last Treatment',
Sustancia.de.Inicio = '(original, Recodificado en sus_ini)/',
Edad.Inicio.Consumo = '(original, Recodificado en edad_ini_cons)/', 
X.Se.trata.de.una.mujer.embarazada. = 'Mujer Embarazada al Ingreso/Pregnant at Admission',
Escolaridad..último.año.cursado. = '(original, Recodificado en escolaridad)/', 
Condicion.Ocupacional = '(original, Recodificado en estatus_ocupacional)/', 
Categoría.Ocupacional = '(original, Recodificado en cat_ocupacional)/',
Rubro.Trabaja = 'Rubro de Trabajo/Area of Work',
Con.Quién.Vive = 'Persona con la que vive el Usuario/People that Share Household with the User',
Tipo.de.vivienda = 'Tipo de Vivienda/Type of Housing',
Tenencia.de.la.vivienda = 'Tenencia de la Vivienda/Tenure status of Households',
Sustancia.Principal = '(original, Recodificado en sus_principal)/',
Otras.Sustancias.nº1 = '(original, Recodificado en otras_sus1)/',
Otras.Sustancias.nº2 = '(original, Recodificado en otras_sus2)/',
Otras.Sustancias.nº3 = '(original, Recodificado en otras_sus3)/',
Frecuencia.de.Consumo..Sustancia.Principal. = '(original, Recodificado en freq_cons_sus_prin)/',
Edad.Inicio..Sustancia.Principal. = '(original, Recodificado en edad_ini_sus_prin)/',
Vía.Administración..Sustancia.Principal. = '(original, Recodificado en via_adm_sus_prin)/',
Diagnóstico.Trs..Consumo.Sustancia = 'Diagnósico de Trastorno por Consumo de Sustancias/Diagnosed of Substance Use Disorder',
Diagnóstico.Trs..Psiquiátrico.DSM.IV = 'Diagnóstico de Trastorno Psiquiátrico, Criterios DSM IV/Diagnosis of Psychiatric Disorders, DSM-IV criteria',
Diagnóstico.Trs..Psiquiátrico.SUB.DSM.IV = 'Diagnóstico de Trastorno Psiquiátrico, Criterios DSM IV (Subclasificacion)/Diagnosis of Psychiatric Disorders, DSM-IV criteria (sub-classification)',
X2.Diagnóstico.Trs..Psiquiátrico.DSM.IV = 'Diagnóstico de Trastorno Psiquiátrico, Criterios DSM IV (2)/Diagnosis of Psychiatric Disorders, DSM-IV criteria (2)',
X2.Diagnóstico.Trs..Psiquiátrico.SUB.DSM.IV = 'Diagnóstico de Trastorno Psiquiátrico, Criterios DSM IV (Subclasificacion) (2)/Diagnosis of Psychiatric Disorders, DSM-IV criteria (sub-classification) (2)',
X3.Diagnóstico.Trs..Psiquiátrico.DSM.IV = 'Diagnóstico de Trastorno Psiquiátrico, Criterios DSM IV (3)/Diagnosis of Psychiatric Disorders, DSM-IV criteria (3)',
X3.Diagnóstico.Trs..Psiquiátrico.SUB.DSM.IV = 'Diagnóstico de Trastorno Psiquiátrico, Criterios DSM IV (Subclasificacion) (3)/Diagnosis of Psychiatric Disorders, DSM-IV criteria (sub-classification) (3)',
Diagnóstico.Trs..Psiquiátrico.CIE.10 = 'Diagnóstico de Trastorno Psiquiátrico, Criterios CIE-10/Diagnosis of Psychiatric Disorders, CIE-10 criteria',
Diagnóstico.Trs..Psiquiátrico.SUB.CIE.10 = 'Diagnóstico de Trastorno Psiquiátrico, Criterios CIE-10 (Subclasificacion)/Diagnosis of Psychiatric Disorders, CIE-10 criteria (subclassification)',
X2.Diagnóstico.Trs..Psiquiátrico.CIE.10 = 'Diagnóstico de Trastorno Psiquiátrico, Criterios CIE-10 (2)/Diagnosis of Psychiatric Disorders, CIE-10 criteria (2)',
X2.Diagnóstico.Trs..Psiquiátrico.SUB.CIE.10 = 'Diagnóstico de Trastorno Psiquiátrico, Criterios CIE-10 (Subclasificacion) (2)/Diagnosis of Psychiatric Disorders, CIE-10 criteria (subclassification) (2)',
X3.Diagnóstico.Trs..Psiquiátrico.CIE.10 = 'Diagnóstico de Trastorno Psiquiátrico, Criterios CIE-10 (3)/Diagnosis of Psychiatric Disorders, CIE-10 criteria (3)',
X3.Diagnóstico.Trs..Psiquiátrico.SUB.CIE.10 = 'Diagnóstico de Trastorno Psiquiátrico, Criterios CIE-10 (Subclasificacion) (3)/Diagnosis of Psychiatric Disorders, CIE-10 criteria (subclassification) (3)',
Diagnóstico.Trs..Físico = 'Diagnóstico de Trastorno Físico/Diagnosis of Physical Disorder',
Otros.Problemas.de.Atención.de.Salud.Mental = 'Otros Problemas de Atención Vinculados a Salud Mental/Other problems linked to Mental Health',
Compromiso.Biopsicosocial = 'Compromiso Biopsicosocial/Biopsychosocial Involvement',
DIAGNOSTICO.GLOBAL.DE.NECESIDADES.DE.INTEGRACION.SOCIAL = 'Diagnóstico Global de Necesidades de Integración Social al Ingreso/Global Diagnosis of Social Integration at Admission',
DIAGNOSTICO.DE.NECESIDADES.DE.INTEGRACIóN.SOCIAL.EN.CAPITAL.HUMANO = 'Diagnóstico de Necesidades de Integración Social en Capital Humano al Ingreso/Global Diagnosis of Social Integration in Human Capital at Admission',
DIAGNOSTICO.DE.NECESIDADES.DE.INTEGRACIóN.SOCIAL.EN.CAPITAL.FISICO = 'Diagnóstico de Necesidades de Integración Social en Capital Físico al Ingreso/Global Diagnosis of Social Integration in Physical Capital at Admission',
DIAGNOSTICO.DE.NECESIDADES.DE.INTEGRACIóN.SOCIAL.EN.CAPITAL.SOCIAL = 'Diagnóstico de Necesidades de Integración Social en Capital Social al Ingreso/Global Diagnosis of Social Integration in Social Capital at Admission',
fech_ing = 'Fecha de Ingreso a Tratamiento/Date of Admission to Treatment',
Fecha.Ingreso.a.Convenio.SENDA = 'Fecha de Ingreso a Convenio SENDA (aún no formateada como fecha)/Date of Admission to SENDA Agreement',
Usuario.de.Tribunales..Tratamiento.Drogas = 'Usuario de modalidad Tribunales de Tratamiento de Drogas/User of Drug Treatment Courts Modality',
Consentimiento.Informado = 'Consentimiento Informado/Informed Consent',
fech_egres = 'Fecha de Egreso de Tratamiento/Date of Discharge from Treatment',
motivodeegreso = 'Motivo de Egreso/Cause of Discharge',
Tipo.Centro.Derivación = 'Tipo de Centro al que el Usuario es Derivado/Type of Center of Derivation',
evaluacindelprocesoteraputico = 'Evaluación del Proceso Terapéutico/Evaluation of the Therapeutic Process',
eva_consumo = 'Evaluación al Egreso Respecto al Patrón de consumo/Evaluation at Discharge regarding to Consumption Pattern',
eva_fam = 'Evaluación al Egreso Respecto a Situación Familiar/Evaluation at Discharge regarding to Family Situation',
eva_relinterp = 'Evaluación al Egreso Respecto a Relaciones Interpersonales/Evaluation at Discharge regarding to Interpersonal Relations',
eva_ocupacion = 'Evaluación al Egreso Respecto a Situación Ocupacional/Evaluation at Discharge regarding to Occupational Status',
eva_sm = 'Evaluación al Egreso Respecto a Salud Mental/Evaluation at Discharge regarding to Mental Health',
eva_fisica = 'Evaluación al Egreso Respecto a Salud Física/Evaluation at Discharge regarding to Physical Health',
eva_transgnorma = 'Evaluación al Egreso Respecto a Trasgresión a la Norma Social/Evaluation at Discharge regarding to Transgression to the Norm',
Diagnóstico.Trastorno.Psiquiátrico.CIE.10.al.Egreso = '(Sólo presenta valores perdidos)/',
DIAGNOSTICO.GLOBAL.DE.NECESIDADES.DE.INTEGRACION.SOCIAL.1 = 'Diagnóstico Global de Necesidades de Integración Social (al Egreso)/Global Diagnosis of Social Integration (at Discharge)',
DIAGNOSTICO.DE.NECESIDADES.DE.INTEGRACIóN.SOCIAL.EN.CAPITAL.HUMANO.1 = 'Diagnóstico de Necesidades de Integración Social en Capital Humano (al Egreso)/Global Diagnosis of Social Integration in Human Capital (at Discharge)',
DIAGNOSTICO.DE.NECESIDADES.DE.INTEGRACIóN.SOCIAL.EN.CAPITAL.FISICO.1 = 'Diagnóstico de Necesidades de Integración Social en Capital Físico (al Egreso)/Global Diagnosis of Social Integration in Physical Capital (at Discharge)',
DIAGNOSTICO.DE.NECESIDADES.DE.INTEGRACIóN.SOCIAL.EN.CAPITAL.SOCIAL.1 = 'Diagnóstico de Necesidades de Integración Social en Capital Social (al Egreso)/Global Diagnosis of Social Integration in Social Capital (at Discharge)',
TIENE.MENORES.DE.EDAD.A.CARGO = 'Menores de Edad A Cargo/Minor Dependants',
Motivo.de.egreso.Alta.Administrativa = 'Motivo de Egreso Alta Administrativa/Cause of Discharge ',
Consorcio = 'Sociedades de Tratamiento, Servicios de Salud, Fundaciones, entre otras entidades encargadas de los centros/Consortium',
ID.centro = 'ID de Centro/Center ID',
Ha.estado.embarazada.egreso. = '¿Ha estado embarazada? (al Egreso)/Have you been Pregnant (at Discharge)',
identidad.de.genero = 'Identidad de Género/Gender Identity',
discapacidad = 'Presenta Discapacidad/Disability',
hash_rut_completo = 'HASH alternativo, en el escenario en que se asuma que el individuo al que se le codificó el RUN presente mayor edad/Alternative HASH-Key',
Opción.discapacidad = 'Origen de Discapacidad/Cause of Disability',
sexo = 'Sexo Usuario/Sex of User',
embarazo = 'Embarazo/Pregnant',
tipo_de_plan = 'Tipo de Plan/Type of Plan',
tipo_de_programa = 'Tipo de Programa de Tratamiento/Type of Program',
fech_egres_sin_fmt = 'Fecha de Egreso de Tratamiento (Sin Formato de Fecha)/Date of Discharge',
id_mod = 'ID de SENDA para Presentación en Página Web (enmascara caracteres 5 y 6)/SENDAs ID (mask characters 5 & 6)',
ano_nac = 'Año de Nacimiento (numérico)/Year of Birth (numeric)',
fech_ing_ano = 'Año de Ingreso (numérico)/Year of Admission (numeric)',
fech_ing_mes = 'Mes de Ingreso (numérico)/Month of Admission (numeric)',
fech_ing_dia = 'Día de Ingreso (numérico)/Day of Admission (numeric)',
concat = 'ID de SENDA y HASH Concatenado (permite discriminar más de un HASH en un mismo ID)/Combination of SENDAs ID & HASH',
dias_trat_inv = 'Días de Tratamiento Invertidos (fecha más reciente, menor valor numérico)/Treatment Days (Reversed)',
fech_nac = 'Fecha de Nacimiento/Date of Birth',
Edad_al_ing = 'Edad a la Fecha de Ingreso a Tratamiento (numérico continuo)/Age at Admission to Treatment',
edad_ini_cons= 'Edad de Inicio de Consumo/ Age of Onset of Drug Use',
edad_ini_sus_prin =  'Edad de Inicio de Consumo Sustancia Principal/ Age of Onset of Drug Use Principal Substance',
dias_trat_alta_temprana = 'Días de tratamiento (<90)/ Less than 90 days in treatment',
motivodeegreso_mod = 'Motivo de Egreso (con abandono temprano y tardío)/Cause of Discharge (with late and early withdrawal)',
sus_principal = 'Sustancia Principal de Consumo/Main Substance of Consumption',
otras_sus1= 'Otras Sustancias (1)/Other Substances (1)',
otras_sus2= 'Otras Sustancias (2)/Other Substances (2)',
otras_sus3= 'Otras Sustancias (3)/Other Substances (3)',
sus_ini= 'Sustancia de Inicio/Starting Substance',
estado_conyugal='Estado Conyugal/Marital Status',
estatus_ocupacional= 'Condición Ocupacional/Occupational Status',
cat_ocupacional= 'Categoría Ocupacional/Occupational Category',
Edad_grupos = 'Edad agrupada/Age in groups',
origen_ingreso= 'Origen de Ingreso/Motive of Admission to Treatment',
escolaridad= 'Escolaridad: Nivel Eduacional/Educational Attainment',
freq_cons_sus_prin = 'Frecuencia de Consumo de la Sustancia Principal/Frequency of Consumption of the Main Substance',
via_adm_sus_prin = 'Vía de Administración de la Sustancia Principal/Route of Administration of the Main Substance')

CONS_C1_df_dup_ENE_2020 <- janitor::clean_names(CONS_C1_df_dup_ENE_2020)

#PARA EXPORTAR LABELS A EXCEL
#data.table::data.table(table(CONS_C1_df_dup_ENE_2020$identidad.de.genero, exclude=NULL)) %>% mutate(export=paste0(row_number(),".",V1)) %>% select(-V1) %>% select(export,N)%>% copiar_nombres()

#save.image("G:/Mi unidad/Alvacast/SISTRAT 2019 (github)/3.Rdata")
save.image(paste0(gsub("/SUD_CL","",path),"/2.Rdata"))
unlink(paste0(path, '/*_cache'), recursive = TRUE)

#save.image("H:/sud_cl/3.Rdata")


7. Preliminary Summary in January 2020

Many selections for the purposes of the study are still being necessary until today, in order to keep the greater amount of information about each event.

#knitr::include_graphics("G:/Mi unidad/Alvacast/SISTRAT 2019 (github)/SUD_CL/Figures/Figure_Duplicates.svg")
library(DiagrammeR)
DiagrammeR::grViz("
digraph graph2 {

graph [layout = dot]

# node definitions with substituted label text
node [shape = rectangle, width = 4, color = 'steelblue',fillcolor = lightblue]
a [label = '@@1']
b [label = '@@2']
c [label = '@@3']
d [label = '@@4']
e [label = '@@5']
f [label = '@@6']

a -> b -> c -> {d e f}

}

[1]:  paste0('Once removed same values in >100 variables (n = ', formatC(nrow(CONS_C1_df_dup), format='f', big.mark=',', digits=0), ')')
[2]: paste0('Once removed same values in variables related to treatments and substance use (n = ', formatC(nrow(CONS_C1_df_dup_ENE_2020_prev2), format='f', big.mark=',', digits=0), ')')
[3]: paste0('Preliminary Dataset (n = ', formatC(nrow(CONS_C1_df_dup_ENE_2020), format='f', big.mark=',', digits=0), ')')
[4]: paste0('Same HASH & Date of Admission (n = ', formatC(dup_cases_quarter_n, format='f', big.mark=',', digits=0), ')')
[5]: paste0('Overlapped Ranges of Treatments (n = ', formatC(nrow(overlap_dates_C1), format='f', big.mark=',', digits=0), ')')
[6]: paste0('Pairs of Probabilistic Matches (n = ', formatC(nrow(matches_from_stata_c1)/2, format='f', big.mark=',', digits=0), ')')
")

sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19042)

Matrix products: default

locale:
[1] LC_COLLATE=Spanish_Chile.1252  LC_CTYPE=Spanish_Chile.1252   
[3] LC_MONETARY=Spanish_Chile.1252 LC_NUMERIC=C                  
[5] LC_TIME=Spanish_Chile.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] DiagrammeR_1.0.6.1.9000    gridExtra_2.3             
 [3] plotly_4.9.2.1             radiant.update_1.4.1      
 [5] neuralnet_1.44.2           radiant_1.3.2             
 [7] radiant.multivariate_1.3.6 radiant.model_1.3.12      
 [9] radiant.basics_1.3.4       radiant.design_1.3.5      
[11] mvtnorm_1.1-1              radiant.data_1.3.9        
[13] magrittr_1.5               tidylog_1.0.1             
[15] ggiraphExtra_0.2.9         ggiraph_0.7.0             
[17] glue_1.4.1                 haven_2.3.1               
[19] Statamarkdown_0.4.5        devtools_2.3.0            
[21] usethis_1.6.1              sqldf_0.4-11              
[23] RSQLite_2.2.0              gsubfn_0.7                
[25] proto_1.0.0                broom_0.7.12              
[27] codebook_0.9.2             zoo_1.8-8                 
[29] rbokeh_0.5.1               lubridate_1.7.9           
[31] kableExtra_1.1.0           Hmisc_4.4-0               
[33] Formula_1.2-3              survival_3.2-3            
[35] lattice_0.20-41            ggplot2_3.3.2             
[37] stringr_1.4.0              stringi_1.4.6             
[39] janitor_2.0.1              tidyr_1.1.0               
[41] knitr_1.29                 data.table_1.12.8         
[43] dplyr_1.0.0                here_0.1                  

loaded via a namespace (and not attached):
  [1] tidyselect_1.1.0      import_1.1.0          htmlwidgets_1.5.1    
  [4] ranger_0.12.1         grid_4.0.2            pdp_0.7.0            
  [7] munsell_0.5.0         clustMixType_0.2-15   codetools_0.2-18     
 [10] xgboost_1.1.1.1       chron_2.3-55          withr_2.4.3          
 [13] colorspace_1.4-1      highr_0.8             AlgDesign_1.2.0      
 [16] uuid_0.1-4            rstudioapi_0.11       randomizr_0.20.0     
 [19] labeling_0.3          repr_1.1.0            mnormt_2.0.0         
 [22] farver_2.0.3          bit64_0.9-7           rprojroot_1.3-2      
 [25] vctrs_0.3.1           generics_0.0.2        xfun_0.29            
 [28] R6_2.4.1              markdown_1.1          reshape_0.8.8        
 [31] shinyAce_0.4.1        assertthat_0.2.1      promises_1.1.1       
 [34] scales_1.1.1          nnet_7.3-14           gtable_0.3.0         
 [37] processx_3.5.2        sandwich_2.5-1        rlang_1.0.1          
 [40] clisymbols_1.2.0      polycor_0.7-10        systemfonts_0.2.3    
 [43] splines_4.0.2         lazyeval_0.2.2        acepack_1.4.1        
 [46] hexbin_1.28.1         mycor_0.1.1           checkmate_2.0.0      
 [49] yaml_2.2.1            reshape2_1.4.4        abind_1.4-5          
 [52] crosstalk_1.1.0.1     backports_1.1.8       httpuv_1.5.4         
 [55] tools_4.0.2           tcltk_4.0.2           psych_1.9.12.31      
 [58] ellipsis_0.3.1        jquerylib_0.1.4       RColorBrewer_1.1-2   
 [61] sessioninfo_1.1.1     Rcpp_1.0.4.6          plyr_1.8.6           
 [64] base64enc_0.1-3       visNetwork_2.0.9      purrr_0.3.4          
 [67] ps_1.3.3              prettyunits_1.1.1     rpart_4.1-15         
 [70] ggrepel_0.8.2         cluster_2.1.0         fs_1.4.2             
 [73] tmvnsim_1.0-2         sjmisc_2.8.5          pkgload_1.1.0        
 [76] hms_0.5.3             patchwork_1.0.1       mime_0.9             
 [79] evaluate_0.14         xtable_1.8-4          jpeg_0.1-8.1         
 [82] readxl_1.3.1          testthat_2.3.2        compiler_4.0.2       
 [85] tibble_3.0.1          maps_3.3.0            writexl_1.3          
 [88] crayon_1.3.4          htmltools_0.5.2       mgcv_1.8-31          
 [91] later_1.1.0.1         DBI_1.1.0             sjlabelled_1.1.5     
 [94] ppcor_1.1             MASS_7.3-51.6         data.tree_0.7.11     
 [97] Matrix_1.2-18         car_3.0-12            readr_1.3.1          
[100] cli_3.1.1             GPArotation_2014.11-1 pryr_0.1.4           
[103] gower_0.2.2           parallel_4.0.2        insight_0.8.4        
[106] forcats_0.5.0         pkgconfig_2.0.3       foreign_0.8-80       
[109] xml2_1.3.2            webshot_0.5.2         rvest_0.3.5          
[112] snakecase_0.11.0      callr_3.7.0           digest_0.6.25        
[115] rmarkdown_2.11        cellranger_1.1.0      htmlTable_2.0.0      
[118] gdtools_0.2.2         curl_4.3              shiny_1.5.0          
[121] pwr_1.3-0             lifecycle_0.2.0       nlme_3.1-148         
[124] jsonlite_1.7.0        carData_3.0-5         desc_1.2.0           
[127] viridisLite_0.3.0     labelled_2.5.0        pillar_1.4.6         
[130] NeuralNetTools_1.5.2  shinyFiles_0.8.0.9003 fastmap_1.1.0        
[133] httr_1.4.2            pkgbuild_1.1.0        remotes_2.4.2        
[136] png_0.1-7             bit_1.1-15.2          class_7.3-17         
[139] gistr_0.5.0           blob_1.2.2            latticeExtra_0.6-29  
[142] memoise_1.1.0         e1071_1.7-3