<> tag dd_include failed to find file {bf:C:/Users/CISS Fondecyt/Mi unidad/Alvaca... r(601);

Database (step 1)

Date created: 22:33:32 25 Jul 2021.

Install commands that are unavailable or out of date.

. *<< dd_do : noout > >
. clear all

. *https://onlinelibrary.wiley.com/doi/epdf/10.1002/sim.8894
. *https://pclambert.net/pdf/Stata_Nordic2019_Lambert.pdf
. *https://slidetodoc.com/automated-reports-using-stata-chuck-huber-ph-d/
. *~Mi unidad\Alvacast\SISTRAT 2019 (github)\_supp_mstates\stata\12874_2020_1192_MOESM1_ESM.docx
. *https://opr.princeton.edu/workshops/Downloads/2015May_StataGraphicsKoffman.pdf
. *http://www.bruunisejs.dk/StataHacks/My%20commands/matprint/matprint_demo/
. *https://pure.au.dk/portal/files/140882936/ScientificWorkInStataGoneEasy.pdf
. *https://www.stata.com/meeting/nordic-and-baltic18/slides/nordic-and-baltic18_Bruun.pdf
. *https://github.com/dvorakt/TIER_exercises/blob/master/dyndoc_debt_growth/debt%20and%20growth%20stata%20dyndoc.do
. 
. cap noi which predictms
c:\ado\plus\p\predictms.ado
*! version 4.3.0 14mar2021 MJC

. if _rc==111 {
.         cap noi net install multistate, from("https://www.mjcrowther.co.uk/code/multistate") 
.         }

. cap noi which merlin
c:\ado\plus\m\merlin.ado
*! version 2.0.2 19mar2021 MJC

. if _rc==111 {
.         cap noi net install merlin, from("https://www.mjcrowther.co.uk/code/merlin/") 
.         }

. cap noi which sumat
c:\ado\plus\s\sumat.ado
*! Part of package matrixtools v. 0.28
*! Support: Niels Henrik Bruun, niels.henrik.bruun@gmail.com
*! 2021-01-03 toxl added

. if _rc==111 {
.         cap noi scc install matrixtools
.         }

. cap noi which estwrite
c:\ado\plus\e\estwrite.ado
*! version 1.2.4 04sep2009
*! version 1.0.1 15may2007 (renamed from -eststo- to -estwrite-; -append- added)
*! version 1.0.0 29apr2005 Ben Jann (ETH Zurich)

. if _rc==111 {
.         cap noi ssc install estwrite
.         }

. cap noi which winsor2
c:\ado\plus\w\winsor2.ado
*! Inspirit of -winsor-(NJ Cox) and -winsorizeJ-(J Caskey)
*! Lian Yujun, arlionn@163.com, 2013-12-25
*! 1.1 2014.12.16

. if _rc==111 {
.         cap noi ssc install winsor2
.         }       

.         

We need to obtain the file and the work folder.

. mata : st_numscalar("OK", direxists("/volumes/sdrive/data//"))

. if scalar(OK) == 1 {
.         cap noi cd "/volumes/sdrive/data//"
.         global pathdata "/volumes/sdrive/data//"
.         di "Location= ${pathdata}; Date: `c(current_date)', considering an OS `c(os)' for the user: `c(username)'"
. }

. else display "This file does not exist"
This file does not exist

. 
. mata : st_numscalar("OK", direxists("E:\Mi unidad\Alvacast\SISTRAT 2019 (github)\_WO vs MG\"))

. if scalar(OK) == 1 {
.         cap noi cd "E:\Mi unidad\Alvacast\SISTRAT 2019 (github)\_WO vs MG"
E:\Mi unidad\Alvacast\SISTRAT 2019 (github)\_WO vs MG
.         global pathdata "E:\Mi unidad\Alvacast\SISTRAT 2019 (github)\_WO vs MG"
.         global pathdata2 "E:/Mi unidad/Alvacast/SISTRAT 2019 (github)/_WO vs MG/"
.         di "Location= ${pathdata}; Date: `c(current_date)', considering an OS `c(os)' for the user: `c(username)'"
Location= E:\Mi unidad\Alvacast\SISTRAT 2019 (github)\_WO vs MG; Date: 25 Jul 2021, considering an OS Windows for the user: andre
. }

. else display "This file does not exist"

.         
. mata : st_numscalar("OK", direxists("C:\Users\CISS Fondecyt\Mi unidad\Alvacast\SISTRAT 2019 (github)\_WO vs MG\"))

. if scalar(OK) == 1 {
.         cap noi cd "C:\Users\CISS Fondecyt\Mi unidad\Alvacast\SISTRAT 2019 (github)"
.         global pathdata "C:\Users\CISS Fondecyt\Mi unidad\Alvacast\SISTRAT 2019 (github)\_WO vs MG"
.         global pathdata2 "C:/Users/CISS Fondecyt/Mi unidad/Alvacast/SISTRAT 2019 (github)/_WO vs MG/"
.         di "Location= ${pathdata}; Date: `c(current_date)', considering an OS `c(os)' for the user: `c(username)'"
. }

. else display "This file does not exist"
This file does not exist

. 
. mata : st_numscalar("OK", direxists("C:\Users\andre\Desktop\_WO vs MG\"))

. if scalar(OK) == 1 {
.         cap noi cd "C:\Users\andre\Desktop\_WO vs MG"
.         global pathdata "C:\Users\andre\Desktop\_mult_state_ags"
.         global pathdata2 "C:/Users/andre/Desktop/_mult_state_ags/"
.         di "Location= ${pathdata}; Date: `c(current_date)', considering an OS `c(os)' for the user: `c(username)'"
. }

. else display "This file does not exist"
This file does not exist

. 
. mata : st_numscalar("OK", direxists("C:\Users\CISS Fondecyt\OneDrive\Documentos\"))

. if scalar(OK) == 1 {
.         cap noi cd "C:\Users\CISS Fondecyt\Mi unidad\Alvacast\SISTRAT 2019 (github)\_WO vs MG"
.         global pathdata "C:\Users\CISS Fondecyt\Mi unidad\Alvacast\SISTRAT 2019 (github)\_WO vs MG"
.         global pathdata2 "C:/Users/CISS Fondecyt/Mi unidad/Alvacast/SISTRAT 2019 (github)/_WO vs MG/"
.         di "Location= ${pathdata}; Date: `c(current_date)', considering an OS `c(os)' for the user: `c(username)'"
. }

. else display "This file does not exist"
This file does not exist

. 

Path data= E:\Mi unidad\Alvacast\SISTRAT 2019 (github)_WO vs MG;

Timestamp: 25 Jul 2021, considering that is a Windows OS for the username: andre

First we open the files and drop the variables that would mistakenly amplify the sample, and define labels.

The file is located and named as: E:/Mi unidad/Alvacast/SISTRAT 2019 (github)/_WO vs MG/four_st_msprep.dta

Then we define the transition matrix:

Matriz de 4 estados Matriz de 4 estados
123
4
5

and transform the database in a long format, according to the specifications and the transition matrix.






Finally, the database adopt the following structure:


Set the database as a renewal time.

. *stset _stop, enter(_start) failure(_status=1) //* scale(365.25) id(id) 
. 
. *file:///G:/Mi%20unidad/Alvacast/SISTRAT%202019%20(github)/_supp_mstates/stata/crowther2017%20(1).pdf
. stset _time, failure(_status==1)

     failure event:  _status == 1
obs. time interval:  (0, _time]
 exit on or before:  failure

------------------------------------------------------------------------------
     81,243  total observations
          0  exclusions
------------------------------------------------------------------------------
     81,243  observations remaining, representing
     22,520  failures in single-record/single-failure data
   46651531  total analysis time at risk and under observation
                                                at risk from t =         0
                                     earliest observed entry t =         0
                                          last observed exit t =     4,130

. 

=============================================================================

Aalen-Johanssen, Non-parametric transition probabilities

=============================================================================

Generated an Aalen-Johanssen estimator to obtain the transition probabilities of the data from the time 0 (from admission). For this, we separated the transition probabilities according to the setting at baseline.

. *http://fmwww.bc.edu/repec/bocode/m/msaj.ado
. msaj, transmatrix(mat_four_states) by(tipo_de_programa_2) ci

. rename (P_AJ_*) (ajprob*)

To generate figures, we select the valid transitions

=============================================================================

Parametric Models

=============================================================================

Intercept-only

Generamos una lista de modelos paramétricos sin variables predictivas. Entre ellas, el Exponencial, weibull, gompertz, log-logistico, log-normal y gama generalizado. Adicionalmente, se definió una serie de modelos royston-palmar con una función de splines cúblicos restringidos, en que los knots (#gl -1) se definen en cada percentil de la distribución. En este caso, no existe una variable perdictiva más que la función de riesgo acumulado. Guardamos las estimaciones en el archivo `parmodels_m_ago_c’.

. forvalues i = 1/5 {
  2.         // Exponential
.         set seed 2125
  3.         qui cap merlin (_time if _trans == `i', family(exponential, fail(_status)))
  4.         estimates store m`i'_exp
  5.         *estimates save "${pathdata2}parmodels.ster", replace   
.         // Weibull
.         set seed 2125
  6.         qui cap merlin (_time if _trans == `i', family(weibull, fail(_status)))
  7.         estimates store m`i'_weib
  8.         *estimates save "${pathdata2}parmodels.ster", append    
.         // Gompertz
.         set seed 2125
  9.         qui cap merlin (_time if _trans == `i', family(gompertz, fail(_status)))
 10.         estimates store m`i'_gom
 11.         *estimates save "${pathdata2}parmodels.ster", append    
.         // Log logistic
.         set seed 2125
 12.         qui cap merlin (_time if _trans == `i', family(loglogistic, fail(_status)))
 13.         estimates store m`i'_logl
 14.         *estimates save "${pathdata2}parmodels.ster", append    
.         // Log normal
.         set seed 2125
 15.         qui cap merlin (_time if _trans == `i', family(lognormal, fail(_status)))
 16.         estimates store m`i'_logn
 17.         *estimates save "${pathdata2}parmodels.ster", append    
.         // Generalised gamma
.         set seed 2125
 18.         qui cap merlin (_time if _trans == `i', family(ggamma, fail(_status)))
 19.         estimates store m`i'_ggam
 20.         *estimates save "${pathdata2}parmodels.ster", append    
.         // Royston Parmar models
.         set seed 2125
 21.         forvalues j=2/10 {
 22.                 qui cap merlin (_time if _trans == `i', family(rp, df(`j') fail(_status)))
 23.                 estimates store m`i'_rp`j'
 24.                 *estimates save "${pathdata2}parmodels.ster", append    
.         }       
 25. }

. 
. estwrite _all using "${pathdata2}parmodels_m_ago_c.sters", replace
(saving m1_exp)
(saving m1_weib)
(saving m1_gom)
(saving m1_logl)
(saving m1_logn)
(saving m1_ggam)
(saving m1_rp2)
(saving m1_rp3)
(saving m1_rp4)
(saving m1_rp5)
(saving m1_rp6)
(saving m1_rp7)
(saving m1_rp8)
(saving m1_rp9)
(saving m1_rp10)
(saving m2_exp)
(saving m2_weib)
(saving m2_gom)
(saving m2_logl)
(saving m2_logn)
(saving m2_ggam)
(saving m2_rp2)
(saving m2_rp3)
(saving m2_rp4)
(saving m2_rp5)
(saving m2_rp6)
(saving m2_rp7)
(saving m2_rp8)
(saving m2_rp9)
(saving m2_rp10)
(saving m3_exp)
(saving m3_weib)
(saving m3_gom)
(saving m3_logl)
(saving m3_logn)
(saving m3_ggam)
(saving m3_rp2)
(saving m3_rp3)
(saving m3_rp4)
(saving m3_rp5)
(saving m3_rp6)
(saving m3_rp7)
(saving m3_rp8)
(saving m3_rp9)
(saving m3_rp10)
(saving m4_exp)
(saving m4_weib)
(saving m4_gom)
(saving m4_logl)
(saving m4_logn)
(saving m4_ggam)
(saving m4_rp2)
(saving m4_rp3)
(saving m4_rp4)
(saving m4_rp5)
(saving m4_rp6)
(saving m4_rp7)
(saving m4_rp8)
(saving m4_rp9)
(saving m4_rp10)
(saving m5_exp)
(saving m5_weib)
(saving m5_gom)
(saving m5_logl)
(saving m5_logn)
(saving m5_ggam)
(saving m5_rp2)
(saving m5_rp3)
(saving m5_rp4)
(saving m5_rp5)
(saving m5_rp6)
(saving m5_rp7)
(saving m5_rp8)
(saving m5_rp9)
(saving m5_rp10)
(file E:/Mi unidad/Alvacast/SISTRAT 2019 (github)/_WO vs MG/parmodels_m_ago_c.sters saved)

Selected the models with best AICs.


comb
N ll0 ll df AIC BIC

m1_exp 5114 . -42884.06 1 85770.11 85776.65
m1_weib 5114 . -42823.14 2 85650.28 85663.36
m1_gom 5114 . -2386447 0 4772894 4772894
m1_logl 5114 . -41827.54 2 83659.08 83672.15
m1_logn 5114 . -41821.05 2 83646.11 83659.19
m1_ggam 5114 . -41806.5 3 83618.99 83638.61
m1_rp2 5114 . -40744.76 3 81495.53 81515.15
m1_rp3 5114 . -40058.99 4 80125.97 80152.13
m1_rp4 5114 . -40012.74 5 80035.48 80068.18
m1_rp5 5114 . -40005.74 6 80023.48 80062.72
m1_rp6 5114 . -39994.12 7 80002.25 80048.02
m1_rp7 5114 . -39995.2 8 80006.4 80058.72
m1_rp8 5114 . -39995.56 9 80009.13 80067.98
m1_rp9 5114 . -39992.83 10 80005.66 80071.05
m1_rp10 5114 . -39990.7 11 80003.4 80075.33
m2_exp 11995 . -90359.67 1 180721.3 180728.7
m2_weib 11995 . -89050.63 2 178105.3 178120
m2_gom 11995 . -5898645 0 1.18e+07 1.18e+07
m2_logl 11995 . -87536.2 2 175076.4 175091.2
m2_logn 11995 . -87520.25 2 175044.5 175059.3
m2_ggam 11995 . -87342.42 3 174690.8 174713
m2_rp2 11995 . -86545.78 3 173097.6 173119.7
m2_rp3 11995 . -85991.75 4 171991.5 172021.1
m2_rp4 11995 . -85960.82 5 171931.6 171968.6
m2_rp5 11995 . -85923.26 6 171858.5 171902.9
m2_rp6 11995 . -85912.96 7 171839.9 171891.7
m2_rp7 11995 . -85906.07 8 171828.1 171887.3
m2_rp8 11995 . -85899.92 9 171817.8 171884.4
m2_rp9 11995 . -85893.69 10 171807.4 171881.3
m2_rp10 11995 . -85888.02 11 171798 171879.4
m3_exp 753 . -7756.872 1 15515.74 15520.37
m3_weib 753 . -7653.266 2 15310.53 15319.78
m3_gom 753 . -263603.6 0 527207.2 527207.2
m3_logl 753 . -7627.49 2 15258.98 15268.23
m3_logn 753 . -7562.243 2 15128.49 15137.73
m3_ggam 753 . -7531.134 3 15068.27 15082.14
m3_rp2 753 . -7532.96 3 15071.92 15085.79
m3_rp3 753 . -7531.983 4 15071.97 15090.46
m3_rp4 753 . -7527.519 5 15065.04 15088.16
m3_rp5 753 . -7526.838 6 15065.68 15093.42
m3_rp6 753 . -7526.533 7 15067.07 15099.44
m3_rp7 753 . -7526.515 8 15069.03 15106.02
m3_rp8 753 . -7526.161 9 15070.32 15111.94
m3_rp9 753 . -7526.006 10 15072.01 15118.25
m3_rp10 753 . -7526.325 11 15074.65 15125.51
m4_exp 1063 . -10273.44 1 20548.89 20553.86
m4_weib 1063 . -9989.578 2 19983.16 19993.09
m4_gom 1063 . -483400.2 0 966800.4 966800.4
m4_logl 1063 . -9989.43 2 19982.86 19992.8
m4_logn 1063 . -10003.69 2 20011.38 20021.32
m4_ggam 1063 . -9989.19 3 19984.38 19999.29
m4_rp2 1063 . -9989.435 3 19984.87 19999.78
m4_rp3 1063 . -9989.064 4 19986.13 20006
m4_rp4 1063 . -9989.059 5 19988.12 20012.96
m4_rp5 1063 . -9988.606 6 19989.21 20019.02
m4_rp6 1063 . -9984.836 7 19983.67 20018.45
m4_rp7 1063 . -9981.496 8 19978.99 20018.74
m4_rp8 1063 . -9980.155 9 19978.31 20023.03
m4_rp9 1063 . -9977.998 10 19976 20025.68
m4_rp10 1063 . -9975.587 11 19973.17 20027.83
m5_exp 3595 . -33739.63 1 67481.26 67487.45
m5_weib 3595 . -32674.52 2 65353.03 65365.41
m5_gom 3595 . -1654387 0 3308775 3308775
m5_logl 3595 . -32639 2 65282.01 65294.38
m5_logn 3595 . -32631.05 2 65266.11 65278.48
m5_ggam 3595 . -32625.6 3 65257.2 65275.76
m5_rp2 3595 . -32628.46 3 65262.93 65281.49
m5_rp3 3595 . -32607.52 4 65223.03 65247.78
m5_rp4 3595 . -32606.92 5 65223.83 65254.77
m5_rp5 3595 . -32607.36 6 65226.73 65263.85
m5_rp6 3595 . -32605.59 7 65225.18 65268.49
m5_rp7 3595 . -32604.57 8 65225.14 65274.63
m5_rp8 3595 . -32603.15 9 65224.31 65279.99
m5_rp9 3595 . -32601.98 10 65223.96 65285.83
m5_rp10 3595 . -32601.12 11 65224.24 65292.3

In case of the more flexible parametric models (non-standard), we selected the models that showed the best trade-off between lower complexity and better fit.

With covariables

Posteriorly, we compared AICs with covariates. We added the time of arrival as a covariate to each transition (excluding the first).

. local stname `" "tipo_de_programa_2 edad_al_ing_grupos escolaridad_rec sus_principal_mod freq_cons_sus_prin compromiso_biopsicosocial tenencia_de_la_viv
> ienda_mod num_otras_sus_mod numero_de_hijos_mod_rec tipo_de_plan_res" "tipo_de_programa_2 edad_al_ing_grupos escolaridad_rec sus_principal_mod freq_cons
> _sus_prin compromiso_biopsicosocial tenencia_de_la_vivienda_mod num_otras_sus_mod numero_de_hijos_mod_rec tipo_de_plan_res" "tipo_de_programa_2 edad_al_
> ing_grupos escolaridad_rec sus_principal_mod freq_cons_sus_prin compromiso_biopsicosocial tenencia_de_la_vivienda_mod num_otras_sus_mod numero_de_hijos_
> mod_rec tipo_de_plan_res" "tipo_de_programa_2 edad_al_ing_grupos escolaridad_rec sus_principal_mod freq_cons_sus_prin compromiso_biopsicosocial tenencia
> _de_la_vivienda_mod num_otras_sus_mod numero_de_hijos_mod_rec tipo_de_plan_res _start" "tipo_de_programa_2 edad_al_ing_grupos escolaridad_rec sus_princi
> pal_mod freq_cons_sus_prin compromiso_biopsicosocial tenencia_de_la_vivienda_mod num_otras_sus_mod numero_de_hijos_mod_rec tipo_de_plan_res _start" "' 

. 
. forvalues i = 1/5 {
  2.         gettoken state stname : stname 
  3.         // Exponential
.         set seed 2125
  4.         qui cap merlin (_time `state' if _trans == `i', family(exponential, fail(_status)))
  5.         estimates store m2_`i'_exp
  6.         *estimates save "${pathdata2}parmodels.ster", append    
.         // Weibull
.         set seed 2125
  7.         qui cap merlin (_time `state' if _trans == `i', family(weibull, fail(_status)))
  8.         estimates store m2_`i'_weib
  9.         *estimates save "${pathdata2}parmodels.ster", append    
.         // Gompertz
.         set seed 2125
 10.         qui cap merlin (_time `state' if _trans == `i', family(gompertz, fail(_status)))
 11.         estimates store m2_`i'_gom
 12.         *estimates save "${pathdata2}parmodels.ster", append    
.         // Log logistic
.         set seed 2125
 13.         qui cap merlin (_time `state' if _trans == `i', family(loglogistic, fail(_status)))
 14.         estimates store m2_`i'_logl
 15.         *estimates save "${pathdata2}parmodels.ster", append    
.         // Log normal
.         set seed 2125
 16.         qui cap merlin (_time `state' if _trans == `i', family(lognormal, fail(_status)))
 17.         estimates store m2_`i'_logn
 18.         *estimates save "${pathdata2}parmodels.ster", append    
.         // Generalised gamma
.         set seed 2125
 19.         qui cap merlin (_time `state' if _trans == `i', family(ggamma, fail(_status)))
 20.         estimates store m2_`i'_ggam
 21.         *estimates save "${pathdata2}parmodels.ster", append    
.         // Royston Parmar models
.         set seed 2125
 22.         forvalues j=2/10 {
 23.                 qui cap merlin (_time `state' if _trans == `i', family(rp, df(`j') fail(_status)))
 24.                 estimates store m2_`i'_rp`j'
 25.                 *estimates save "${pathdata2}parmodels.ster", append    
.         }       
 26. }

. 
. estwrite _all using "${pathdata2}parmodels_m2_ago_c.sters", replace
(saving m2_1_exp)
(saving m2_1_weib)
(saving m2_1_gom)
(saving m2_1_logl)
(saving m2_1_logn)
(saving m2_1_ggam)
(saving m2_1_rp2)
(saving m2_1_rp3)
(saving m2_1_rp4)
(saving m2_1_rp5)
(saving m2_1_rp6)
(saving m2_1_rp7)
(saving m2_1_rp8)
(saving m2_1_rp9)
(saving m2_1_rp10)
(saving m2_2_exp)
(saving m2_2_weib)
(saving m2_2_gom)
(saving m2_2_logl)
(saving m2_2_logn)
(saving m2_2_ggam)
(saving m2_2_rp2)
(saving m2_2_rp3)
(saving m2_2_rp4)
(saving m2_2_rp5)
(saving m2_2_rp6)
(saving m2_2_rp7)
(saving m2_2_rp8)
(saving m2_2_rp9)
(saving m2_2_rp10)
(saving m2_3_exp)
(saving m2_3_weib)
(saving m2_3_gom)
(saving m2_3_logl)
(saving m2_3_logn)
(saving m2_3_ggam)
(saving m2_3_rp2)
(saving m2_3_rp3)
(saving m2_3_rp4)
(saving m2_3_rp5)
(saving m2_3_rp6)
(saving m2_3_rp7)
(saving m2_3_rp8)
(saving m2_3_rp9)
(saving m2_3_rp10)
(saving m2_4_exp)
(saving m2_4_weib)
(saving m2_4_gom)
(saving m2_4_logl)
(saving m2_4_logn)
(saving m2_4_ggam)
(saving m2_4_rp2)
(saving m2_4_rp3)
(saving m2_4_rp4)
(saving m2_4_rp5)
(saving m2_4_rp6)
(saving m2_4_rp7)
(saving m2_4_rp8)
(saving m2_4_rp9)
(saving m2_4_rp10)
(saving m2_5_exp)
(saving m2_5_weib)
(saving m2_5_gom)
(saving m2_5_logl)
(saving m2_5_logn)
(saving m2_5_ggam)
(saving m2_5_rp2)
(saving m2_5_rp3)
(saving m2_5_rp4)
(saving m2_5_rp5)
(saving m2_5_rp6)
(saving m2_5_rp7)
(saving m2_5_rp8)
(saving m2_5_rp9)
(saving m2_5_rp10)
(file E:/Mi unidad/Alvacast/SISTRAT 2019 (github)/_WO vs MG/parmodels_m2_ago_c.sters saved)

Selected the models with lower fit indices.


comb
N ll0 ll df AIC BIC

m2_1_exp 5114 . -42681.08 11 85384.16 85456.09
m2_1_weib 5114 . -42603.86 12 85231.72 85310.19
m2_1_gom 5114 . -1619171 0 3238343 3238343
m2_1_logl 5114 . -41671.12 12 83366.24 83444.72
m2_1_logn 5114 . -41672.41 12 83368.83 83447.31
m2_1_ggam 5114 . -41652.15 13 83330.3 83415.32
m2_1_rp2 5114 . -40620.22 13 81266.44 81351.45
m2_1_rp3 5114 . -39929.29 14 79886.57 79978.13
m2_1_rp4 5114 . -39886.27 15 79802.54 79900.63
m2_1_rp5 5114 . -39879.28 16 79790.57 79895.2
m2_1_rp6 5114 . -39868.14 17 79770.28 79881.46
m2_1_rp7 5114 . -39869.16 18 79774.32 79892.04
m2_1_rp8 5114 . -39869.45 19 79776.9 79901.15
m2_1_rp9 5114 . -39866.63 20 79773.26 79904.06
m2_1_rp10 5114 . -39864.43 21 79770.85 79908.19
m2_2_exp 11995 . -89890.02 11 179802 179883.4
m2_2_weib 11995 . -88642.81 12 177309.6 177398.3
m2_2_gom 11995 . -86249.5 12 172523 172611.7
m2_2_logl 11995 . -87039.08 12 174102.2 174190.9
m2_2_logn 11995 . -87027.32 12 174078.6 174167.4
m2_2_ggam 11995 . -86720.27 13 173466.5 173562.6
m2_2_rp2 11995 . -86115.58 13 172257.2 172353.3
m2_2_rp3 11995 . -85534.05 14 171096.1 171199.6
m2_2_rp4 11995 . -85504.45 15 171038.9 171149.8
m2_2_rp5 11995 . -85465.79 16 170963.6 171081.9
m2_2_rp6 11995 . -85454.96 17 170943.9 171069.6
m2_2_rp7 11995 . -85447.72 18 170931.4 171064.5
m2_2_rp8 11995 . -85441.27 19 170920.5 171061
m2_2_rp9 11995 . -85434.75 20 170909.5 171057.3
m2_2_rp10 11995 . -85428.87 21 170899.7 171055
m2_3_exp 753 . -7721.317 11 15464.63 15515.5
m2_3_weib 753 . -7621.376 12 15266.75 15322.24
m2_3_gom 753 . -7709.223 12 15442.45 15497.94
m2_3_logl 753 . -7592.484 12 15208.97 15264.46
m2_3_logn 753 . -7527.057 12 15078.11 15133.6
m2_3_ggam 753 . -7494.136 13 15014.27 15074.38
m2_3_rp2 753 . -7498.044 13 15022.09 15082.2
m2_3_rp3 753 . -7497.156 14 15022.31 15087.05
m2_3_rp4 753 . -7493.141 15 15016.28 15085.64
m2_3_rp5 753 . -7492.481 16 15016.96 15090.95
m2_3_rp6 753 . -7492.132 17 15018.26 15096.87
m2_3_rp7 753 . -7492.11 18 15020.22 15103.45
m2_3_rp8 753 . -7491.777 19 15021.55 15109.41
m2_3_rp9 753 . -7491.623 20 15023.25 15115.73
m2_3_rp10 753 . -7491.93 21 15025.86 15122.97
m2_4_exp 1063 . -10114.06 12 20252.11 20311.74
m2_4_weib 1063 . -9824.304 13 19674.61 19739.2
m2_4_gom 1063 . -9933.814 13 19893.63 19958.22
m2_4_logl 1063 . -9811.604 13 19649.21 19713.8
m2_4_logn 1063 . -9812.931 13 19651.86 19716.46
m2_4_ggam 1063 . -9809.605 14 19647.21 19716.77
m2_4_rp2 1063 . -9823.848 14 19675.7 19745.26
m2_4_rp3 1063 . -9822.815 15 19675.63 19750.16
m2_4_rp4 1063 . -9822.709 16 19677.42 19756.92
m2_4_rp5 1063 . -9822.157 17 19678.31 19762.79
m2_4_rp6 1063 . -9818.375 18 19672.75 19762.19
m2_4_rp7 1063 . -9815.046 19 19668.09 19762.5
m2_4_rp8 1063 . -9813.673 20 19667.35 19766.72
m2_4_rp9 1063 . -9811.489 21 19664.98 19769.32
m2_4_rp10 1063 . -9809.089 22 19662.18 19771.49
m2_5_exp 3595 . -33549.25 12 67122.51 67196.76
m2_5_weib 3595 . -32488.36 13 65002.73 65083.16
m2_5_gom 3595 . -32662.29 13 65350.58 65431.01
m2_5_logl 3595 . -32435.16 13 64896.32 64976.76
m2_5_logn 3595 . -32417.39 13 64860.79 64941.22
m2_5_ggam 3595 . -32415.29 14 64858.59 64945.21
m2_5_rp2 3595 . -32440.9 14 64909.8 64996.42
m2_5_rp3 3595 . -32418.25 15 64866.5 64959.31
m2_5_rp4 3595 . -32417.69 16 64867.38 64966.38
m2_5_rp5 3595 . -32418.09 17 64870.18 64975.36
m2_5_rp6 3595 . -32416.26 18 64868.51 64979.88
m2_5_rp7 3595 . -32415.24 19 64868.49 64986.04
m2_5_rp8 3595 . -32413.84 20 64867.68 64991.43
m2_5_rp9 3595 . -32412.68 21 64867.36 64997.29
m2_5_rp10 3595 . -32411.82 22 64867.63 65003.75

Saved at= 22:40:12 25 Jul 2021