In the following Tables and graphics, there is a summary of the variables and docummentation of their characteristics. This high-level summary may permit us find errors on coding, help us to understand missingness and guide us towards an objective, or lead us to more questions.


load("G:/Mi unidad/Alvacast/SISTRAT 2019 (github)/4.RData")
#load("H:/sud_cl/4.RData")
codebook(CONS_TOP_df_dup_ENE_2020_prev9)
knitr::asis_output(data_info)

Metadata

Description

if (exists("name", meta)) {
  glue::glue(
    "__Dataset name__: {name}",
    .envir = meta)
}

Dataset name: SENDAs Treatment Outcomes Profile

cat(description)

Information About Treatment Outcomes Profile of users of SENDA, 2015 to 2019

Metadata for search engines

  • Date published: 2020-04-22
meta <- meta[setdiff(names(meta),
                     c("creator", "datePublished", "identifier",
                       "url", "citation", "spatialCoverage", 
                       "temporalCoverage", "description", "name"))]
pander::pander(meta)
  • keywords: hash_key, hash_rut_completo, id_mod, id, ano_bd, row, fecha_aplicacion_top, nombre_apliacador_del_top, top, etapa_del_tratamiento, fecha_nacimiento, edad, sexo, fecha_de_ingreso_a_tratamiento, plan_de_tratamiento, nombre_del_centro, tipo_centro, sustancia_principal_1, sustancia_principal_2, sustancia_principal_3, total_oh, dosis_oh, total_thc, dosis_thc, total_pbc, dosis_pbc, total_coc, dosis_coc, total_bzd, dosis_bzd, total_otra, dosis_otra, hurto, robo, venta_drogas, rina, total_vif, otro, total_transgresion, salud_psicologica, total_trabajo, total_educacion, salud_fisica, lugar_vivir, vivienda, calidad_vida, region_centro, comentario, fech_ing, fech_ing_sin_fmt, fech_ap_top, fech_nac, obs, edad_al_ing, edad_at_ap, tipo_de_plan, identidad_de_genero, sus_prin1, sus_prin2, sus_prin3 and id_centro
knitr::asis_output(survey_overview)

Variables

if (detailed_variables || detailed_scales) {
  knitr::asis_output(paste0(scales_items, sep = "\n\n\n", collapse = "\n\n\n"))
}

hash_key

Codificación del RUT/Masked Identifier (RUT)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique empty min max whitespace
hash_key Codificación del RUT/Masked Identifier (RUT) character 0 1 37201 0 32 32 0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

hash_rut_completo

HASH alternativo, en el escenario en que se asuma que el individuo al que se le codificó el RUT presente mayor edad/Alternative HASH-Key

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}
## Error in if (stats::median(table(x)) == 1) {: valor ausente donde TRUE/FALSE es necesario
wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}
## No non-missing values to show.
knitr::opts_chunk$set(fig.height = old_height)

103291 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate count
hash_rut_completo HASH alternativo, en el escenario en que se asuma que el individuo al que se le codificó el RUT presente mayor edad/Alternative HASH-Key logical 103291 0 :
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

id_mod

ID de SENDA para Presentación en Página Web (enmascara caracteres 5 y 6)/SENDAs ID (masked characters 5 & 6)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique empty min max whitespace
id_mod ID de SENDA para Presentación en Página Web (enmascara caracteres 5 y 6)/SENDAs ID (masked characters 5 & 6) character 0 1 37145 0 12 13 0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

id

Codigo Identificación de SENDA/SENDAs ID

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique empty min max whitespace
id Codigo Identificación de SENDA/SENDAs ID character 0 1 37953 0 12 13 0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

ano_bd

Año de la Base de Datos/Year of the Dataset (Source)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
ano_bd Año de la Base de Datos/Year of the Dataset (Source) numeric 0 1 2015 2017 2019 2017.277 1.234673 ▂▇▇▇▆
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

row

Numerador de los eventos presentes en la Base de Datos/Events in the Dataset

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
row Numerador de los eventos presentes en la Base de Datos/Events in the Dataset numeric 0 1 1 54056 107307 53990.85 30957.41 ▇▇▇▇▇
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

fecha_aplicacion_top

(original, Recodificado en fech_ap_top)/

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique empty min max whitespace
fecha_aplicacion_top (original, Recodificado en fech_ap_top)/ character 0 1 1593 0 10 10 0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

nombre_apliacador_del_top

Nombre Aplicador del TOP/Name of the TOP Interviewer

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

1 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique empty min max whitespace
nombre_apliacador_del_top Nombre Aplicador del TOP/Name of the TOP Interviewer character 1 0.9999903 11530 0 1 50 0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

top

TOP

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels n_missing complete_rate n_unique top_counts
top TOP factor FALSE 1. Egreso,
2. Ingreso,
3. Tratamiento
0 1 3 Tra: 49085, Ing: 44420, Egr: 9786
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

etapa_del_tratamiento

Etapa del Tratamiento/Stage of Treatment

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

1887 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels n_missing complete_rate n_unique top_counts
etapa_del_tratamiento Etapa del Tratamiento/Stage of Treatment factor FALSE 1. Egreso,
2. Inicio Tratamiento,
3. Seguimiento 12 meses,
4. Seguimiento 15 meses,
5. Seguimiento 3 meses,
6. Seguimiento 6 meses,
7. Seguimiento 9 meses
1887 0.9817312 7 Ini: 44417, Seg: 23694, Seg: 12074, Egr: 9786
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

fecha_nacimiento

Fecha de Nacimiento/Date of Birth

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique empty min max whitespace
fecha_nacimiento Fecha de Nacimiento/Date of Birth character 0 1 14483 0 10 10 0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

edad

Edad (número entero)/Year (Discrete Number)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
edad Edad (número entero)/Year (Discrete Number) numeric 0 1 3 39 102 40.40813 11.78333 ▁▇▅▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

sexo

Sexo/Sex

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels n_missing complete_rate n_unique top_counts
sexo Sexo/Sex factor FALSE 1. Hombre,
2. Mujer
0 1 2 Hom: 74059, Muj: 29232
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

fecha_de_ingreso_a_tratamiento

(original, Recodificado en fech_ing)/

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

1086 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique empty min max whitespace
fecha_de_ingreso_a_tratamiento (original, Recodificado en fech_ing)/ character 1086 0.989486 1394 0 10 10 0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

plan_de_tratamiento

(original, Recodificado en tipo_de_plan)/

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

1088 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique empty min max whitespace
plan_de_tratamiento (original, Recodificado en tipo_de_plan)/ character 1088 0.9894667 9 0 4 8 0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

nombre_del_centro

Nombre del Centro de Tratamiento/Treatment Center

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique empty min max whitespace
nombre_del_centro Nombre del Centro de Tratamiento/Treatment Center character 0 1 372 0 5 120 365
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

tipo_centro

Tipo de Centro/Type of Center

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels n_missing complete_rate n_unique top_counts
tipo_centro Tipo de Centro/Type of Center factor FALSE 1. privado,
2. publico
0 1 2 pub: 68223, pri: 35068
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

sustancia_principal_1

(original, Recodificado en sus_prin1)/

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

1086 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique empty min max whitespace
sustancia_principal_1 (original, Recodificado en sus_prin1)/ character 1086 0.989486 18 0 3 98 0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

sustancia_principal_2

(original, Recodificado en sus_prin2)/

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

37094 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique empty min max whitespace
sustancia_principal_2 (original, Recodificado en sus_prin2)/ character 37094 0.6408787 21 0 3 98 0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

sustancia_principal_3

(original, Recodificado en sus_prin3)/

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

69049 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique empty min max whitespace
sustancia_principal_3 (original, Recodificado en sus_prin3)/ character 69049 0.33151 21 0 3 98 0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

total_oh

Total Alcohol/Total Alcohol

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

436 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
total_oh Total Alcohol/Total Alcohol numeric 436 0.9957789 0 0 28 3.3881 6.40716 ▇▁▁▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

dosis_oh

Dosis Consumo de Alcohol/Amount of Alcohol

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

436 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
dosis_oh Dosis Consumo de Alcohol/Amount of Alcohol numeric 436 0.9957789 0 0 99 3.010072 6.23239 ▇▁▁▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

total_thc

Total Marihuana/Total Marijuana

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

443 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
total_thc Total Marihuana/Total Marijuana numeric 443 0.9957111 0 0 28 2.628782 6.945185 ▇▁▁▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

dosis_thc

Dosis Marihuana/Dose of Marijuana

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

443 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
dosis_thc Dosis Marihuana/Dose of Marijuana numeric 443 0.9957111 0 0 99 0.4866599 1.783987 ▇▁▁▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

total_pbc

Total Pasta Base de Cocaína/Total Cocaine Paste Base

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

454 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
total_pbc Total Pasta Base de Cocaína/Total Cocaine Paste Base numeric 454 0.9956047 0 0 28 2.313477 6.415292 ▇▁▁▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

dosis_pbc

Dosis Pasta Base de Cocaína/Dose of Cocaine Paste Base

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

454 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
dosis_pbc Dosis Pasta Base de Cocaína/Dose of Cocaine Paste Base numeric 454 0.9956047 0 0 99 0.5132588 2.34785 ▇▁▁▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

total_coc

Total Cocaína/Total Snort Cocaine

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

474 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
total_coc Total Cocaína/Total Snort Cocaine numeric 474 0.995411 0 0 28 0.9993873 3.784745 ▇▁▁▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

dosis_coc

Dosis Cocaína/Dose of Snort Cocaine

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

474 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
dosis_coc Dosis Cocaína/Dose of Snort Cocaine numeric 474 0.995411 0 0 99 0.1909704 2.026866 ▇▁▁▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

total_bzd

Total Sedantes o Tranquilizantes/Total Sedatives and Tranquillizers

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

464 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
total_bzd Total Sedantes o Tranquilizantes/Total Sedatives and Tranquillizers numeric 464 0.9955078 0 0 28 0.5632762 3.561032 ▇▁▁▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

dosis_bzd

Dosis Sedantes o Tranquilizantes/Dose of Sedatives and Tranquillizers

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

503 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
dosis_bzd Dosis Sedantes o Tranquilizantes/Dose of Sedatives and Tranquillizers numeric 503 0.9951303 0 0 99 0.4146107 2.868782 ▇▁▁▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

total_otra

Total Otra sustancia problema/Total Other Substances

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

503 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
total_otra Total Otra sustancia problema/Total Other Substances numeric 503 0.9951303 0 0 28 0.933251 4.85147 ▇▁▁▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

dosis_otra

Dosis Otra sustancia problema/Dose of Other Substances

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

503 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
dosis_otra Dosis Otra sustancia problema/Dose of Other Substances numeric 503 0.9951303 0 0 99 0.4146107 2.868782 ▇▁▁▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

hurto

Hurto/Theft

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

3599 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels n_missing complete_rate n_unique top_counts
hurto Hurto/Theft factor FALSE 1. N,
2. S
3599 0.9651567 2 N: 94383, S: 5309
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

robo

Robo/Robbery

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

3608 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels n_missing complete_rate n_unique top_counts
robo Robo/Robbery factor FALSE 1. N,
2. S
3608 0.9650696 2 N: 96606, S: 3077
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

venta_drogas

Venta de Drogas/Drug selling

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

3626 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels n_missing complete_rate n_unique top_counts
venta_drogas Venta de Drogas/Drug selling factor FALSE 1. N,
2. S
3626 0.9648953 2 N: 97425, S: 2240
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

rina

Riña/Fights

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

3586 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels n_missing complete_rate n_unique top_counts
rina Riña/Fights factor FALSE 1. N,
2. S
3586 0.9652826 2 N: 93297, S: 6408
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

total_vif

Total Violencia Intrafamiliar/Total Domestic Violence

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

567 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
total_vif Total Violencia Intrafamiliar/Total Domestic Violence numeric 567 0.9945107 0 0 28 0.6885246 3.243149 ▇▁▁▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

otro

Otra Acción/Another Action

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

4227 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels n_missing complete_rate n_unique top_counts
otro Otra Acción/Another Action factor FALSE 1. N,
2. S
4227 0.9590768 2 N: 96403, S: 2661
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

total_transgresion

Total Transgresión a la Norma Social/Total Behavior that transgresses social norms

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
total_transgresion Total Transgresión a la Norma Social/Total Behavior that transgresses social norms numeric 0 1 0 0 5 0.1906749 0.5958001 ▇▁▁▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

salud_psicologica

Salud Psicológica/Psychological Health

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

345 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
salud_psicologica Salud Psicológica/Psychological Health numeric 345 0.9966599 0 12 20 11.87126 5.145294 ▂▃▇▇▆
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

total_trabajo

Total Trabajo Pagado Formal o Informal/Total of Paid Work

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

391 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
total_trabajo Total Trabajo Pagado Formal o Informal/Total of Paid Work numeric 391 0.9962146 0 7 28 10.31753 10.60293 ▇▁▁▃▃
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

total_educacion

Total Asistencia a Establecimiento Educacional o Capacitación Laboral/Total College or school

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

1067 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
total_educacion Total Asistencia a Establecimiento Educacional o Capacitación Laboral/Total College or school numeric 1067 0.98967 0 0 28 0.5376624 2.991359 ▇▁▁▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

salud_fisica

Total Salud Física/Total Physical Health

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

353 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
salud_fisica Total Salud Física/Total Physical Health numeric 353 0.9965825 0 14 20 12.82918 5.101704 ▂▃▇▇▇
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

lugar_vivir

Lugar estable para vivir/Stable Place to Live

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

3133 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels n_missing complete_rate n_unique top_counts
lugar_vivir Lugar estable para vivir/Stable Place to Live factor FALSE 1. N,
2. S
3133 0.9696682 2 S: 93448, N: 6710
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

vivienda

Vivienda con Condiciones Básicas/Housing conditions

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

3194 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels n_missing complete_rate n_unique top_counts
vivienda Vivienda con Condiciones Básicas/Housing conditions factor FALSE 1. N,
2. S
3194 0.9690777 2 S: 92755, N: 7342
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

calidad_vida

Total Calidad de Vida/Total Quality of Life (QoL)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

368 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
calidad_vida Total Calidad de Vida/Total Quality of Life (QoL) numeric 368 0.9964373 0 14 20 12.88733 5.306473 ▂▃▆▇▇
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

region_centro

Región del Centro/Chilean Region of the Center

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique empty min max whitespace
region_centro Región del Centro/Chilean Region of the Center character 0 1 16 0 8 44 0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

comentario

Comentarios relacionados con la aplicación del TOP/Comments related to the application of TOP

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

97776 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique empty min max whitespace
comentario Comentarios relacionados con la aplicación del TOP/Comments related to the application of TOP character 97776 0.0533928 4560 0 1 170 27
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

fech_ing

Fecha de Ingreso a Tratamiento/Date of Admission to Treatment

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}
## 1394  unique, categorical values, so not shown.
knitr::opts_chunk$set(fig.height = old_height)

1073 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique min median max
fech_ing Fecha de Ingreso a Tratamiento/Date of Admission to Treatment Date 1073 0.9896119 1394 2015-05-01 2017-05-17 2019-11-07
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

fech_ing_sin_fmt

Fecha de Ingreso de Tratamiento (Sin Formato de Fecha)/Date of Admission (unformatted)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

1086 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique empty min max whitespace
fech_ing_sin_fmt Fecha de Ingreso de Tratamiento (Sin Formato de Fecha)/Date of Admission (unformatted) character 1086 0.989486 1394 0 10 10 0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

fech_ap_top

Fecha de Aplicación de TOP/Date of Application of TOP

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}
## 1593  unique, categorical values, so not shown.
knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique min median max
fech_ap_top Fecha de Aplicación de TOP/Date of Application of TOP Date 0 1 1593 2015-01-08 2017-10-20 2019-11-29
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

fech_nac

Fecha de Nacimiento/Date of Birth

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}
## 14483  unique, categorical values, so not shown.
knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique min median max
fech_nac Fecha de Nacimiento/Date of Birth Date 0 1 14483 1917-07-15 1980-08-02 2015-12-16
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

obs

Observaciones al Proceso de Limpieza y Estandarización de Casos/Observations to the Process of Data Tidying & Standardization

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique empty min max whitespace
obs Observaciones al Proceso de Limpieza y Estandarización de Casos/Observations to the Process of Data Tidying & Standardization character 0 1 26 97356 0 169 0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

edad_al_ing

Edad a la Fecha de Ingreso a Tratamiento (numérico continuo)/Age at Admission to Treatment

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

1073 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
edad_al_ing Edad a la Fecha de Ingreso a Tratamiento (numérico continuo)/Age at Admission to Treatment numeric 1073 0.9896119 -0.16 37 100 38.46781 11.72702 ▁▇▅▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

edad_at_ap

Edad a la Aplicación del Tratamiento (numérico continuo)/Age at the Application of TOP

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
edad_at_ap Edad a la Aplicación del Tratamiento (numérico continuo)/Age at the Application of TOP numeric 0 1 -0.071 37 101 38.84788 11.78334 ▁▇▅▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

tipo_de_plan

Tipo de Plan/Type of Plan

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

1165 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels n_missing complete_rate n_unique top_counts
tipo_de_plan Tipo de Plan/Type of Plan factor FALSE 1. M-PAI,
2. M-PR,
3. PG-PAB,
4. PG-PAI,
5. PG-PR
1165 0.9887212 5 PG-: 43267, PG-: 32489, PG-: 13091, M-P: 7996
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

identidad_de_genero

Identidad de Género/Gender Identity

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

84121 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate n_unique empty min max whitespace
identidad_de_genero Identidad de Género/Gender Identity character 84121 0.1855922 2 0 8 9 0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

sus_prin1

Sustancia Principal de Consumo (1)/Primary Substance of Consumption (1)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

1086 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels n_missing complete_rate n_unique top_counts
sus_prin1 Sustancia Principal de Consumo (1)/Primary Substance of Consumption (1) factor FALSE 1. Alcohol,
2. Alucinógenos,
3. Cocaína,
4. Estimulante tipo anfetaminas,
5. Inhalables,
6. Marihuana,
7. Opioides,
8. Otros,
9. Pasta Base,
10. Tranquilizantes e Hipnóticos
1086 0.989486 10 Alc: 42036, Pas: 35220, Coc: 18886, Mar: 4495
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

sus_prin2

Sustancia Principal de Consumo (2)/Primary Substance of Consumption (2)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

38546 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels n_missing complete_rate n_unique top_counts
sus_prin2 Sustancia Principal de Consumo (2)/Primary Substance of Consumption (2) factor FALSE 1. Alcohol,
2. Alucinógenos,
3. Cocaína,
4. Estimulante tipo anfetaminas,
5. Inhalables,
6. Marihuana,
7. Opioides,
8. Otros,
9. Pasta Base,
10. Tranquilizantes e Hipnóticos
38546 0.6268213 10 Alc: 26283, Mar: 19910, Coc: 11358, Pas: 4773
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

sus_prin3

Sustancia Principal de Consumo (3)/Primary Substance of Consumption (3)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

69437 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels n_missing complete_rate n_unique top_counts
sus_prin3 Sustancia Principal de Consumo (3)/Primary Substance of Consumption (3) factor FALSE 1. Alcohol,
2. Alucinógenos,
3. Cocaína,
4. Estimulante tipo anfetaminas,
5. Inhalables,
6. Marihuana,
7. Opioides,
8. Otros,
9. Pasta Base,
10. Tranquilizantes e Hipnóticos
69437 0.3277536 10 Mar: 12897, Alc: 10430, Coc: 6212, Pas: 2141
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

id_centro

ID de Centro/Center ID

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

221 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type n_missing complete_rate min median max mean sd hist
id_centro ID de Centro/Center ID numeric 221 0.9978604 104 290 779 334.0786 175.0481 ▇▆▃▂▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
missingness_report

Missingness report

if (length(md_pattern)) {
  if (knitr::is_html_output()) {
    rmarkdown::paged_table(md_pattern, options = list(rows.print = 10))
  } else {
    knitr::kable(md_pattern)
  }
}
items

Codebook table

export_table(metadata_table)
jsonld

JSON-LD metadata The following JSON-LD can be found by search engines, if you share this codebook publicly on the web.

{
  "name": "SENDAs Treatment Outcomes Profile",
  "description": "Information About Treatment Outcomes Profile of users of SENDA, 2015 to 2019\n\n\n## Table of variables\nThis table contains variable names, labels, and number of missing values.\nSee the complete codebook for more.\n\n[truncated]\n\n### Note\nThis dataset was automatically described using the [codebook R package](https://rubenarslan.github.io/codebook/) (version 0.8.2).",
  "datePublished": "2020-04-22",
  "keywords": ["hash_key", "hash_rut_completo", "id_mod", "id", "ano_bd", "row", "fecha_aplicacion_top", "nombre_apliacador_del_top", "top", "etapa_del_tratamiento", "fecha_nacimiento", "edad", "sexo", "fecha_de_ingreso_a_tratamiento", "plan_de_tratamiento", "nombre_del_centro", "tipo_centro", "sustancia_principal_1", "sustancia_principal_2", "sustancia_principal_3", "total_oh", "dosis_oh", "total_thc", "dosis_thc", "total_pbc", "dosis_pbc", "total_coc", "dosis_coc", "total_bzd", "dosis_bzd", "total_otra", "dosis_otra", "hurto", "robo", "venta_drogas", "rina", "total_vif", "otro", "total_transgresion", "salud_psicologica", "total_trabajo", "total_educacion", "salud_fisica", "lugar_vivir", "vivienda", "calidad_vida", "region_centro", "comentario", "fech_ing", "fech_ing_sin_fmt", "fech_ap_top", "fech_nac", "obs", "edad_al_ing", "edad_at_ap", "tipo_de_plan", "identidad_de_genero", "sus_prin1", "sus_prin2", "sus_prin3", "id_centro"],
  "@context": "http://schema.org/",
  "@type": "Dataset",
  "variableMeasured": [
    {
      "name": "hash_key",
      "description": "Codificación del RUT/Masked Identifier (RUT)",
      "@type": "propertyValue"
    },
    {
      "name": "hash_rut_completo",
      "description": "HASH alternativo, en el escenario en que se asuma que el individuo al que se le codificó el RUT presente mayor edad/Alternative HASH-Key",
      "@type": "propertyValue"
    },
    {
      "name": "id_mod",
      "description": "ID de SENDA para Presentación en Página Web (enmascara caracteres 5 y 6)/SENDAs ID (masked characters 5 & 6)",
      "@type": "propertyValue"
    },
    {
      "name": "id",
      "description": "Codigo Identificación de SENDA/SENDAs ID",
      "@type": "propertyValue"
    },
    {
      "name": "ano_bd",
      "description": "Año de la Base de Datos/Year of the Dataset (Source)",
      "@type": "propertyValue"
    },
    {
      "name": "row",
      "description": "Numerador de los eventos presentes en la Base de Datos/Events in the Dataset",
      "@type": "propertyValue"
    },
    {
      "name": "fecha_aplicacion_top",
      "description": "(original, Recodificado en fech_ap_top)/",
      "@type": "propertyValue"
    },
    {
      "name": "nombre_apliacador_del_top",
      "description": "Nombre Aplicador del TOP/Name of the TOP Interviewer",
      "@type": "propertyValue"
    },
    {
      "name": "top",
      "description": "TOP",
      "value": "1. Egreso,\n2. Ingreso,\n3. Tratamiento",
      "@type": "propertyValue"
    },
    {
      "name": "etapa_del_tratamiento",
      "description": "Etapa del Tratamiento/Stage of Treatment",
      "value": "1. Egreso,\n2. Inicio Tratamiento,\n3. Seguimiento 12 meses,\n4. Seguimiento 15 meses,\n5. Seguimiento 3 meses,\n6. Seguimiento 6 meses,\n7. Seguimiento 9 meses",
      "@type": "propertyValue"
    },
    {
      "name": "fecha_nacimiento",
      "description": "Fecha de Nacimiento/Date of Birth",
      "@type": "propertyValue"
    },
    {
      "name": "edad",
      "description": "Edad (número entero)/Year (Discrete Number)",
      "@type": "propertyValue"
    },
    {
      "name": "sexo",
      "description": "Sexo/Sex",
      "value": "1. Hombre,\n2. Mujer",
      "@type": "propertyValue"
    },
    {
      "name": "fecha_de_ingreso_a_tratamiento",
      "description": "(original, Recodificado en fech_ing)/",
      "@type": "propertyValue"
    },
    {
      "name": "plan_de_tratamiento",
      "description": "(original, Recodificado en tipo_de_plan)/",
      "@type": "propertyValue"
    },
    {
      "name": "nombre_del_centro",
      "description": "Nombre del Centro de Tratamiento/Treatment Center",
      "@type": "propertyValue"
    },
    {
      "name": "tipo_centro",
      "description": "Tipo de Centro/Type of Center",
      "value": "1. privado,\n2. publico",
      "@type": "propertyValue"
    },
    {
      "name": "sustancia_principal_1",
      "description": "(original, Recodificado en sus_prin1)/",
      "@type": "propertyValue"
    },
    {
      "name": "sustancia_principal_2",
      "description": "(original, Recodificado en sus_prin2)/",
      "@type": "propertyValue"
    },
    {
      "name": "sustancia_principal_3",
      "description": "(original, Recodificado en sus_prin3)/",
      "@type": "propertyValue"
    },
    {
      "name": "total_oh",
      "description": "Total Alcohol/Total Alcohol",
      "@type": "propertyValue"
    },
    {
      "name": "dosis_oh",
      "description": "Dosis Consumo de Alcohol/Amount of Alcohol",
      "@type": "propertyValue"
    },
    {
      "name": "total_thc",
      "description": "Total Marihuana/Total Marijuana",
      "@type": "propertyValue"
    },
    {
      "name": "dosis_thc",
      "description": "Dosis Marihuana/Dose of Marijuana",
      "@type": "propertyValue"
    },
    {
      "name": "total_pbc",
      "description": "Total Pasta Base de Cocaína/Total Cocaine Paste Base",
      "@type": "propertyValue"
    },
    {
      "name": "dosis_pbc",
      "description": "Dosis Pasta Base de Cocaína/Dose of Cocaine Paste Base",
      "@type": "propertyValue"
    },
    {
      "name": "total_coc",
      "description": "Total Cocaína/Total Snort Cocaine",
      "@type": "propertyValue"
    },
    {
      "name": "dosis_coc",
      "description": "Dosis Cocaína/Dose of Snort Cocaine",
      "@type": "propertyValue"
    },
    {
      "name": "total_bzd",
      "description": "Total Sedantes o Tranquilizantes/Total Sedatives and Tranquillizers",
      "@type": "propertyValue"
    },
    {
      "name": "dosis_bzd",
      "description": "Dosis Sedantes o Tranquilizantes/Dose of Sedatives and Tranquillizers",
      "@type": "propertyValue"
    },
    {
      "name": "total_otra",
      "description": "Total Otra sustancia problema/Total Other Substances",
      "@type": "propertyValue"
    },
    {
      "name": "dosis_otra",
      "description": "Dosis Otra sustancia problema/Dose of Other Substances",
      "@type": "propertyValue"
    },
    {
      "name": "hurto",
      "description": "Hurto/Theft",
      "value": "1. N,\n2. S",
      "@type": "propertyValue"
    },
    {
      "name": "robo",
      "description": "Robo/Robbery",
      "value": "1. N,\n2. S",
      "@type": "propertyValue"
    },
    {
      "name": "venta_drogas",
      "description": "Venta de Drogas/Drug selling",
      "value": "1. N,\n2. S",
      "@type": "propertyValue"
    },
    {
      "name": "rina",
      "description": "Riña/Fights",
      "value": "1. N,\n2. S",
      "@type": "propertyValue"
    },
    {
      "name": "total_vif",
      "description": " Total Violencia Intrafamiliar/Total Domestic Violence",
      "@type": "propertyValue"
    },
    {
      "name": "otro",
      "description": "Otra Acción/Another Action",
      "value": "1. N,\n2. S",
      "@type": "propertyValue"
    },
    {
      "name": "total_transgresion",
      "description": "Total Transgresión a la Norma Social/Total Behavior that transgresses social norms",
      "@type": "propertyValue"
    },
    {
      "name": "salud_psicologica",
      "description": "Salud Psicológica/Psychological Health",
      "@type": "propertyValue"
    },
    {
      "name": "total_trabajo",
      "description": "Total Trabajo Pagado Formal o Informal/Total of Paid Work",
      "@type": "propertyValue"
    },
    {
      "name": "total_educacion",
      "description": "Total Asistencia a Establecimiento Educacional o Capacitación Laboral/Total College or school ",
      "@type": "propertyValue"
    },
    {
      "name": "salud_fisica",
      "description": "Total Salud Física/Total Physical Health",
      "@type": "propertyValue"
    },
    {
      "name": "lugar_vivir",
      "description": "Lugar estable para vivir/Stable Place to Live",
      "value": "1. N,\n2. S",
      "@type": "propertyValue"
    },
    {
      "name": "vivienda",
      "description": "Vivienda con Condiciones Básicas/Housing conditions",
      "value": "1. N,\n2. S",
      "@type": "propertyValue"
    },
    {
      "name": "calidad_vida",
      "description": "Total Calidad de Vida/Total Quality of Life (QoL)",
      "@type": "propertyValue"
    },
    {
      "name": "region_centro",
      "description": "Región del Centro/Chilean Region of the Center",
      "@type": "propertyValue"
    },
    {
      "name": "comentario",
      "description": "Comentarios relacionados con la aplicación del TOP/Comments related to the application of TOP",
      "@type": "propertyValue"
    },
    {
      "name": "fech_ing",
      "description": "Fecha de Ingreso a Tratamiento/Date of Admission to Treatment",
      "@type": "propertyValue"
    },
    {
      "name": "fech_ing_sin_fmt",
      "description": "Fecha de Ingreso de Tratamiento (Sin Formato de Fecha)/Date of Admission (unformatted)",
      "@type": "propertyValue"
    },
    {
      "name": "fech_ap_top",
      "description": "Fecha de Aplicación de TOP/Date of Application of TOP",
      "@type": "propertyValue"
    },
    {
      "name": "fech_nac",
      "description": "Fecha de Nacimiento/Date of Birth",
      "@type": "propertyValue"
    },
    {
      "name": "obs",
      "description": "Observaciones al Proceso de Limpieza y Estandarización de Casos/Observations to the Process of Data Tidying & Standardization",
      "@type": "propertyValue"
    },
    {
      "name": "edad_al_ing",
      "description": "Edad a la Fecha de Ingreso a Tratamiento (numérico continuo)/Age at Admission to Treatment",
      "@type": "propertyValue"
    },
    {
      "name": "edad_at_ap",
      "description": "Edad a la Aplicación del Tratamiento (numérico continuo)/Age at the Application of TOP",
      "@type": "propertyValue"
    },
    {
      "name": "tipo_de_plan",
      "description": "Tipo de Plan/Type of Plan",
      "value": "1. M-PAI,\n2. M-PR,\n3. PG-PAB,\n4. PG-PAI,\n5. PG-PR",
      "@type": "propertyValue"
    },
    {
      "name": "identidad_de_genero",
      "description": "Identidad de Género/Gender Identity",
      "@type": "propertyValue"
    },
    {
      "name": "sus_prin1",
      "description": "Sustancia Principal de Consumo (1)/Primary Substance of Consumption (1)",
      "value": "1. Alcohol,\n2. Alucinógenos,\n3. Cocaína,\n4. Estimulante tipo anfetaminas,\n5. Inhalables,\n6. Marihuana,\n7. Opioides,\n8. Otros,\n9. Pasta Base,\n10. Tranquilizantes e Hipnóticos",
      "@type": "propertyValue"
    },
    {
      "name": "sus_prin2",
      "description": "Sustancia Principal de Consumo (2)/Primary Substance of Consumption (2)",
      "value": "1. Alcohol,\n2. Alucinógenos,\n3. Cocaína,\n4. Estimulante tipo anfetaminas,\n5. Inhalables,\n6. Marihuana,\n7. Opioides,\n8. Otros,\n9. Pasta Base,\n10. Tranquilizantes e Hipnóticos",
      "@type": "propertyValue"
    },
    {
      "name": "sus_prin3",
      "description": "Sustancia Principal de Consumo (3)/Primary Substance of Consumption (3)",
      "value": "1. Alcohol,\n2. Alucinógenos,\n3. Cocaína,\n4. Estimulante tipo anfetaminas,\n5. Inhalables,\n6. Marihuana,\n7. Opioides,\n8. Otros,\n9. Pasta Base,\n10. Tranquilizantes e Hipnóticos",
      "@type": "propertyValue"
    },
    {
      "name": "id_centro",
      "description": "ID de Centro/Center ID",
      "@type": "propertyValue"
    }
  ]
}`